Linear Algebra, Test 4, April 15, 2004.

1. Let
$$B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
. and let $C = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

(a) (10 points). Compute the change of basis matrix from B to C.

(b) (5 points). If
$$[w]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 then compute $[w]_C$ without computing w itself.

- 2. Let V be a vector space of dimension 3. True or false (2 points each):
 - (a) A set of four vectors in V can never be linearly independent.
 - (b) A set of four vectors in V can never be a spanning set of V.
 - (c) A set of two vectors in V can never be linearly independent.
 - (d) A set of two vectors in V can never be a spanning set of V.
 - (e) Any three linearly independent vectors in V will always form a basis of V.
 - (f) A set of vectors in V can only be a spanning set of V if it contains three linearly independent vectors.
 - (g) A change of basis matrix is always invertible.
- 3. Let $P_1 = \{a + bt | a, b \in \mathbb{R}\}$ be the vector space of all polynomials in t of degree at most 1. Let $T: P_1 \to P_1$ be the linear map given by differentiation T = d/dt.
 - (a) (10 points). Let B = 1, t be a basis of P_1 . Let $A = [T]_B$. Compute A.
 - (b) (10 points). Compute all eigenvectors of A.
 - (c) (2 points). Is A diagonizable?
 - (d) (2 points). Does there exist a basis C of P_1 for which $[T]_C$ is diagonal?

4. Let V be a vector space with basis $B = b_1, b_2$ where $b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

- (a) (2 points). V is a ...-dimensional subspace of \mathbb{R}^{\dots} (put numbers on the dots).
- (b) (2 points). Consider the linear map $T: V \to V$ given by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}$. Compute $T(b_1)$ and $T(b_2)$.
- (c) (8 points). Compute the matrix $[T]_B$.
- (d) (10 points). Compute the eigenvectors of matrix $[T]_B$.
- (e) (5 points). Give a basis C of V for which $[T]_C$ is a diagonal matrix.

5. Let

$$A = \begin{pmatrix} 1 & 6 \\ 1 & 0 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

- (a) (6 points). Show that v_1 and v_2 are eigenvectors of A, and give the corresponding eigenvalues λ_1, λ_2 .
- (b) (2 points). Compute the vectors A¹⁴v₁ and A¹⁴v₂ without computing any matrix-matrix or matrix-vector products, using only the fact that v₁, v₂ are eigenvectors and the fact that you know their eigenvalues from the previous question.
 (Hint: Multiplying A times v₁ is the same as multiplying λ₁ times v₁. Hence, multiplying A times A times v₁ is the same as multiplying λ₁ times λ₁ times v₁. So A²v₁ = AAv₁ = λ₁λ₁v₁ = λ₁²v₁. So then A¹⁴v₁ is).
- (c) (6 points). Write the vector $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ as a linear combination of v_1, v_2 .
- (d) (6 points). Use the previous two questions to compute $A^{14}e_1$.
- (e) (2 bonus points, only do this exercise if you have time left). A petri dish contains bacteria that are either 0-day old or 1-day old. The situation is described by a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ where x is the number of 0-day old bacteria, and y is the number of 1-day old bacteria. After every day, each 0-day old bacteria becomes 1-day old and produces one new 0-day old

After every day, each 0-day old bacteria becomes 1-day old and produces one new 0-day old bacteria, this is described by

$$\left(\begin{array}{c}1\\0\end{array}\right)\mapsto \left(\begin{array}{c}1\\1\end{array}\right)$$

while a 1-day old bacteria produces six new 0-day old bacteria and then dies, this is described by

$$\left(\begin{array}{c}0\\1\end{array}\right)\mapsto \left(\begin{array}{c}6\\0\end{array}\right).$$

Notice that this is precisely the action of matrix A. Suppose we start with one 0-day old bacteria and no 1-day old bacteria, then after 14 days, how many bacteria will there be?