Linear algebra, test 3.

October 22, 2018

1. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7
\end{array}\right)
$$

(a) (5 points). Compute the reduced row echelon form of A.

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b) (8 points). Write down a basis B of $\operatorname{Col}(A)$.

$$
B=\left\{\operatorname{Col}_{1}(A), \operatorname{Col}_{2}(A)\right\}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right\}
$$

(c) (12 points). Give a basis C of $\operatorname{Nul}(A)$.

The general solution of $A X=0$ can be read from the RREF, and we find:

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3}+2 x_{4} \\
-2 x_{3}-3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1
\end{array}\right)
$$

so we get this basis of the NullSpace

$$
\left\{\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

(d) (10 points). Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the columns of matrix A. What are: $\left[v_{1}\right]_{B},\left[v_{2}\right]_{B},\left[v_{3}\right]_{B}$ and $\left[v_{4}\right]_{B}$.

Do you see that the row-reduction needed to answer this question has already been done in part (a)? If so, then you can simply read off the answers:

$$
\binom{1}{0},\binom{0}{1},\binom{-1}{2},\binom{-2}{3} .
$$

(e) (10 points). Let

$$
w=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

What's the easiest way to tell if w is in $\operatorname{Nul}(A)$ or not?
Answer: Just multiply $A w$ and see if it is zero.
If w is in $\operatorname{Nul}(A)$, then compute its coordinate vector $[w]_{C}$ with respect to the basis C you computed in question (c).

$$
\binom{-1}{1}
$$

I'll explain in class how to see this quickly.
2. Let $u=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and $v=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$. Let $V=\operatorname{SPAN}\{u, v\}$ and $B=\{u, v\}$ a basis of V.
(a) (5 points). If w is some vector in V for which $[w]_{B}=\binom{1}{-1}$ then what is w ?

It is 1 times the first element of B plus -1 times the second element of B. So that equals $\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$.
(b) (15 points). Which of the following vectors are in V ? For each that is in V, give the coordinate vector with respect to B.

$$
\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) .
$$

If we call these 5 vectors w_{1}, \ldots, w_{5}, then take the augmented matrix $\left(u v \mid w_{1} \ldots w_{5}\right)$. Then row-reduce that and we get:

$$
\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & -1 & -1 & 2 \\
0 & 1 & -1 & 0 & 2 & 3 & 3 \\
0 & 0 & 0 & 1 & 0 & 0 & -2
\end{array}\right)
$$

We then see that the augmented systems $\left(u v \mid w_{2}\right)$ and $\left(u v \mid w_{5}\right)$ are inconsistent, so w_{2}, w_{5} are not in V. We also see the coordinate vectors w.r.t. B of w_{1}, w_{3}, w_{4}, namely, they are

$$
\left[w_{1}\right]_{B}=\binom{1}{-1},\left[w_{3}\right]_{B}=\binom{-1}{2},\left[w_{4}\right]_{B}=\binom{-1}{3}
$$

Notice that w_{1} is the same as w in the previous question, and we can see that this answer is consistent with the $[w]_{B}$ from the previous question.
(c) (3 points). Give a matrix A for which: $V=\operatorname{Col}(A)$.

$$
A=(u v)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 2
\end{array}\right)
$$

(d) (12 points). Give a matrix N for which: $V=\operatorname{Nul}(N)$.

Hint: To do this, you first need to compute a basis of the NullSpace of A^{T} (the transpose of A), and then you need to take the transpose of that. We'll finish that in class.
(e) (2 points). True or false: The vectors in question (b) form a spanning set for V ?

FALSE: because some of the vectors in (b) are not in V.
(f) (2 points). True or false: If we take those vectors in question (b) that were in V, then we get a spanning set for V ?

TRUE
(g) (2 points). True or false: If we take those vectors in question (b) that were in V, then we get a basis for V ?

FALSE (we get too many vectors, i.e., we get linearly dependent vectors).
3. (10 points). For each of the following, mention if it is a vector space or not.
If it is not a vector space, then say why it is not a vector space by writing one of the following three things: "does not contain the zero vector", or "is not closed under addition", or "is not closed under scalar multiplication". If it is a vector space, then no further explanation will be necessary.
(a) $V=\left\{\binom{0}{0}\right\}$. VECTOR SPACE.
(b) $V=\left\{\left.\binom{a}{b} \right\rvert\, a b=0\right\}$. NOT CLOSED UNDER ADDITION.
(c) $V=\left\{\left.\binom{a}{b} \right\rvert\, a+b+3=0\right\}$. DOES NOT CONTAIN ZERO.
(d) $V=\left\{\left.\binom{a}{b} \right\rvert\, 2 a-5 b=0\right\}$. VECTOR SPACE
(e) $V=\left\{\left.\binom{a}{b} \right\rvert\, a \geq b\right\}$. NOT CLOSED UNDER SCALAR MULT. (to see this, take some elements of V and multiply them by -1).
4. (5 points). If $B=\left\{t^{2}+t, t+1,1\right\}$ then what is $\left[t^{2}-t+1\right]_{B}$?

To get $t^{2}+\ldots$ we will need to take 1 of the first basis element of B. At this point we have $t^{2}+t$ but to get $t^{2}-t+\ldots$ we'll have to subtract 2 times the second basis element. Then we have $1 \cdot\left(t^{2}+t\right)-2 \cdot(t+1)=t^{2}-t-2$ so to get the desired $t^{2}-t+1$ we have to add 3 times the third basis element: $t^{2}-t+1=1 \cdot\left(t^{2}+t\right)-2 \cdot(t+1)+3 \cdot 1$. Answer:

$$
\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)
$$

