Linear Algebra, Final, Monday April 26, 2004, 10:00 - noon

1. (4 points). Which of these vectors are eigenvectors of matrix $\begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix}$?

$$\begin{pmatrix} 3\\6 \end{pmatrix}$$
 yes $(\lambda = 1)$, $\begin{pmatrix} -1\\1 \end{pmatrix}$ no, $\begin{pmatrix} 3\\3 \end{pmatrix}$ yes, $(\lambda = 0)$, $\begin{pmatrix} 0\\0 \end{pmatrix}$ no.

- 2. (9 points). Let A be a 3 by 4 matrix for which the rank is 3.
 - How many basic variables are there?

That number always equals the rank. So the answer is 3.

• How many free variables?

That is the number of variables minus the rank, so that is 4-3=1.

• True or false: The reduced row echelon form of A has no zero-rows.

True. The number of non-zero rows in RREF is the rank. That means all three rows are non-zero.

• True or false: The system Ax = b is consistent for every $b \in \mathbb{R}^3$.

True because RREF has no non-zero rows.

• True or false: The system Ax = 0 has only the trivial solution (the zero solution).

False because there is a free variable.

- The linear map given by A is a map from \mathbb{R}^4 to \mathbb{R}^3 .
- The linear map given by A is (choose one of the following): a) one-to-one but not onto.
 - b) onto but not one-to-one. THIS ONE.
 - c) one-to-one and onto.
 - d) neither one-to-one nor onto.
- If B is a n by m matrix and if the matrix product AB is defined, then which of the following must be true: (3 by 4) · (n by m) then:
 a) n = 3.
 - b) n = 4. THIS ONE.
 - c) m = 3.
 - d) m = 4.
- True or false: If V has dimension 3, then every set of 3 linearly independent elements of V will be a basis of V. TRUE.

3.

$$\frac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x) \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}x} \sin(x) = \cosh(x)$$

Note: there is no minus sign in the derivative of $\cosh(x)$ because these are the *hyperbolic* trig functions and not the usual trig functions. Let V be a vector space with basis $B = {\cosh(x), \sinh(x)}$. Let $T: V \to V$ be the map given by differentiation, so $T = \frac{d}{dx}$.

(a) (8 points). Give the matrix $[T]_B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (b) (4 points). Compute the eigenvectors of $[T]_B$.

$$\begin{pmatrix} 1\\1 \end{pmatrix}$$
, $\lambda = 1$ and $\begin{pmatrix} -1\\1 \end{pmatrix}$, $\lambda = -1$.

- (c) (2 points). Give the eigenvectors of T. $\cosh(x) + \sinh(x), \lambda = 1 \text{ and } -\cosh(x) + \sinh(x), \lambda = -1.$
- (d) (1 point). Is $[T]_B$ diagonizable? YES.
- (e) (1 point). Does there exist a basis C of V for which $[T]_C$ is diagonal. YES: $b_1 = \cosh(x) + \sinh(x)$ and $b_2 = -\cosh(x) + \sinh(x)$.

4. Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$
 and compute:

(a) (2 points). The reduced row echelon form of A. RREF = $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- (b) (2 points). The rank of A is: 1.
- (c) (2 points). A basis for the column space of A is: $\left\{ \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix} \right\}$.
- (d) (4 points). A basis for the null space of A is: $\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$.
- (e) (8 points). The characteristic polynomial is λ²(λ 1). For each eigenvalue, compute corresponding eigenvectors:
 λ = 0: eigenvectors are given in part (d).

$$\lambda = 1: A - \lambda I = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & -2 \end{pmatrix}. \text{ Basis(NullSpace)} = \{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \}.$$

Give P such that $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ Answer: $P = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

5. NOT YET COVERED:

6. (1 point). If u_1, u_2 and u are vectors, and $B = \{u_1, u_2\}$, then which matrix should you row-reduce in order to calculate $[u]_B$? Answer: $(u_1u_2 \mid u)$.

7. Suppose
$$B = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix}$$
 is the basis of some vector space V.

(a) (2 points). The dimension of this V is 2.

(b) (4 points). Let
$$u \in V$$
 and suppose $[u]_B = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$. What is u ?
 $u = 2 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix} = \begin{pmatrix} -4 \\ -15 \\ -11 \end{pmatrix}$.
(a) (4 points). Suppose that C is another basis, and that the R t

- (c) (4 points). Suppose that C is another basis, and that the B to C change of basis matrix is $C \xleftarrow{P}{\leftarrow} B = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ What is $[u]_C$? Answer: We have $[u]_B$ in part (b) and the matrix that sends $[u]_B$ to $[u]_C$ so we just have to multiply $\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -4 \\ -9 \end{pmatrix}$.
- (d) (4 points). Compute the matrix $B \leftarrow C$. The C-to-B change-of-basis is the inverse of the B-to-C change-ofbasis that was given in part (c). Inverting that we find $\begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$.
- (e) (4 points). If $w \in V$ and $[w]_C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then what is $[w]_B$ Answer: The matrix in part (d) sends $[w]_C$ to $[w]_B$. So $[w]_B =$ $\begin{pmatrix} -5\\ 3 \end{pmatrix}$. Then $w = -5 \begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix} + 3 \begin{pmatrix} 2\\ 7\\ 5 \end{pmatrix} = \begin{pmatrix} 1\\ 6\\ 5 \end{pmatrix}$. (f) (4 points). Let $v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Compute $[v]_B$. After row-reducing $(B \mid v)$ (first two columns = elements of B, third

column =
$$v$$
) you find that the third column is 7 times the first column minus 3 times the second column. Then that must have also been true before you row-reduced, in other words $v = 7 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 7 \\ 5 \end{pmatrix}$ and thus $[v]_B = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$.

-3 /

(g) (4 points). If
$$T\begin{pmatrix} 1\\3\\2 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
 and $T\begin{pmatrix} 2\\7\\5 \end{pmatrix} = \begin{pmatrix} 2\\7\\5 \end{pmatrix}$ then
what is $[T]_B$?
If we denote $B = b_1, b_2$ then you see from part (f) that $T(b_1) =$
 $7b_1 - 3b_2$. Moreover, $T(b_2) = b_2$. Hence $[T]_B = \begin{pmatrix} 7 & 0\\ -3 & 1 \end{pmatrix}$.

8. (7 points). Suppose T is a linear map for which we know the following:

$$T\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \text{ and } T\begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} -1\\-2\\-1 \end{pmatrix}.$$

From this information, can you calculate $T\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$?
YES, because $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ is a linear combination of $\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}$
(if it wasn't, the answer to "can you calculate..." would have been NO).
Specifically $\begin{pmatrix} 1\\0\\-1 \end{pmatrix} = 2\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$

(if

Specifically,
$$\begin{pmatrix} 0 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

so $T \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 2T \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - T \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix}$.