
Linear Algebra, Test 4 ANSWERS.

1. Let B =

 1
1
1

 ,

 1
2
3

. and let C =

 3
2
1

 ,

 1
1
1

.

(a) (10 points). Compute the change of basis matrix from B to C.

Write B = b1, b2 and C = c1, c2. The change-of-basis matrix from B
to C is given by the formula in Theorem 15 on page 242:

([b1]C [b2]C)

(the number n in Theorem 15 is the number of elements of B, also
the number of elements of C, and that is n = 2 in this exercise).
Our next task is to compute the coordinate vectors [b1]C and [b2]C .
Since the vectors are so small, we can find them with a bit of trial-
and-error (try to write b1 as a combination of c1, c2, then do the
same for b2) (writing b1 as a combination of c1, c2 is particularly easy
because b1 = 0c1 + 1c2). Or, we can do it in a systematic way by

row-reducing (C|B) = (c1c2|b1b2) to

(
I P
0 0

)
.

(That looks like the last formula on page 243, the reason they don’t
have any zero-rows at the bottom is because they have two vectors
in R2 whereas we have 2 vectors in R3. In general, if B and C each
have k vectors in RN then you would get N − k zero-rows at the
bottom after row-reducing).

Row-reducing (C|B) gives

 1 0 0 −1
0 1 1 4
0 0 0 0

. From this we can

read off [b1]C =

(
0
1

)
as we had already seen before, and [b2]C =(

−1
4

)
which is also easy to verify (check this!). So the B-to-C-

change of matrix is P =

(
0 −1
1 4

)
.

(b) (5 points). If [w]B =

(
−1

2

)
then compute [w]C without computing

w itself.

P is the B-to-C change of basis matrix so it should send [w]B to

[w]C . That means [w]C = P [w]B =

(
0 −1
1 4

)(
−1

2

)
=

(
−2

7

)
2. Let V be a vector space of dimension 3. True or false (2 points each):
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(a) A set of four vectors in V can never be linearly independent. TRUE
(if you have more than dim(V ) vectors then they must be dependent).

(b) A set of four vectors in V can never be a spanning set of V . FALSE
(a spanning set has at least dim(V ) elements but it can easily have
more by adding some unnecessary vectors).

(c) A set of two vectors in V can never be linearly independent. FALSE
(the maximum number of independent vectors is equal to the dimen-
sion, but you can easily have fewer (just delete some!)).

(d) A set of two vectors in V can never be a spanning set of V . TRUE
(a spanning set has at least dim(V ) elements)

(e) Any three linearly independent vectors in V will always form a basis
of V . TRUE (any independent set with dim(V ) elements is a basis)

(f) A set of vectors in V can only be a spanning set of V if it contains
three linearly independent vectors. TRUE (for every spanning set
S there is a basis B with B ⊆ S. That basis will have dim(V )
independent elements, but those will also be elements of S).

(g) A change of basis matrix is always invertible. TRUE.

3. Let P1 = {a + bt | a, b ∈ R} be the vector space of all polynomials in
t of degree at most 1. Let T : P1 → P1 be the linear map given by
differentiation T = d/dt.

(a) (10 points). Let B = 1, t be a basis of P1. Let A = [T ]B . Compute A.

To compute [T ]B we have to apply T to all elements of B. After that,
we have to compute the coordinate vectors w.r.t. B.
Writing B = b1, b2 = 1, t we see that T (b1) = T (1) = 1′ = 0 and the

coordinate vector of that w.r.t. B is

(
0
0

)
(our vector should have

two entries because B has two elements). Now T (b2) = T (t) = t′ = 1

and the coordinate vector of that w.r.t. B is

(
1
0

)
. Putting these

two coordinate-vectors together we find

[T ]B =

(
0 1
0 0

)
(b) (10 points). Compute all eigenvectors of A.

You may recognize this matrix as the first example in class today
of a matrix that is not diagonizable. Here is the short argument:
The matrix is triangular, that means that the diagonal entries are
the eigenvalues. So the eigenvalues are 0, 0 (0 occurs twice). For
the eigenvalue λ = 0 you compute the NullSpace of A − λI = A
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and the basis of that NullSpace is

(
1
0

)
. Since λ = 0 is our only

eigenvalue, this means that all-together we’ve only found one linearly-
independent eigenvector. But for an n by n matrix, diagonizable
means having n independent eigenvectors. So we need 2, and found
only 1. So this matrix is not diagonizable.

(c) (2 points). Is A diagonizable? No, see answer for (b).

(d) (2 points). Does there exist a basis C of P1 for which [T ]C is diagonal?

We haven’t covered this in class yet, but if T is a linear map, and
you compute its matrix [T ]B w.r.t. some basis B, then compute the
matrix [T ]C w.r.t. another basis C, then [T ]B and [T ]C are similar.
But according to part (c), the matrix [T ]B is not diagonizable, which
means, it is not similar to a diagonal matrix. But it is similar to
[T ]C . That means that [T ]C can not be a diagonal matrix.

4. V is a vector space with basis B = b1, b2 where b1 =

 1
1
1

 , b2 =

 1
2
3

.

(a) (2 points). V is a . . .-dimensional subspace of R... (put numbers on
the dots).

V is a 2-dimensional subspace of R3

(b) (2 points). Let T : V → V be given by T

 x
y
z

 =

 z
y
x

.

Compute T (b1) and T (b2).

T (b1) =

 1
1
1

 , T (b2) =

 3
2
1

.

(c) (8 points). Compute the matrix [T ]B .

The vectors in part (b), we have to take their coordinate vectors
w.r.t. basis B (this computation is similar to Exercise 1). We get

[T ]B =

(
1 4
0 −1

)
(d) (10 points). Compute the eigenvectors of matrix [T ]B .

Since the matrix is triangular, we can simply read the eigenvalues
from the diagonal: 1 and −1. Take the NullSpace of [T ]B − 1I and

we get the eigenvector

(
1
0

)
for λ = 1. Take the NullSpace of

[T ]B − (−1)I and we get the eigenvector

(
−2

1

)
for λ = −1.
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(e) (5 points). Give a basis C of V for which [T ]C is a diagonal matrix.

We have not yet covered this, but here is how it works. In part
(d) we found the eigenvectors of [T ]B and if we put those in matrix
P then we have P−1[T ]BP = D for a diagonal matrix D. So here

P =

(
1 −2
0 1

)
, the two columns are the eigenvectors we found,

and the diagonal entries of D will be their eigenvalues (1 and −1).

We’ll see in the next section that if P is the C-to-B change of basis
matrix, then P−1[T ]BP = [T ]C .

That means that if P is the C-to-B change of basis matrix, then [T ]C
is diagonal. But when is P the C-to-B change of basis matrix? Well,
it would have to send [w]C to [w]B

P [w]C = [w]B

If we take w to be the first element of C, then [w]C = e1 and then
[w]B = Pe1 which is the first column of P . That column happens
to be e1 which tells us that w is the first element of B. So the first
element of C is the first element of B.

Next, if we take w to be the second element of C, then [w]C = e2
and then [w]B = Pe2 which is the second column of P . Then w must
be −2 times the first element of B plus 1 times the second element.

Then w =

 −1
0
1

. Combined we see that C =

 1
1
1

 ,

 −1
0
1

.

PS. Do you see that the matrix of the linear map T with respect to
this basis C is indeed a diagonal matrix? In retrospect we should
have expected this all along, because all that T does is switch two
entries of our vectors (the first and third entries). That means that T
is a reflection, which means it should have eigenvalues 1 and −1, and
there should be some vector that stays put under this reflection, but
there should also be a vector that gets multiplied by −1 under the
reflection. But if swapping the first and third entries of a vector mul-
tiplies that vector by −1, then the first and third entries must have
opposite signs, and the second entry must be zero. That’s precisely
what we found.

5. Let

A =

(
1 6
1 0

)
, v1 =

(
3
1

)
, v2 =

(
−2

1

)
.
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(a) (6 points). Show that v1 and v2 are eigenvectors of A, and give the
corresponding eigenvalues λ1, λ2.

Av1 =

(
9
3

)
= 3v1 and Av1 =

(
4
−2

)
= −2v2, so they are

eigenvectors with eigenvalues 3 and −2.

(b) (2 points). Compute the vectors A14v1 and A14v2 without computing
any matrix-matrix or matrix-vector products, using only the fact that
v1, v2 are eigenvectors and the fact that you know their eigenvalues
from the previous question.

Matrix A simply multiplies v1 by 3 so A14v1 = 314v1.
Likewise, A14v2 = (−2)14v2.

(c) (6 points). Write the vector e1 =

(
1
0

)
as a linear combination of

v1, v2.

If we take v1 − v2 then we get a zero on the second entry (just like
e1 has) but we get a 5 on the first entry. So e1 = 1

5v1 −
1
5v2.

(d) (6 points). Use the previous two questions to compute A14e1.

A14e1 = 1
5A

14(v1 − v2) = 1
5 (314v1 − (−2)14v2).

(e) (2 bonus points, only do this exercise if you have time left). A petri
dish contains bacteria that are either 0-day old or 1-day old. The

situation is described by a vector

(
x
y

)
where x is the number of

0-day old bacteria, and y is the number of 1-day old bacteria.
After every day, each 0-day old bacteria becomes 1-day old and pro-
duces one new 0-day old bacteria, this is described by(

1
0

)
7→
(

1
1

)
while a 1-day old bacteria produces six new 0-day old bacteria and
then dies, this is described by(

0
1

)
7→
(

6
0

)
.

Notice that this is precisely the action of matrix A. Suppose we start
with one 0-day old bacteria and no 1-day old bacteria, then after 14
days, how many bacteria will there be?

ANSWER: Our starting vector is e1, and after 14 days it will be

A14e1 = 1
5 (314v1 − (−2)14v2) =

(
2876335
953317

)
for a total of 2876335 + 953317 bacteria.
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