Linear Algebra, Test 4 ANSWERS.

1. Let $B=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. and let $C=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(a) (10 points). Compute the change of basis matrix from B to C.

Write $B=b_{1}, b_{2}$ and $C=c_{1}, c_{2}$. The change-of-basis matrix from B to C is given by the formula in Theorem 15 on page 242:

$$
\left(\left[b_{1}\right]_{C}\left[b_{2}\right]_{C}\right)
$$

(the number n in Theorem 15 is the number of elements of B, also the number of elements of C, and that is $n=2$ in this exercise).
Our next task is to compute the coordinate vectors $\left[b_{1}\right]_{C}$ and $\left[b_{2}\right]_{C}$. Since the vectors are so small, we can find them with a bit of trial-and-error (try to write b_{1} as a combination of c_{1}, c_{2}, then do the same for b_{2}) (writing b_{1} as a combination of c_{1}, c_{2} is particularly easy because $b_{1}=0 c_{1}+1 c_{2}$). Or, we can do it in a systematic way by row-reducing $(C \mid B)=\left(c_{1} c_{2} \mid b_{1} b_{2}\right)$ to $\left(\begin{array}{c|c}I & P \\ 0 & 0\end{array}\right)$.
(That looks like the last formula on page 243, the reason they don't have any zero-rows at the bottom is because they have two vectors in \mathbb{R}^{2} whereas we have 2 vectors in \mathbb{R}^{3}. In general, if B and C each have k vectors in \mathbb{R}^{N} then you would get $N-k$ zero-rows at the bottom after row-reducing).

Row-reducing $(C \mid B)$ gives $\left(\begin{array}{rr|rr}1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right)$. From this we can read off $\left[b_{1}\right]_{C}=\binom{0}{1}$ as we had already seen before, and $\left[b_{2}\right]_{C}=$ $\binom{-1}{4}$ which is also easy to verify (check this!). So the B-to- C change of matrix is $P=\left(\begin{array}{rr}0 & -1 \\ 1 & 4\end{array}\right)$.
(b) (5 points). If $[w]_{B}=\binom{-1}{2}$ then compute $[w]_{C}$ without computing w itself.
P is the B-to- C change of basis matrix so it should send $[w]_{B}$ to $[w]_{C}$. That means $[w]_{C}=P[w]_{B}=\left(\begin{array}{rr}0 & -1 \\ 1 & 4\end{array}\right)\binom{-1}{2}=\binom{-2}{7}$
2. Let V be a vector space of dimension 3 . True or false (2 points each):
(a) A set of four vectors in V can never be linearly independent. TRUE (if you have more than $\operatorname{dim}(V)$ vectors then they must be dependent).
(b) A set of four vectors in V can never be a spanning set of V. FALSE (a spanning set has at least $\operatorname{dim}(V)$ elements but it can easily have more by adding some unnecessary vectors).
(c) A set of two vectors in V can never be linearly independent. FALSE (the maximum number of independent vectors is equal to the dimension, but you can easily have fewer (just delete some!)).
(d) A set of two vectors in V can never be a spanning set of V. TRUE (a spanning set has at least $\operatorname{dim}(V)$ elements)
(e) Any three linearly independent vectors in V will always form a basis of V. TRUE (any independent set with $\operatorname{dim}(V)$ elements is a basis)
(f) A set of vectors in V can only be a spanning set of V if it contains three linearly independent vectors. TRUE (for every spanning set S there is a basis B with $B \subseteq S$. That basis will have $\operatorname{dim}(V)$ independent elements, but those will also be elements of S).
(g) A change of basis matrix is always invertible. TRUE.
3. Let $P_{1}=\{a+b t \mid a, b \in \mathbb{R}\}$ be the vector space of all polynomials in t of degree at most 1 . Let $T: P_{1} \rightarrow P_{1}$ be the linear map given by differentiation $T=d / d t$.
(a) (10 points). Let $B=1, t$ be a basis of P_{1}. Let $A=[T]_{B}$. Compute A.

To compute $[T]_{B}$ we have to apply T to all elements of B. After that, we have to compute the coordinate vectors w.r.t. B.
Writing $B=b_{1}, b_{2}=1, t$ we see that $T\left(b_{1}\right)=T(1)=1^{\prime}=0$ and the coordinate vector of that w.r.t. B is $\binom{0}{0}$ (our vector should have two entries because B has two elements). Now $T\left(b_{2}\right)=T(t)=t^{\prime}=1$ and the coordinate vector of that w.r.t. B is $\binom{1}{0}$. Putting these two coordinate-vectors together we find

$$
[T]_{B}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(b) (10 points). Compute all eigenvectors of A.

You may recognize this matrix as the first example in class today of a matrix that is not diagonizable. Here is the short argument: The matrix is triangular, that means that the diagonal entries are the eigenvalues. So the eigenvalues are 0,0 (0 occurs twice). For the eigenvalue $\lambda=0$ you compute the NullSpace of $A-\lambda I=A$
and the basis of that NullSpace is $\binom{1}{0}$. Since $\lambda=0$ is our only eigenvalue, this means that all-together we've only found one linearlyindependent eigenvector. But for an n by n matrix, diagonizable means having n independent eigenvectors. So we need 2 , and found only 1 . So this matrix is not diagonizable.
(c) (2 points). Is A diagonizable? No, see answer for (b).
(d) (2 points). Does there exist a basis C of P_{1} for which $[T]_{C}$ is diagonal? We haven't covered this in class yet, but if T is a linear map, and you compute its matrix $[T]_{B}$ w.r.t. some basis B, then compute the matrix $[T]_{C}$ w.r.t. another basis C, then $[T]_{B}$ and $[T]_{C}$ are similar. But according to part (c), the matrix $[T]_{B}$ is not diagonizable, which means, it is not similar to a diagonal matrix. But it is similar to $[T]_{C}$. That means that $[T]_{C}$ can not be a diagonal matrix.
4. V is a vector space with basis $B=b_{1}, b_{2}$ where $b_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), b_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
(a) (2 points). V is a . . -dimensional subspace of \mathbb{R}^{\cdots} (put numbers on the dots).
V is a 2 -dimensional subspace of \mathbb{R}^{3}
(b) (2 points). Let $T: V \rightarrow V$ be given by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}z \\ y \\ x\end{array}\right)$.

Compute $T\left(b_{1}\right)$ and $T\left(b_{2}\right)$.
$T\left(b_{1}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), T\left(b_{2}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$.
(c) (8 points). Compute the matrix $[T]_{B}$.

The vectors in part (b), we have to take their coordinate vectors w.r.t. basis B (this computation is similar to Exercise 1). We get

$$
[T]_{B}=\left(\begin{array}{rr}
1 & 4 \\
0 & -1
\end{array}\right)
$$

(d) (10 points). Compute the eigenvectors of matrix $[T]_{B}$.

Since the matrix is triangular, we can simply read the eigenvalues from the diagonal: 1 and -1 . Take the NullSpace of $[T]_{B}-1 I$ and we get the eigenvector $\binom{1}{0}$ for $\lambda=1$. Take the NullSpace of $[T]_{B}-(-1) I$ and we get the eigenvector $\binom{-2}{1}$ for $\lambda=-1$.
(e) (5 points). Give a basis C of V for which $[T]_{C}$ is a diagonal matrix.

We have not yet covered this, but here is how it works. In part (d) we found the eigenvectors of $[T]_{B}$ and if we put those in matrix P then we have $P^{-1}[T]_{B} P=D$ for a diagonal matrix D. So here $P=\left(\begin{array}{rr}1 & -2 \\ 0 & 1\end{array}\right)$, the two columns are the eigenvectors we found, and the diagonal entries of D will be their eigenvalues (1 and -1).

We'll see in the next section that if P is the C-to- B change of basis matrix, then $P^{-1}[T]_{B} P=[T]_{C}$.

That means that if P is the C-to- B change of basis matrix, then $[T]_{C}$ is diagonal. But when is P the C-to- B change of basis matrix? Well, it would have to send $[w]_{C}$ to $[w]_{B}$

$$
P[w]_{C}=[w]_{B}
$$

If we take w to be the first element of C, then $[w]_{C}=e_{1}$ and then $[w]_{B}=P e_{1}$ which is the first column of P. That column happens to be e_{1} which tells us that w is the first element of B. So the first element of C is the first element of B.

Next, if we take w to be the second element of C, then $[w]_{C}=e_{2}$ and then $[w]_{B}=P e_{2}$ which is the second column of P. Then w must be -2 times the first element of B plus 1 times the second element. Then $w=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$. Combined we see that $C=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$.
PS. Do you see that the matrix of the linear map T with respect to this basis C is indeed a diagonal matrix? In retrospect we should have expected this all along, because all that T does is switch two entries of our vectors (the first and third entries). That means that T is a reflection, which means it should have eigenvalues 1 and -1 , and there should be some vector that stays put under this reflection, but there should also be a vector that gets multiplied by -1 under the reflection. But if swapping the first and third entries of a vector multiplies that vector by -1 , then the first and third entries must have opposite signs, and the second entry must be zero. That's precisely what we found.
5. Let

$$
A=\left(\begin{array}{ll}
1 & 6 \\
1 & 0
\end{array}\right), \quad v_{1}=\binom{3}{1}, \quad v_{2}=\binom{-2}{1} .
$$

(a) (6 points). Show that v_{1} and v_{2} are eigenvectors of A, and give the corresponding eigenvalues λ_{1}, λ_{2}.
$A v_{1}=\binom{9}{3}=3 v_{1}$ and $A v_{1}=\binom{4}{-2}=-2 v_{2}$, so they are eigenvectors with eigenvalues 3 and -2 .
(b) (2 points). Compute the vectors $A^{14} v_{1}$ and $A^{14} v_{2}$ without computing any matrix-matrix or matrix-vector products, using only the fact that v_{1}, v_{2} are eigenvectors and the fact that you know their eigenvalues from the previous question.
Matrix A simply multiplies v_{1} by 3 so $A^{14} v_{1}=3^{14} v_{1}$.
Likewise, $A^{14} v_{2}=(-2)^{14} v_{2}$.
(c) (6 points). Write the vector $e_{1}=\binom{1}{0}$ as a linear combination of v_{1}, v_{2}.

If we take $v_{1}-v_{2}$ then we get a zero on the second entry (just like e_{1} has) but we get a 5 on the first entry. So $e_{1}=\frac{1}{5} v_{1}-\frac{1}{5} v_{2}$.
(d) (6 points). Use the previous two questions to compute $A^{14} e_{1}$.
$A^{14} e_{1}=\frac{1}{5} A^{14}\left(v_{1}-v_{2}\right)=\frac{1}{5}\left(3^{14} v_{1}-(-2)^{14} v_{2}\right)$.
(e) (2 bonus points, only do this exercise if you have time left). A petri dish contains bacteria that are either 0-day old or 1-day old. The situation is described by a vector $\binom{x}{y}$ where x is the number of 0 -day old bacteria, and y is the number of 1 -day old bacteria.
After every day, each 0-day old bacteria becomes 1-day old and produces one new 0-day old bacteria, this is described by

$$
\binom{1}{0} \mapsto\binom{1}{1}
$$

while a 1-day old bacteria produces six new 0-day old bacteria and then dies, this is described by

$$
\binom{0}{1} \mapsto\binom{6}{0}
$$

Notice that this is precisely the action of matrix A. Suppose we start with one 0-day old bacteria and no 1-day old bacteria, then after 14 days, how many bacteria will there be?
ANSWER: Our starting vector is e_{1}, and after 14 days it will be $A^{14} e_{1}=\frac{1}{5}\left(3^{14} v_{1}-(-2)^{14} v_{2}\right)=\binom{2876335}{953317}$
for a total of $2876335+953317$ bacteria.

