Linear Algebra, Final, Monday April 26, 2004, 10:00 - noon

1. (4 points). Which of these vectors are eigenvectors of matrix $\left(\begin{array}{cc}-1 & 1 \\ -2 & 2\end{array}\right)$? $\binom{3}{6}$ yes $(\lambda=1), \quad\binom{-1}{1}$ no, $\quad\binom{3}{3}$ yes, $(\lambda=0), \quad\binom{0}{0}$ no.
2. (9 points). Let A be a 3 by 4 matrix for which the rank is 3 .

- How many basic variables are there?

That number always equals the rank. So the answer is 3 .

- How many free variables?

That is the number of variables minus the rank, so that is $4-3=1$.

- True or false: The reduced row echelon form of A has no zero-rows.

True. The number of non-zero rows in RREF is the rank. That means all three rows are non-zero.

- True or false: The system $A x=b$ is consistent for every $b \in \mathbb{R}^{3}$.

True because RREF has no non-zero rows.

- True or false: The system $A x=0$ has only the trivial solution (the zero solution).

False because there is a free variable.

- The linear map given by A is a map from \mathbb{R}^{4} to \mathbb{R}^{3}.
- The linear map given by A is (choose one of the following):
a) one-to-one but not onto.
b) onto but not one-to-one. THIS ONE.
c) one-to-one and onto.
d) neither one-to-one nor onto.
- If B is a n by m matrix and if the matrix product $A B$ is defined, then which of the following must be true: $(3$ by 4$) \cdot(n$ by $m)$ then:
a) $n=3$.
b) $n=4$. THIS ONE.
c) $m=3$.
d) $m=4$.
- True or false: If V has dimension 3 , then every set of 3 linearly independent elements of V will be a basis of V. TRUE.

3.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \cosh (x)=\sinh (x) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x} \sin (x)=\cosh (x)
$$

Note: there is no minus sign in the derivative of $\cosh (x)$ because these are the hyperbolic trig functions and not the usual trig functions.
Let V be a vector space with basis $B=\{\cosh (x), \sinh (x)\}$.
Let $T: V \rightarrow V$ be the map given by differentiation, so $T=\frac{\mathrm{d}}{\mathrm{d} x}$.
(a) (8 points). Give the matrix $[T]_{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(b) (4 points). Compute the eigenvectors of $[T]_{B}$. $\binom{1}{1}, \lambda=1$ and $\binom{-1}{1}, \lambda=-1$.
(c) (2 points). Give the eigenvectors of T. $\cosh (x)+\sinh (x), \lambda=1$ and $-\cosh (x)+\sinh (x), \lambda=-1$.
(d) (1 point). Is $[T]_{B}$ diagonizable? YES.
(e) (1 point). Does there exist a basis C of V for which $[T]_{C}$ is diagonal. YES: $b_{1}=\cosh (x)+\sinh (x)$ and $b_{2}=-\cosh (x)+\sinh (x)$.
4. Let $A=\left(\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$ and compute:
(a) (2 points). The reduced row echelon form of A. RREF $=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
(b) (2 points). The rank of A is: 1 .
(c) (2 points). A basis for the column space of A is: $\left\{\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)\right\}$.
(d) (4 points). A basis for the null space of A is: $\left\{\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)\right\}$.
(e) (8 points). The characteristic polynomial is $\lambda^{2}(\lambda-1)$. For each eigenvalue, compute corresponding eigenvectors:
$\lambda=0$: eigenvectors are given in part (d).
$\lambda=1: A-\lambda I=\left(\begin{array}{rrr}0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & -2\end{array}\right)$. Basis(NullSpace) $=\left\{\left(\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right)\right\}$.
Give P such that $P^{-1} A P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Answer: $P=\left(\begin{array}{rrr}-1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

5. NOT YET COVERED:

6. (1 point). If u_{1}, u_{2} and u are vectors, and $B=\left\{u_{1}, u_{2}\right\}$, then which matrix should you row-reduce in order to calculate $[u]_{B}$?
Answer: $\left(u_{1} u_{2} \mid u\right)$.
7. Suppose $B=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)$ is the basis of some vector space V.
(a) (2 points). The dimension of this V is 2 .
(b) (4 points). Let $u \in V$ and suppose $[u]_{B}=\binom{2}{-3}$. What is u ?
$u=2\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)-3\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)=\left(\begin{array}{r}-4 \\ -15 \\ -11\end{array}\right)$.
(c) (4 points). Suppose that C is another basis, and that the B to C change of basis matrix is $C \stackrel{P}{\leftarrow} B=\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)$ What is $[u]_{C}$?
Answer: We have $[u]_{B}$ in part (b) and the matrix that sends $[u]_{B}$ to $[u]_{C}$ so we just have to multiply $\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)\binom{2}{-3}=\binom{-4}{-9}$.
(d) (4 points). Compute the matrix $B \stackrel{P}{\leftarrow} C$.

The C-to- B change-of-basis is the inverse of the B-to- C change-ofbasis that was given in part (c). Inverting that we find $\left(\begin{array}{rr}-5 & 2 \\ 3 & -1\end{array}\right)$.
(e) (4 points). If $w \in V$ and $[w]_{C}=\binom{1}{0}$. Then what is $[w]_{B}$

Answer: The matrix in part (d) sends $[w]_{C}$ to $[w]_{B}$. So $[w]_{B}=$ $\binom{-5}{3}$. Then $w=-5\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+3\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)=\left(\begin{array}{l}1 \\ 6 \\ 5\end{array}\right)$.
(f) (4 points). Let $v=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$. Compute $[v]_{B}$.

After row-reducing $(B \mid v)$ (first two columns $=$ elements of B, third column $=v$) you find that the third column is 7 times the first column minus 3 times the second column. Then that must have also been true before you row-reduced, in other words $v=7\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)-3\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)$ and thus $[v]_{B}=\binom{7}{-3}$.
(g) (4 points). If $T\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ and $T\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)=\left(\begin{array}{l}2 \\ 7 \\ 5\end{array}\right)$ then what is $[T]_{B}$?
If we denote $B=b_{1}, b_{2}$ then you see from part (f) that $T\left(b_{1}\right)=$ $7 b_{1}-3 b_{2}$. Moreover, $T\left(b_{2}\right)=b_{2}$. Hence $[T]_{B}=\left(\begin{array}{rr}7 & 0 \\ -3 & 1\end{array}\right)$.
8. (7 points). Suppose T is a linear map for which we know the following:

$$
T\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \text { and } \quad T\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
-1
\end{array}\right)
$$

From this information, can you calculate $T\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$?
YES, because $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ is a linear combination of $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
(if it wasn't, the answer to "can you calculate..." would have been NO).
Specifically, $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)=2\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
so $T\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)=2 T\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)-T\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=2\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)=\left(\begin{array}{l}5 \\ 6 \\ 1\end{array}\right)$.

