
1. A linear map T : Rn → R
m is always given by matrix multiplication.

That means, if T is a linear map from R
n to R

m then there is a matrix
A such that if v ∈ R

n then the following will have the same result:
∗) applying T to v (result is: T (v)).
∗) Multiplying v on the left by A (result is: Av).
How are we going to find this matrix A for which T (v) = Av for all v?
Answer: Take the standard basis (see below) and apply T to all vectors
in this standard basis (in some exercises you may need to use the idea
in item 12 below). The resulting vectors then form the columns of A.

2. The standard basis of Rn

= the columns of the n by n identity matrix.

3. The identity matrix I is a square matrix with 1’s on the diagonal
and 0’s elsewhere. Multiplying by I does nothing (hence the name:
identity matrix). So Iv = v for all vectors v. Moreover, IA = A for
all matrices A, and also AI = A for all A.

4. The rank of T is the number of pivots in the rref of the matrix A that
belongs to T .

5. If T : Rn → R
m then T is one-to-one if the rank is n.

6. If T : Rn → R
m then T is onto if the rank is m.

7. T is invertible if it is one-to-one and onto.

8. If T : Rn → R
m, and if n 6= m then T is not invertible.

9. If T : Rn → R
m, and if n = m then T is invertible when the rank of

the corresponding matrix is n. But then the rref of that matrix must
be I.

10. T : Rn → R
m is invertible if and only if the corresponding matrix is

square (so m = n) and can be row-reduced to I.

11. To compute the inverse of a matrix A, rowreduce (A I) to (I . . .). If
this row-reduction is impossible (if A can’t be row-reduced to I) then
there is no inverse of A. But if the row-reduction is possible, you’ll
find A−1, because then (A I) row-reduces to (I A−1).
For a 2 by 2 matrix there is a short formula for the inverse (see the
book).
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12. If T (v1) and T (v2) are known, then you can compute T (w) for any
linear combination w of v1, v2. How? First, write w as a linear com-
bination of v1, v2, that is, find c1, c2 such that w = c1v1 + c2v2. We
remember how to find those c1, c2, by row-reducing (v1v2 w). Then,
once we know these c1, c2 for which w = c1v1 + c2v2 then we can
compute T (w) = c1T (v1) + c2T (v2).

13. If we want to do item 12 for several w’s, say: w1, w2, w3 then we would
have to solve three systems, with these augmented matrices:
(v1v2 w1), (v1v2 w2) and (v1v2 w3).
We can solve these three systems simultaneously by row-reducing just
this augmented matrix: (v1v2 w1w2w3) (so the right-hand side in this
augmented matrix has 3 columns).

14. The idea in item 12 works also if we have more than just two vectors
v1, v2. If we have k vectors v1, . . . , vk, and if we know T (v1), . . . , T (vk)
and we want to compute T (w) for some linear combination w of
v1, . . . , vk, then the first step would be to row-reduce (v1 · · · vk w),
and everything works in the same way.

15. Section 2.1. Memorize theorems 2, 3.
Section 2.2. It is useful to memorize the formula in theorem 4 (if you
forget this formula, then you’re not yet lost though, because you can
then fall back on the method given in item 11).
Memorize theorems 5, 6, 7.
Section 2.3. Memorize all of the items in theorem 8. In the test, I
might pick any two out of all of those statements, and ask you if the
first one is true whether the second one is then also true. If you know
that the matrix is square, then the answer to that question would
be yes. No explanation will be required, just memorize that these
statements in theorem 8 are all equivalent provided that you already

know that A is square!! (so: if you don’t know that A is square, then
don’t use anything from theorem 8 because then it may be wrong).
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