Linear Algebra, Test 4, April 15, 2004.

1. Let $B=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. and let $C=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(a) (10 points). Compute the change of basis matrix from B to C.
(b) (5 points). If $[w]_{B}=\binom{-1}{2}$ then compute $[w]_{C}$ without computing w itself.
2. Let V be a vector space of dimension 3 . True or false (2 points each):
(a) A set of four vectors in V can never be linearly independent.
(b) A set of four vectors in V can never be a spanning set of V.
(c) A set of two vectors in V can never be linearly independent.
(d) A set of two vectors in V can never be a spanning set of V.
(e) Any three linearly independent vectors in V will always form a basis of V.
(f) A set of vectors in V can only be a spanning set of V if it contains three linearly independent vectors.
(g) A change of basis matrix is always invertible.
3. Let $P_{1}=\{a+b t \mid a, b \in \mathbb{R}\}$ be the vector space of all polynomials in t of degree at most 1 . Let $T: P_{1} \rightarrow P_{1}$ be the linear map given by differentiation $T=d / d t$.
(a) (10 points). Let $B=1, t$ be a basis of P_{1}. Let $A=[T]_{B}$. Compute A.
(b) (10 points). Compute all eigenvectors of A.
(c) (2 points). Is A diagonizable?
(d) (2 points). Does there exist a basis C of P_{1} for which $[T]_{C}$ is diagonal?
4. Let V be a vector space with basis $B=b_{1}, b_{2}$ where $b_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), b_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
(a) (2 points). V is a ...-dimensional subspace of \mathbb{R}^{\cdots} (put numbers on the dots).
(b) (2 points). Consider the linear map $T: V \rightarrow V$ given by $T\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}z \\ y \\ x\end{array}\right)$. Compute $T\left(b_{1}\right)$ and $T\left(b_{2}\right)$.
(c) (8 points). Compute the matrix $[T]_{B}$.
(d) (10 points). Compute the eigenvectors of matrix $[T]_{B}$.
(e) (5 points). Give a basis C of V for which $[T]_{C}$ is a diagonal matrix.
5. Let

$$
A=\left(\begin{array}{ll}
1 & 6 \\
1 & 0
\end{array}\right), \quad v_{1}=\binom{3}{1}, \quad v_{2}=\binom{-2}{1} .
$$

(a) (6 points). Show that v_{1} and v_{2} are eigenvectors of A, and give the corresponding eigenvalues λ_{1}, λ_{2}.
(b) (2 points). Compute the vectors $A^{14} v_{1}$ and $A^{14} v_{2}$ without computing any matrix-matrix or matrix-vector products, using only the fact that v_{1}, v_{2} are eigenvectors and the fact that you know their eigenvalues from the previous question.
(Hint: Multiplying A times v_{1} is the same as multiplying λ_{1} times v_{1}.
Hence, multiplying A times A times v_{1} is the same as multiplying λ_{1} times λ_{1} times v_{1}.
So $A^{2} v_{1}=A A v_{1}=\lambda_{1} \lambda_{1} v_{1}=\lambda_{1}^{2} v_{1}$. So then $A^{14} v_{1}$ is $\left.\ldots ..\right)$.
(c) (6 points). Write the vector $e_{1}=\binom{1}{0}$ as a linear combination of v_{1}, v_{2}.
(d) (6 points). Use the previous two questions to compute $A^{14} e_{1}$.
(e) (2 bonus points, only do this exercise if you have time left). A petri dish contains bacteria that are either 0-day old or 1-day old. The situation is described by a vector $\binom{x}{y}$ where x is the number of 0 -day old bacteria, and y is the number of 1-day old bacteria.
After every day, each 0 -day old bacteria becomes 1-day old and produces one new 0 -day old bacteria, this is described by

$$
\binom{1}{0} \mapsto\binom{1}{1}
$$

while a 1-day old bacteria produces six new 0 -day old bacteria and then dies, this is described by

$$
\binom{0}{1} \mapsto\binom{6}{0} .
$$

Notice that this is precisely the action of matrix A. Suppose we start with one 0 -day old bacteria and no 1-day old bacteria, then after 14 days, how many bacteria will there be?

