Linear algebra, test 1, answers.

January 28, 2004

1. Let

$$
B=\left(\begin{array}{lllll}
2 & 1 & 1 & 4 & 7 \\
1 & 1 & 2 & 5 & 8 \\
0 & 1 & 3 & 6 & 9
\end{array}\right)
$$

(a) Compute the ref (reduced row echelon form) of matrix B. Show which row operations you used. Use only elementary row operations.

Long answer: I started with $R_{1} \leftrightarrow R_{2}$ to get the row-leader 1 at the top (this makes the computation much easier because if you have the row-leader 1 at the top then you don't have to divide by 2). Then I cleared out the rest of column 1 by doing $R_{2} \leftarrow R_{2}-2 R_{1}$. Then $R_{3} \leftarrow R_{3}+R_{2}$ and we reach row-echelon form.
We needed reduced row echelon form, so we're not yet done. We have to clean out column 2 (because it has a pivot, i.e. a row-leader). In addition, all row-leaders must be 1 (right now I have row-leader -1 in row 2 so row 2 has to be multiplied by -1). So I do $R_{1} \leftarrow R_{1}+R_{2}$ and $R_{2} \leftarrow-R_{2}$ and I get the reduced row echelon form given below.

Short answer: $R_{1} \leftrightarrow R_{2}, R_{2} \leftarrow R_{2}-2 R_{1}, R_{3} \leftarrow R_{3}+R_{2}, R_{1} \leftarrow R_{1}+R_{2}, R_{2} \leftarrow-R_{2}$.

$$
\operatorname{rref}(B)=\left(\begin{array}{rrrrr}
1 & 0 & -1 & -1 & -1 \\
0 & 1 & 3 & 6 & 9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Note: You may have done the computation completely correctly and still have different rowoperations than the ones listed above. However, if your row-operations are correct, then your row-operations must lead to the same $\operatorname{rref}(B)$ as my row-operations.
(b) If B is the augmented matrix of a system (3 equations, 4 unknowns and one right-hand side) then write down all solutions of this system.

Answer:

$x_{1}=-1+x_{3}+x_{4}$
$x_{2}=9-3 x_{3}-6 x_{4}$
$x_{3}=x_{3}$
$x_{4}=x_{4} \quad$ (so x_{3}, x_{4} are free).
(c) Let v_{i} be the i 'th column of B. So v_{1} is column $1, v_{2}$ is column 2, etc. Is v_{3} in the SPAN of v_{1}, v_{2} ?

Answer: Yes, because if take columns 1,2 in $\operatorname{rref}(B)$ as our coefficient matrix, and column 3 as our right-hand-side, we see that that is consistent, so $v_{3} \in \operatorname{SPAN}\left(v_{1}, v_{2}\right)$.

If so, then write v_{3} as a linear combination of v_{1}, v_{2}.

Answer: We can immediately read this off from $\operatorname{rref}(B)$, but I'll explain how and why this works. Any linear relation that holds between the columns (an example of a relation that holds for the columns of matrix $\operatorname{rref}(B)$ is the following: "Col3 is -1 times Col1 plus 3 times Col2") is preserved under any of the three types of elementary row reductions. This relation "Col $3=-\mathrm{Col} 1+3 \mathrm{Col} 2$ "
clearly holds in matrix $\operatorname{rref}(B)$ but that's a matrix that can be row-reduced to matrix B. So this same relation "Col3 $=-\mathrm{Col} 1+3 \mathrm{Col} 2$ " is then also true for the original matrix B, but that just means $v_{3}=-v_{1}+3 v_{2}$, and there we have written v_{3} as a linear combination of v_{1}, v_{2}.
(d) Does there exist a vector in \mathbf{R}^{3} that is not in the SPAN of $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$?

Answer: Yes, because after row-reduction of $B=\left(v_{1} \ldots v_{5}\right)$ we got a zero-row. We can take a right-hand-side b such that after row-reduction of $\left(v_{1} \ldots v_{5} b\right)$ we get a zero-row in the coefficient side but a non-zero on the right-hand side. Then such b is not in the SPAN of $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$.
2. Consider the system of equations

$$
\begin{aligned}
& 1 x_{1}+1 x_{2}+1 x_{3}=1 \\
& 2 x_{1}+1 x_{2}+0 x_{3}=2 \\
& 2 x_{1}-1 x_{2}+\alpha x_{3}=2
\end{aligned}
$$

where x_{1}, x_{2}, x_{3} are the unknowns, and α is some real number.
(a) Write down the augmented matrix of this system (note: the number α is considered as a coefficient, not as an unknown. So there are three equations in three unknowns, and we have one right-hand-side).

Answer:

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
2 & 1 & 0 & 2 \\
2 & -1 & \alpha & 2
\end{array}\right)
$$

(b) Row-reduce the system to upper triangular form (same as row echelon form. Note: you don't need to go as far as the reduced row echelon form).

Answer: $R_{2} \leftarrow R_{2}-2 R_{1}, R_{3} \leftarrow R_{3}-2 R_{1}, R_{3} \leftarrow R_{3}-3 R_{2}$.

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & 0 \\
0 & 0 & \alpha+4 & 0
\end{array}\right)
$$

Note: Your answer may look different. Remember that the reduced row-echelon-form is unique (so if we have to compute that, then everybody must get the same answer) but the row-echelon-form is not unique, your answer could be correct but look different.
(c) For which value(s) of α do we get free variable(s)? For those value(s) of α, write down all solutions $x_{1}=\ldots, \quad x_{2}=\ldots, \quad x_{3}=\ldots$.

Answer: Before answering questions like this or the next question, you should always keep your mind open for the following possibilities:

- None.
- One.
- Infinitely many.

For all of these kinds of questions, there's always either none, one or infinitely many. Never assume it's going to be just one, always keep your mind open for the other possibilities. OK, now lets look at the question: are there free variables?
Before we can answer that, we have to know when you get free variables. To pass this course, you'll need to know this: A free variable corresponds to a column, without a row-leader, in the coefficient matrix of the (reduced) row-echelon-form.
There are three columns in the coefficient matrix in the row-echelon-form above. Clearly, Col1 and Col2 have a row-leader (so x_{1}, x_{2} are not free). Does Col3 have a row-leader? If $\alpha+4 \neq 0$ then yes, and if $\alpha+4=0$ then no. So, we have one free variable if $\alpha=-4$, and no free variables otherwise.

If $\alpha=-4$ then x_{3} is free, from Row2 we get that $x_{2}=-2 x_{3}$. Now plug $x_{2}=-2 x_{3}$ into the first equation ($=$ Row1), and we find $x_{1}=1+x_{3}$.
NOTE: Don't write here $x_{1}=1-x_{2}-x_{3}$ because we don't want a basic variable like x_{2} on the right-hand side. So if you wrote down $x_{1}=1-x_{2}-x_{3}$ then make use of the fact that we've already computed $x_{2}=-2 x_{3}$ in order to remove the basic variable x_{2} from the right-hand side of your equation, and you get $x_{1}=1-x_{2}-x_{3}=1-\left(-2 x_{3}\right)-x_{3}=1+x_{3}$.
(d) For which value(s) of α is the system consistent?

Answer: Again, keep an open mind. It could be: none, one, or infinitely many. Don't automatically assume something that it's one (even though for question (c) that would have worked OK). Why am I saying that. Well, because if you immediately assume there's going to be one, then you're going to try to calculate one value for α (but there may be none, or there may be infinitely many, I can always throw you a curve ball in these tests). To make sure you do it right, don't ask yourself "how am I going to compute α " but ask yourself this: "what exactly is being asked in this question"? Then you read the question, and you ask yourself: "when is a system consistent"? To pass this course, you'll need to know the answer to that: it's consistent if we do not get an inconsistent row in the row-echelon-form. Remember that an inconsistent row is a row that looks like this: ($0000 r)$ where the right-hand-side r is not zero.
Now look at the row-echelon-form and you see that it doesn't have an inconsistent row no matter what α is. Therefore, the system is consistent for every α.

For all those value(s) of α, give at least one solution $x_{1}=\ldots, \quad x_{2}=\ldots, \quad x_{3}=\ldots$.

Answer: We've already given solutions when $\alpha=-4$. If $\alpha \neq-4$ then from Row3 we see that $x_{3}=0$. Then from Row2 we see $x_{2}=0$ and from Row1 we find that $x_{1}=1$. Clearly that's a solution for any α (whether α is -4 or not).

Clever answer: The system is this:
x_{1} times Col1 plus x_{2} times Col2 plus x_{3} times $\operatorname{Col} 3$ equals rhs.
Here rhs is the right-hand-side. Now, if you had observed that rhs $=$ Col1 then you would have immediately seen (without even looking at columns 2 and 3) that $x_{1}=1, x_{2}=0, x_{3}=0$ is a solution. So we have a solution (and therefore: the system is consistent) no matter what α is, because we always have this solution $x_{1}=1, x_{2}=0, x_{3}=0$ simply because rhs $=$ Coll.

So remember this trick: If you see that rhs $=$ Col1, then you immediately know a solution (so: consistent). But if you happen to notice that rhs equals 4 times Col1 minus 5 times Col3 (not in this exercise) then you know that $x_{1}=4, x_{2}=0, x_{3}=-5$ is a solution.
3. Let A be the coefficient matrix of some system. The rank of matrix A is the number of pivots (the number of non-zero rows) in the (reduced) row echelon form of A. True or false:
(a) If the rank of A equals the number of rows of A then the system $A x=b$ is consistent for every right-hand side b.
Answer: True, because if the number of rows is the number of pivots, then every row in the coefficient matrix has a pivot, so none of the rows in the coefficient matrix is zero, so we can't have any inconsistent rows.
(b) If the rank of A equals the number of columns of A then the system $A x=b$ is consistent for every right-hand side b.
Answer: False. Just take A with more rows than columns, then we have more rows than pivots, so we will get zero row(s) in the coefficient matrix, and by taking a suitable right-hand-side we can make those inconsistent.
(c) The system $A x=0$ is always consistent (so here the right-hand side b is the zero vector).

Answer: True. To get an inconsistent row, we need zeros on the coefficient side with a non-zero on the right-hand-side. If the rhs is zero, we can't get that.
(d) If the rank of A is less than the number of rows of A then the system $A x=0$ always has free variables.
Answer: False. Take a matrix A with say: rank one, three rows, and one column. Then every column in A has a pivot, so we have no free variables. So we don't always get free variables.
(e) If the rank of A is less than the number of columns of A then the system $A x=0$ always has free variables.
Answer: True. If the number of pivots is the number of columns, then every column will have a pivot.
4. Find all (infinitely many) values of a and b for which vector w is in the SPAN of vectors v_{1}, v_{2}, v_{3}.

$$
v_{1}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right), \quad w=\left(\begin{array}{c}
a \\
b \\
a
\end{array}\right)
$$

Clever Answer: Notice that in v_{1}, the sum of the entries is 0 . And hey, that's true for v_{2}, and also for v_{3}. Well, then it must also be true for $v_{1}+v_{2}$, for $5 v_{1}$, for $-8 v_{3}$ for $v_{1}-8 v_{3}$, etc. It's going to be true for every linear combination of v_{1}, v_{2}, v_{3}. So if w is a linear combination of v_{1}, v_{2}, v_{3}, then we must have $a+b+a=0$. Thus: $b=-2 a$. Now I'll answer the question as if I hadn't noticed this.

Usual Answer: Row-reduce ($\left.v_{1} v_{2} v_{3} w\right)$. The last row in the row-echelon-form is going to be this ($0002 a+b$) (instead of $2 a+b$ you could also have gotten $4 a+2 b$ or $-2 a-b$ or something like that). If w is in the SPAN of v_{1}, v_{2}, v_{3} we need the system to be consistent, so we need $2 a+b$ to be zero, so $b=-2 a$.
So the answer is: a is free and b is $-2 a$.
Could also have said: b is free and a is $-b / 2$.

Short answers:

1a. $\operatorname{rref}(B)=\left(\begin{array}{rrrrr}1 & 0 & -1 & -1 & -1 \\ 0 & 1 & 3 & 6 & 9 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ (note: there is only 1 correct answer)

$$
R_{1} \leftrightarrow R_{2}, R_{2} \leftarrow R_{2}-2 R_{1}, R_{3} \leftarrow R_{3}+R_{2}, R_{1} \leftarrow R_{1}+R_{2}, R_{2} \leftarrow-R_{2}
$$

(note: here there are many correct answers).
1b. $x_{1}=-1+x_{3}+x_{4}, \quad x_{2}=9-3 x_{3}-6 x_{4}, \quad x_{3}=x_{3}, \quad x_{4}=x_{4}$
1c. Yes. $v_{3}=-v_{1}+3 v_{2}$.
1d. Yes.
2a and 2 b . $\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 \\ 2 & -1 & \alpha & 2\end{array}\right) \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & \alpha+4 & 0\end{array}\right)$.
Note that since it's only row-echelon-form (not reduced row-echelon form) there are different correct answers for this second matrix.
Row-reductions: $R_{2} \leftarrow R_{2}-2 R_{1}, R_{3} \leftarrow R_{3}-2 R_{1}, R_{3} \leftarrow R_{3}-3 R_{2}$, but there are other correct answers.
2c. $\alpha=-4$. Then $x_{1}=1+x_{3}, \quad x_{2}=-2 x_{3}, \quad x_{3}=x_{3}$.
2d. Any $\alpha . \quad x_{1}=1, \quad x_{2}=0, \quad x_{3}=0$.
3. True, False, True, False, True.
4. All a, b for which $2 a+b=0$.

