Linear algebra, test 2, Feb 262004

1. (15 points). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
-x_{2} \\
x_{3} \\
x_{1}
\end{array}\right)
$$

Give the matrix of T.
You have to compute $T e_{1}, T e_{2}, T e_{3}$, those are the columns of the answer. So the first column of the answer is:

$$
T e_{1}=T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Compute $T e_{2}$ (i.e. $x_{1}=0, x_{2}=1, x_{3}=0$) and $T e_{3}$ (i.e. $x_{1}=0, x_{2}=$ $0, x_{3}=1$) in a similar way and you get the second and third columns of the answer:

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

2. Let

$$
A=\left(\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -2 \\
0 & 1 & -1
\end{array}\right)
$$

(a) (10 points). Compute the determinant of A.

We will cover that in class today or tomorrow.
(b) (10 points). Compute the inverse of A.

Row-reduce $(A \mid I)$ to $\left(I \mid A^{-1}\right)$. I found

$$
A^{-1}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
-2 & 1 & 0 \\
-2 & 1 & -1
\end{array}\right)
$$

(c) (5 points). Use your answer of part (b) to solve:

$$
A X=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Multiplying by A^{-1} tells us that

$$
X=A^{-1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{r}
1-1 \\
-2+0 \\
-2-1
\end{array}\right)=\left(\begin{array}{r}
0 \\
-2 \\
-3
\end{array}\right)
$$

3. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a 180° rotation around the origin. So $S(v)=-v$ for every $v \in \mathbb{R}^{2}$.
(a) (5 points). Let A be the matrix of S. Compute A.

$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

(b) (5 points). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map "rotation around the origin with an angle of 90° counter-clockwise". Let B be the matrix of T. Compute B.

$$
B=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(c) (3 points). Explain without computing B^{2} why $B^{2}=A$.

Applying B means rotating 90° so applying B twice (i.e. applying B^{2}) means rotating 180° which is the same as applying A.
(d) (3 points). Explain without computing why $B^{3}=B^{-1}$.

Applying B three times means rotating by 270° which is the same as rotating -90° which is the inverse of $B\left(=\right.$ rotating $\left.90^{\circ}\right)$.
4. (20 points). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map and suppose that:

$$
T\binom{1}{1}=\binom{1}{2}
$$

and

$$
T\binom{1}{2}=\binom{1}{1}
$$

Give the matrix of T. What is the inverse of this matrix?
Notice that if you apply T twice then it sends each vector back to itself! So T^{2} is the identity, which means that $T=T^{-1}$. So whatever the matrix
of T is, it is equal to its own inverse.
Now we have to compute the matrix of T. For that, we need to compute $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$ and then put those two in a matrix. Now $T\left(e_{1}\right)$ is not given to us.
What is given are $T\left(u_{1}\right)$ and $T\left(u_{2}\right)$ where

$$
u_{1}=\binom{1}{1}, \quad u_{2}=\binom{1}{2} .
$$

In order to compute $T\left(e_{1}\right)$ from $T\left(u_{1}\right)$ and $T\left(u_{2}\right)$ we have to write e_{1} as a linear combination of u_{1}, u_{2}. We find $e_{1}=2 u_{1}-u_{2}$ (how can you find those weights 2 and -1 ? Well, by rowreducing $\left(u_{1} u_{2} \mid e_{1}\right)$. Actually, it is best to rowreduce $\left(u_{1} u_{2} \mid e_{1} e_{2}\right)=\left(u_{1} u_{2} \mid I\right)$ because then we'll also find the weights for the next one too). Now that we know that $e_{1}=2 u_{1}-u_{2}$ we can see that

$$
T\left(e_{1}\right)=T\left(2 u_{1}-u_{2}\right)=2 T\left(u_{1}\right)-T\left(u_{2}\right)=2\binom{1}{2}-\binom{1}{1}=\binom{1}{3}
$$

and we have found the first column of our matrix.
Similarly, $e_{2}=-u_{1}+u_{2}$ and so
$T\left(e_{2}\right)=T\left(-u_{1}+u_{2}\right)=-T\left(u_{1}\right)+T\left(u_{2}\right)=-\binom{1}{2}+\binom{1}{1}=\binom{0}{-1}$
and we found the second column of the matrix of T. So the matrix of T is

$$
\left(\begin{array}{rr}
1 & 0 \\
3 & -1
\end{array}\right)
$$

5. (24 points). True or false?
(a) If $A B=A C$ and if $B \neq C$ then A can not be invertible.

TRUE (because if you multiply $A B=A C$ (on the left!) by A^{-1} you get $B=C$. So if $B \neq C$ then that means we can't multiply by A^{-1}, which means that there is no A^{-1} (i.e. A is not invertible).
(b) If A, B are square matrices and $A B$ is the identity matrix then $B A$ is also the identity matrix.

TRUE (see page 114, theorem 8, as well as the last box on page 114)
(c) If T is a linear map from \mathbb{R}^{3} to \mathbb{R}^{5} then T is never one-to-one.

FALSE
(d) If T is a linear map from \mathbb{R}^{3} to \mathbb{R}^{5} then T is never onto.

TRUE
(e) If A is a square matrix, and $B=A^{T}$ is the transpose of A, and if B can not be row-reduced to the identity matrix then $A X=0$ must have a non-trivial solution X.

TRUE: If A^{T} can not be row-reduced to I then it is not invertible, and then A is not invertible (use Theorem 8 multiple times).
(f) If A can be row-reduced to B then there exists an invertible matrix C such that $B=C A$.

TRUE (because row-reduction is the same as multiplying on the left by elementary matrices, and any product of elementary matrices is invertible).
(g) If A and B are square matrices, both not zero, then $A B$ is also not zero.

FALSE

(h) If A is a square matrix and $\operatorname{det}(A)=0$ then $A X=0$ has only the trivial solution $X=0$.

FALSE: The determinant is zero when A is singular (not invertible). But them Theorem 8 tells us that the equation $A X=0$ must have a non-trivial solution.
(i) If A and B are square matrices, and if $A B$ is invertible, then $B A$ must also be invertible.

TRUE (if $A B$ is invertible and A, B are square, then A and B must both be invertible)
(j) If A has more rows than columns, then the columns of A can not be linearly independent.

FALSE (if it has more columns than rows, then the columns can not be independent)
(k) If A is a m by n matrix and the reduced row echelon form has a zero row then $A X=0$ has a non-trivial solution X.

FALSE (to get a non-trivial solution you need a column without a pivot) (having a row without a pivot doesn't tell us what we need to know here)
(l) If A can be row-reduced to the identity matrix then A^{T} (the transpose of A) can also be row-reduced to the identity matrix.

TRUE (if A can be row-reduced to I then A is invertible, but then so is A^{T} by Theorem 8).

