## Linear algebra, test 1

January 27, 2004

1. Let

$$
B=\left(\begin{array}{lllll}
2 & 1 & 1 & 4 & 7 \\
1 & 1 & 2 & 5 & 8 \\
0 & 1 & 3 & 6 & 9
\end{array}\right)
$$

(a) Compute the ref (reduced row echelon form) of matrix $B$. Show which row operations you used. Use only elementary row operations.
(b) If $B$ is the augmented matrix of a system (3 equations, 4 unknowns and one right-hand side) then write down all solutions of this system.
(c) Let $v_{i}$ be the $i$ 'th column of $B$. So $v_{1}$ is column $1, v_{2}$ is column 2, etc. Is $v_{3}$ in the SPAN of $v_{1}, v_{2}$ ? If so, then write $v_{3}$ as a linear combination of $v_{1}, v_{2}$.
(d) Does there exist a vector in $\mathbf{R}^{3}$ that is not in the SPAN of $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ ?
2. Consider the system of equations

$$
\begin{aligned}
& 1 x_{1}+1 x_{2}+1 x_{3}=1 \\
& 2 x_{1}+1 x_{2}+0 x_{3}=2 \\
& 2 x_{1}-1 x_{2}+\alpha x_{3}=2
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}$ are the unknowns, and $\alpha$ is some real number.
(a) Write down the augmented matrix of this system (note: the number $\alpha$ is considered as a coefficient, not as an unknown. So there are three equations in three unknowns, and we have one right-handside).
(b) Row-reduce the system to upper triangular form (same as row echelon form. Note: you don't need to go as far as the reduced row echelon form).
(c) For which value(s) of $\alpha$ do we get free variable(s)? For those value(s) of $\alpha$, write down all solutions $x_{1}=\ldots, \quad x_{2}=\ldots, \quad x_{3}=\ldots$.
(d) For which value(s) of $\alpha$ is the system consistent? For all those value(s) of $\alpha$, give at least one solution $x_{1}=\ldots, \quad x_{2}=\ldots, \quad x_{3}=\ldots$.
3. Let $A$ be the coefficient matrix of some system. The rank of matrix $A$ is the number of pivots (the number of non-zero rows) in the (reduced) row echelon form of $A$. True or false:
(a) If the rank of $A$ equals the number of rows of $A$ then the system $A x=b$ is consistent for every right-hand side $b$.
(b) If the rank of $A$ equals the number of columns of $A$ then the system $A x=b$ is consistent for every right-hand side $b$.
(c) The system $A x=0$ is always consistent (so here the right-hand side $b$ is the zero vector).
(d) If the rank of $A$ is greater than the number of rows of $A$ then the system $A x=0$ always has free variables.
(e) If the rank of $A$ is greater than the number of columns of $A$ then the syster always free variables.
4. Find all (infinitely many) values of $a$ and $b$ for which vector $w$ is in the SPAN of vectors $v_{1}, v_{2}, v_{3}$.

$$
v_{1}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right), \quad w=\left(\begin{array}{c}
a \\
b \\
a
\end{array}\right) .
$$

