1. What is the orthogonal projection of y on w ?

Answer: It is the scalar multiple of w that is as close as possible to y. In other words, it is the element of $\operatorname{SPAN}(w)$ that is closest to y.

So what does this mean? Well, draw the line through w and the origin, lets call that line $W=\operatorname{SPAN}(w)$. If y is on that line, then the orthogonal projection of y on w is y itself. If y is not on that line, then pick the point on that line that is as close as possible to y, and then that point is the orthogonal projection of y on w
(same as: orthogonal projection of y on W).
2. How do you compute the orthogonal projection of vector y on w ?

Answer: Compute these two numbers: $y \cdot w$ and $w \cdot w$. Then take the quotient. Multiply that by w and you get the orthogonal projection of y on w :

$$
\operatorname{proj}_{w}(y)=\frac{y \cdot w}{w \cdot w} w
$$

Since this is a scalar (the quotient of those two dot-products) times w, we see that the projection of y on w is always on the line $W=\operatorname{SPAN}(w)$
3. Let W be some subspace of \mathbf{R}^{n} and let y be some element of \mathbf{R}^{n}. What is the orthogonal projection of y on W ?
Answer: It is the element of W that is as close as possible to y. So if y is in W then the projection of y on W is just y itself. If y is not in W, then pick the point in W that is the closest to y, and then that point is the orthogonal projection of y on W.
4. How do you compute the orthogonal projection of vector y on W ? Answer: First you need an orthogonal basis of W. Suppose that w_{1}, \ldots, w_{k} is an orthogonal basis of W (how to find an orthogonal basis of W is the subject of items 9,10). Then

$$
\operatorname{proj}_{W}(y)=\operatorname{proj}_{w_{1}}(y)+\operatorname{proj}_{w_{2}}(y)+\cdots+\operatorname{proj}_{w_{k}}(y)
$$

in other words, the projection of y on W is

$$
\operatorname{proj}_{W}(y)=\frac{y \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}+\frac{y \cdot w_{2}}{w_{2} \cdot w_{2}} w_{2} \quad+\cdots+\frac{y \cdot w_{k}}{w_{k} \cdot w_{k}} w_{k}
$$

This only works if w_{1}, \ldots, w_{k} is an orthogonal basis of W.
5. What does $u \perp v$ mean?

Answer: $u \perp v$ means that u is orthogonal to v, which in turn means that the dot-product (the inner product) of u and v is zero, so $u \cdot v=0$.
This happens when $u=0$, or when $v=0$, or when u, v are perpendicular (the angle between them is 90°).
6. What's an orthogonal set?

Answer: It's a set where every element is orthogonal to every other element.
How do I check if $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is an orthogonal set?
Answer: You check that each of them is orthogonal to all the previous ones, so you check that $w_{2} \cdot w_{1}=0$, then check that $w_{3} \cdot w_{1}=0$ and $w_{3} \cdot w_{2}=0$, then check that $w_{4} \cdot w_{1}=0, w_{4} \cdot w_{2}=0, w_{4} \cdot w_{3}=0$, etc.
7. What's an orthogonal basis of a vector space W ?

Answer: a basis where every element is orthogonal to every other element.
8. If w_{1}, \ldots, w_{k} are some vectors, what's the quickest way to see if they form an orthogonal basis of W ?
Answer: First of all, they must all be in W. Second, the zero-vector must not be among w_{1}, \ldots, w_{k}. Furthermore, k, the number of vectors in your set, must be equal to the dimension of V. Finally, check that they form an orthogonal set (see item 6).
Don't I have to check that w_{1}, \ldots, w_{k} are linearly independent to make sure that I have a basis of W ?
Answer: an orthogonal set without zero-vectors is automatically linearly independent.
9. How do I get an orthogonal basis of W ?

Answer: first, you need a basis (or a spanning set, that's OK too) for W. Say that u_{1}, \ldots, u_{k} is a spanning set of W. Now you follow the following process, called the Gram-Schmidt process:
Take $v_{1}=u_{1}$.
Take v_{2} to be u_{2} MINUS the projection of u_{2} on all previous v 's.
Take v_{3} to be u_{3} MINUS the projection of u_{3} on all previous v 's.
Take v_{4} to be u_{4} MINUS the projection of u_{4} on all previous v 's.
etc.
If any of these v 's are zero, then just throw that one away (this only happens if the u 's were linearly dependent).
The remaining v 's (the non-zero v 's) will be an orthogonal basis of W.
10. Can you spell that out in some more detail, how to get an orthogonal basis of W if I have some spanning set u_{1}, \ldots, u_{k} of W ?
Answer: Follow the previous item, and just plug in the these orthogonal projections. So you get:
$v_{1}=u_{1}$
$v_{2}=u_{2}-\operatorname{proj}_{v_{1}}\left(u_{2}\right)$
$v_{3}=u_{3}-\operatorname{proj}_{v_{1}, v_{2}}\left(u_{3}\right)$
$v_{4}=u_{4}-\operatorname{proj}_{v_{1}, v_{2}, v_{3}}\left(u_{4}\right)$, etc.
If we spell this out with the formula for the orthogonal projection (see
items 2 and 4) then we get:
$v_{1}=u_{1}$
$v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$
$v_{3}=u_{3}-\left(\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}\right)$
$v_{4}=u_{4}-\left(\frac{u_{4} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{u_{4} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}+\frac{u_{4} \cdot v_{3}}{v_{3} \cdot v_{3}} v_{3}\right)$, etc.
In step 3 , make sure that you use u_{3} and the previous v 's (not the previous u 's). In step 4 , use u_{4} and the previous v 's (not the previous u 's).
11. Example, let $u_{1}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right), u_{2}=\left(\begin{array}{c}0 \\ 1 \\ 2 \\ 3 \\ 4\end{array}\right), u_{3}=\left(\begin{array}{c}0 \\ 1 \\ 4 \\ 9 \\ 16\end{array}\right)$ and $y=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 1 \\ 3\end{array}\right)$.

Let $W=\operatorname{SPAN}\left(u_{1}, u_{2}, u_{3}\right)$. Find the orthogonal projection of y on W, i.e. find the vector in W that is as close as possible to y.

Answer: if u_{1}, u_{2}, u_{3} were an orthogonal set, we could use the formula in item 4 (the w 's in item 4 would then be the u 's here). But, u_{1}, u_{2}, u_{3} are not orthogonal, for example $u_{1} \cdot u_{2} \neq 0$. We'll have to fix that with Gram-Schmidt. We take:
$\begin{aligned} & \text { Gram-Schmidt. We take: } \\ & v_{1}=u_{1} \\ & v_{2}=u_{2}-\frac{0 \cdot 1+1 \cdot 1+2 \cdot 1+3 \cdot 1+4 \cdot 1}{1^{2}+1^{2}+1^{2}+1^{2}+1^{2}} u_{1}\end{aligned}=\left(\begin{array}{c}-2 \\ -1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$v_{3}=u_{3}-\left(\frac{0 \cdot 1+1 \cdot 1+4 \cdot 1+9 \cdot 1+16 \cdot 1}{1^{2}+1^{2}+1^{2}+1^{2}+1^{2}} u_{1}+\frac{(-2) \cdot 0+(-1) \cdot 1+0 \cdot 4+1 \cdot 9+2 \cdot 16}{(-2)^{2}+(-1)^{2}+0^{2}+1^{2}+2^{2}} u_{2}\right)=\left(\begin{array}{c}2 \\ -1 \\ -2 \\ -1 \\ 2\end{array}\right)$
Now that we have an orthogonal basis v_{1}, v_{2}, v_{3} of the vector space W, we are ready to compute the orthogonal projection of y on W with the formula from item 4 (the w 's in item 4 are the v 's here).
$\operatorname{proj}_{W}(y)=\frac{5}{5} v_{1}+\frac{5}{10} v_{2}+\frac{7}{14} v_{3}$. If we compute that, we get y itself (this means that y was actually in W, so the vector in W closest to y is then of course y itself). Let's compute $\operatorname{proj}_{W}(u)$ for another vector, say $u=\left(\begin{array}{c}-2 \\ 0 \\ 3 \\ 2 \\ 2\end{array}\right) . \operatorname{Then~}_{\operatorname{proj}}^{W}(u)=\frac{5}{5} v_{1}+\frac{10}{10} v_{2}+\frac{-8}{14} v_{3}=\left(\begin{array}{c}-15 / 7 \\ 4 / 7 \\ 15 / 7 \\ 18 / 7 \\ 13 / 7\end{array}\right)$.
Application: if $f(x)$ is a function that takes values $-2,0,3,2,2$ (the entries of u) at $x=0,1,2,3,4$ then the quadratic function that best approximates this takes has values "the entries of $\operatorname{proj}_{W}(u)$ " at $x=0,1,2,3,4$.

