Linear algebra, test 2, Feb 262004.

1. (15 points). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
-x_{2} \\
x_{3} \\
x_{1}
\end{array}\right)
$$

Give the matrix of T.
2. Let

$$
A=\left(\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -2 \\
0 & 1 & -1
\end{array}\right)
$$

(a) (10 points). Compute the determinant of A.
(b) (10 points). Compute the inverse of A.
(c) (5 points). Use your answer of part (b) to solve:

$$
A X=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

3. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a 180° rotation around the origin. So $S(v)=-v$ for every $v \in \mathbb{R}^{2}$.
(a) (5 points). Let A be the matrix of S. Compute A.
(b) (5 points). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map "rotation around the origin with an angle of 90° counter-clockwise". Let B be the matrix of T. Compute B.
(c) (3 points). Explain without computing B^{2} why $B^{2}=A$.
(d) (3 points). Explain without computing why $B^{3}=B^{-1}$.
4. (20 points). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map and suppose that:

$$
T\binom{1}{1}=\binom{1}{2}
$$

and

$$
T\binom{1}{2}=\binom{1}{1}
$$

Give the matrix of T. What is the inverse of this matrix?
5. (24 points). True or false?
(a) If $A B=A C$ and if $B \neq C$ then A can not be invertible.
(b) If A, B are square matrices and $A B$ is the identity matrix then $B A$ is also the identity matrix.
(c) If T is a linear map from \mathbb{R}^{3} to \mathbb{R}^{5} then T is never one-to-one.
(d) If T is a linear map from \mathbb{R}^{3} to \mathbb{R}^{5} then T is never onto.
(e) If A is a square matrix, and $B=A^{T}$ is the transpose of A, and if B can not be row-reduced to the identity matrix then $A X=0$ must have a non-trivial solution X.
(f) If A can be row-reduced to B then there exists an invertible matrix C such that $B=C A$.
(g) If A and B are square matrices, both not zero, then $A B$ is also not zero.
(h) If A is a square matrix and $\operatorname{det}(A)=0$ then $A X=0$ has only the trivial solution $X=0$.
(i) If A and B are square matrices, and if $A B$ is invertible, then $B A$ must also be invertible.
(j) If A has more rows than columns, then the columns of A can not be linearly independent.
(k) If A is a m by n matrix and the reduced row echelon form has a zero row then $A X=0$ has a non-trivial solution X.
(l) If A can be row-reduced to the identity matrix then A^{T} (the transpose of A) can also be rowreduced to the identity matrix.

