Linear algebra, test 3.

March 25, 2004

1. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7
\end{array}\right)
$$

(a) (5 points). Compute the reduced row echelon form of A.
(b) (8 points). Write down a basis B of $\operatorname{Col}(A)$.
(c) (12 points). Give a basis C of $\operatorname{Nul}(A)$.
(d) (10 points). Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the columns of matrix A. What are: $\left[v_{1}\right]_{B},\left[v_{2}\right]_{B},\left[v_{3}\right]_{B}$ and $\left[v_{4}\right]_{B}$.
(e) (10 points). Let

$$
w=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

What's the easiest way to tell if w is in $\operatorname{Nul}(A)$ or not?
If w is in $\operatorname{Nul}(A)$, then compute its coordinate vector $[w]_{C}$ with respect to the basis C you computed in question (c).
2. Let $u=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and $v=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$. Let $V=\operatorname{SPAN}\{u, v\}$ and $B=\{u, v\}$ a basis of V.
(a) (5 points). If w is some vector in V for which $[w]_{B}=\binom{1}{-1}$ then what is w ?
(b) (15 points). Which of the following vectors are in V ? For each that is in V, give the coordinate vector with respect to B.

$$
\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

Question 2 continues on the next page.
(c) (3 points). Give a matrix A for which: $V=\operatorname{Col}(A)$.
(d) (12 points). Give a matrix N for which: $V=\operatorname{Nul}(N)$.
(e) (2 points). True or false: The vectors in question (b) form a spanning set for V ?
(f) (2 points). True or false: If we take those vectors in question (b) that were in V, then we get a spanning set for V ?
(g) (2 points). True or false: If we take those vectors in question (b) that were in V, then we get a basis for V ?
3. (10 points). For each of the following, mention if it is a vector space or not.

If it is not a vector space, then say why it is not a vector space by writing one of the following three things: "does not contain the zero vector", or "is not closed under addition", or "is not closed under scalar multiplication".
If it is a vector space, then no further explanation will be necessary.
(a) $V=\left\{\binom{0}{0}\right\}$.
(b) $V=\left\{\left.\binom{a}{b} \right\rvert\, a b=0\right\}$.
(c) $V=\left\{\left.\binom{a}{b} \right\rvert\, a+b+3=0\right\}$.
(d) $V=\left\{\left.\binom{a}{b} \right\rvert\, 2 a-5 b=0\right\}$.
(e) $V=\left\{\left.\binom{a}{b} \right\rvert\, a \geq b\right\}$.
4. (5 points). If $B=\left\{t^{2}+t, t+1,1\right\}$ then what is $\left[t^{2}-t+1\right]_{B}$?

