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This paper presents an analytic time-domain formulation for acoustic pressure gradient prediction in a moving

medium, which has significant application potential in evaluating the acoustic scattering boundary condition. Based

on the convective Ffowcs Williams–Hawkings equation, a semianalytic time-domain acoustic pressure gradient

formulation with a form involving the observer time differentiation outside the integrals is first developed, and then

the desired analytic time-domain acoustic pressure gradient formulation is derived. Because the derived formulations

are performed directly in the time domain, they are particularly applicable to the moving observer case. Simulation

results for a stationarymonopole source, a stationary dipole source, aswell as a rotatingmonopole source in amoving

medium demonstrate the effectiveness and accuracy of the proposed formulations for both stationary and moving

sources with moving observers.

Nomenclature

A = amplitude of velocity potential, m2 ⋅ s−1
c0 = speed of sound in undisturbed medium, m ⋅ s−1
f = data surface function
G = time-domain Green’s function in a steady,

uniform subsonic flow, m−1

H = Heaviside function
L = source strength of the loading source, Pa
Li = strength of the loading source components, Pa
LM = LiMi, Pa
LR = Li

~Ri, Pa
LR� = Li

~R�
i , Pa

_Li = ∂Li∕∂τ, Pa ⋅ s−1
_LR = _Li

~Ri, Pa ⋅ s−1
M = source Mach number vector
Mi = components of source Mach number vector

MR = Mi
~Ri

MR� = Mi
~R�
i

M∞ = moving medium Mach number vector
M∞i = components of moving medium Mach number

vector
M∞L = M∞iLi, Pa
M∞M = M∞iMi

M∞R = M∞i
~Ri

M∞R� = M∞i
~R�
i

_Mi = ∂Mi∕∂τ
_MR = _Mi

~Ri

ni = components of unit vector normal to the data
surface

p = pressure of local fluid, Pa
p0 = pressure of undisturbed medium, Pa
p 0 = sound pressure, Pa
Q = source strength of the thickness source, kg ⋅m−2 ⋅

s−1

_Q = ∂Q∕∂τ, kg ⋅m−2 ⋅ s−2
R�, R = acoustic radii, m
~R�
i = ∂R�∕∂xi
~Ri = ∂R∕∂xi
r = geometrical vector between source and receiver;

x–y, m
rs = rotating radius of source, m
S = data surface
T = source period, s
Tij = Lighthill stress tensor, kg ⋅m−1 ⋅ s−2
t = observer time, s
U∞ = velocity vector of moving medium, m ⋅ s−1
U∞i = velocity vector components of moving medium,

m ⋅ s−1
U∞n = local normal velocity of moving medium, m ⋅ s−1
u = fluid velocity vector, m ⋅ s−1
ui = components of fluid velocity vector, m ⋅ s−1
un = local normal velocity of fluid, m ⋅ s−1
vi = components of data surface velocity vector,m ⋅ s−1
vn = local normal velocity of data surface, m ⋅ s−1
x = observer position vector, m
(x1, x2, x3) = Cartesian coordinate for the observer
y = source position vector, m
(y1, y2, y3) = Cartesian coordinate for the source
δ�⋅� = Dirac delta function
δij = Kronecker delta
ρ = local fluid density, kg ⋅m−3

ρ0 = undisturbed medium density, kg ⋅m−3

ρ 0 = density perturbation of fluid, kg ⋅m−3

σij = viscous stress tensor, kg ⋅m−1 ⋅ s−2
τ = source time, s
φ�x; t� = velocity potential function of source, m2s−1

ω = source pulsation angular frequency, rad ⋅ s−1
ωr = source rotating angular speed, rad ⋅ s−1

Subscripts

e = calculation at retarded time
L = loading source
O = observer point
S = source point
T = thickness source

I. Introduction

T HE acoustic scattering effect in many engineering applications,
such as the scattering by a fuselage boundary layer [1–6], the

rotor noise scattered by the centerbody [7–9], and the noise scattered
by a centrifugal volute [10], should not be neglected because it
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substantially influences the overall noise in both magnitude and
directivity [11].
Based on the solutions of the FfowcsWilliams–Hawkings (FW–H)

equation [12] or the Kirchhoff formulation [13], numerical methods
such as the boundary element method [4,14,15] and the equivalent
source method [16–18] have been developed to predict the acoustic
scattering field in recent years. When solving acoustic scattering
problems, the key aspect is obtaining the acoustic velocity on the
scattering surface to serve as the boundary condition. Recently,
Ghorbaniasl et al. [19] suggested the analytic formulations V1 and
V1A for calculating the acoustic velocity directly in the time domain,
whereas the counterpart in the frequency domain was proposed by
Mao et al. [20]. Given that the direct derivation of the acoustic velocity
involves heavy algebraicmanipulations, the acoustic pressure gradient
can also be used as the boundary condition because it is related to the
acoustic velocity through the acoustic velocity potential [21].
However, the direct numerical evaluation of the acoustic pressure
gradient for a realistic scattering surface is computationally expensive;
therefore, much research has been done to obtain the analytic pressure
gradient formulation. Farassat and Brentner [22] derived a
semianalytic formulation to calculate the acoustic pressure gradient.
Lee et al. [23] first presented fully analytical formulation for the
acoustic pressure gradient and implemented it into numerical codes. In
that paper, the semianalytical formulation was revisited and named
formulation G1, and the fully analytic formulation was named
formulation G1A.
It should be noted that the mediumwas assumed stationary in the

aforementioned studies. However, convection effects as in a wind-
tunnel experiment may be important in aeroacoustic calculations.
To realize themore complex acoustic scattering prediction forwind-
tunnel experiments, the convective FW–H equation [24,25], which
explicitly takes into account the presence of the moving medium,
should be used and the acoustic scattering boundary condition in the
moving medium should be calculated as well. Recently,
Ghorbaniasl et al. [26] derived an analytic acoustic pressure
gradient formulation in the frequency domain that accounted for the
effect of a constant uniform flow with arbitrary direction.
Considering that the time-domain formulation can be useful in some
cases of acoustic scattering prediction (for example, the moving
observer case), an analytic time-domain acoustic pressure gradient
formulation that explicitly takes into account the presence of the
moving medium is developed in the present paper. Inspired by the
earlier work of Lee et al. [23], we will use similar names for our
analytic formulation in a moving medium in the current paper: for
example, G1A-M, in which M stands for a moving medium. This
formulation can be seen as the extension of formulation G1A to a
moving medium case. At the same time, semianalytic acoustic
pressure gradient formulation G1-M is also given as part of the
present study.
This paper is organized as follows. The convective FW–Hequation

and its time-domain solution are first briefly reviewed in Sec. II.A,
and then the derivation of the formulation with a modified source
term for acoustic pressure gradient is described in Sec. II.B.
Subsequently, three numerical test cases are used to examine the
performance of the proposed formulations in Sec. III. Finally,
conclusions are drawn in Sec. IV.

II. Theory

A. Convective FW–H Equation and its Time-Domain Solution

Consider a uniform flow that moves at a constant velocityU∞, and
the direction of the velocity is arbitrary. Reorganizing the continuity
and momentum equations that include the constant convective
velocity term, the acoustic pressure at the observer x at time t could be
described by the convective FW–H equation

�
1

c20

D2

Dt2
− ∇2

�
fp 0�x; t�H�f�g � D

Dt
�Qδ�f�� − ∂

∂xi
�Liδ�f��

� ∂2

∂xi∂xj
�TijH�f�� (1)

with

D

Dt
� ∂

∂t
�U∞i

∂
∂xi

(2)

Q � ρ0�vn −U∞n� � ρ�un − �vn −U∞n�� (3)

Li � ��p − p0�δij − σij�nj � ρui�un − �vn −U∞n�� (4)

Tij � ρuiuj � ��p − p0� − c20�ρ − ρ0��δij − σij (5)

where δ�f� is the Dirac delta function; H�f� is the Heaviside
function; f � 0 denotes the data surface; U∞n � U∞ini with the

local unit outer normal ofni � ∂f∕∂xi in direction xi�i � 1; 2; 3�; δij
is the Kronecker delta; ρ0, p0, and c0 are the density, pressure, and
sound speed in the undisturbed medium, respectively; p is the local

fluid pressure; ρ is the local fluid density; p 0 is the acoustic pressure;
the local fluid velocity component is denoted by ui; the local normal
components to the data surface of the fluid and the body velocities are

un and vn, respectively; Tij is the Lighthill stress tensor; and σij is the
viscous stress tensor.
The first two terms on the right-hand side of Eq. (1) are the

monopole and dipole source terms, which are also known as the

thickness and loading sources, respectively. The third term is the
quadrupole source term, which is typically small compared to the

other two terms when the fluid andmoving body’s velocities are both

small; thus, it is reasonably omitted in the subsonic calculations. By
neglecting the quadrupole source term, the integral solution of the

convective FW–H equation was derived byGhorbaniasl and Lacor in
[27] as

p 0�x; t;M∞� � p 0
T�x; t;M∞� � p 0

L�x; t;M∞� (6)

with the integral formulations over the data surface S:

4πp 0
T�x; t;M∞��

Z
S

��1−M∞R� _Q
R��1−MR�2

�
e

dS−
Z
S

�
c0M∞R�Q

R�2�1−MR�
�
e

dS

�
Z
S

�
�1−M∞R�Q

R� _MR�c0�MR� − jMj2�
R�2�1−MR�3

�
e

dS

−
Z
S

�
�1−M∞R�Q

c0MR�MR�c0γ
2�M2

∞M−M2
R� �

R�2�1−MR�3
�
e

dS

−
Z
S

�
c0γ

2�M∞R�MR� −M∞M�Q
R�2�1−MR�2

�
e

dS (7)

and

4πp0
L�x;t;M∞��

1

c0

Z
S

�
_LR

R��1−MR�2
�
e

dS�
Z
S

�
LR�−LM

R�2�1−MR�2
�
e

dS

� 1

c0

Z
S

2
6664LR

R� _MR�c0�MR�−
����M

����
2

�
R�2�1−MR�3

3
7775

e

dS

−
Z
S

�
LR

MR�MR�γ2�M2
∞M−M2

R� �
R�2�1−MR�3

�
e

dS

−
Z
S

�
LR�MR�γ2�M∞MM∞L−LR�MR� �

R�2�1−MR�2
�
e

dS (8)

The mathematical background as well as the derivation procedure

can be seen in [27]. In Eqs. (7) and (8), the acoustic radiiR� andR are

R� � 1

γ

������������������������������������
r2 � γ2�M∞ ⋅ r�2

q
(9)
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R � γ2�R� −M∞ ⋅ r� (10)

where

γ �
��������������������������
1∕�1 −M2

∞�
q

(11)

r � x − y (12)

The quantities in brackets should be evaluated at the retarded time

τ � t − R∕c0, and the symbolM∞ is the flow Mach number vector

withM∞i � U∞i∕c0, whereM is themagnitude ofM that is the body

Mach number vector withMi � vi∕c0. The other nomenclatures are

defined as follows: M∞R � M∞i
~Ri, M∞R� � M∞i

~R�
i ,

~R�
i � ∂R�∕∂xi, ~Ri � ∂R∕∂xi, M∞M � M∞iMi, MR � Mi

~Ri,
_MR � _Mi

~Ri, MR� � Mi
~R�
i , M∞L � M∞iLi, LM � LiMi,

LR� � Li
~R�
i , LR � Li

~Ri, and _LR � _Li
~Ri. The dots on several

quantities denote derivatives with respect to the source time τ, and the
dots on the main variables do not imply the differentiation of any of

the associated vectors implied by the subscripts: for example, _Li �
∂Li∕∂τ and _MR� � _Mi

~R�
i .

From a theoretical point of view, the analytic acoustic pressure

gradient formulation can be derived by directly calculating the

gradients of Eqs. (7) and (8); however, this process requires heavy

mathematical operations. An alternative way to derive the analytic

acoustic pressure gradient formulation will be presented in the next

subsection, and this derivation is easily manipulated by adopting a

modification of the source term at the beginning of the derivation.

B. Derivation Procedure of Formulations G1-M and G1A-M

Starting from the convective FW–H equation [Eq. (1)] and

omitting the quadrupole source term, we can obtain a simplified

convective FW–H equation as

�
1

c20

D2

Dt2
− ∇2

�
fp 0�x; t�H�f�g � D

Dt
�Qδ�f�� − ∂

∂xi
�Liδ�f�� (13)

Employing Eq. (2) and adopting a modification of the source term

recently suggested by Ghorbaniasl et al. [26],

Fi � Li −QU∞i (14)

Equation (13) can be further simplified to the following form:

�
1

c20

D2

Dt2
− ∇2

�
fp 0�x; t�H�f�g � ∂

∂t
�Qδ�f�� − ∂

∂xi
�Fiδ�f�� (15)

The Green’s function used in a steady, uniform subsonic flowwith

the Mach number vector M∞ is

G�x; t; y; τ� � δ�τ − t� R∕c0�
4πR� � δ�g�

4πR� (16)

where

g � τ − t� R∕c0 (17)

Using the preceding Green’s function yields the solution of the

convective FW–H equation [Eq. (15)]:

p 0�x; t;M∞� � p 0
α�x; t;M∞� � p 0

β�x; t;M∞� (18)

where

4πp 0
α�x; t;M∞� �

∂
∂t

Z
t

−∞

Z
S
Q
δ�g�
R� dS dτ (19)

4πp 0
β�x; t;M∞� � −

∂
∂xi

Z
t

−∞

Z
S
Fi

δ�g�
R� dS dτ (20)

To obtain acoustic pressure gradient formulations, the gradient

operation is performed to Eqs. (18–20), yielding

∂p 0�x; t;M∞�
∂xi

� ∂p 0
α�x; t;M∞�

∂xi
� ∂p 0

β�x; t;M∞�
∂xi

(21)

4π
∂p 0

α�x; t;M∞�
∂xi

� ∂
∂t

∂
∂xi

Z
t

−∞

Z
S
Q
δ�g�
R� dS dτ (22)

4π
∂p 0

β�x; t;M∞�
∂xi

� −
∂2

∂x2i

Z
t

−∞

Z
S
Fi

δ�g�
R� dS dτ (23)

Because the integral variables S and τ in Eqs. (22) and (23) are

independent of the observer coordinates xi�i � 1; 2; 3�, the gradient
operators can be moved inside the integrals. Using the following

equation that was derived in [27]

∂
∂xi

�
δ�g�
R�

�
� −

1

c0

∂
∂t

�
~Riδ�g�
R�

�
−
�
~R�
i δ�g�
R�2

�
(24)

Equations (22) and (23) can be further rewritten as

4π
∂p 0

α�x; t;M∞�
∂xi

� −
1

c0

∂
∂t

Z
t

−∞

Z
S

∂
∂t

�
Q ~Riδ�g�

R�

�
dS dτ

−
∂
∂t

Z
t

−∞

Z
S

�
Q ~R�

i δ�g�
R�2

�
dS dτ (25)

4π
∂p 0

β�x; t;M∞�
∂xi

� 1

c0

∂
∂t

Z
t

−∞

Z
S
Fj

∂
∂xi

� ~Rjδ�g�
R�

�
dS dτ

�
Z

t

−∞

Z
S
Fj

∂
∂xi

� ~R�
j δ�g�
R�2

�
dS dτ (26)

To calculate the integral over dτ, the identity of the generalized

function [27,28] should be used:

Z
t

−∞
h�τ�δ�g� dτ �

�
h�τ�

j∂g∕∂τj
�
g�0

�
�

h�τ�
1 −MR

�
e

(27)

With the help of Eq. (27), Eq. (25) can be written as

4π
∂p 0

α�x; t;M∞�
∂xi

� −
∂
∂t
E1 (28)

where

E1 �
1

c0

∂
∂t

Z
S

�
Q ~Ri

R��1 −MR�
�
e

dS�
Z
S

�
Q ~R�

i

R�2�1 −MR�
�
e

dS

(29)

To avoid the numerical evaluation of the observer time

differentiation outside the integral in Eq. (29), they are converted to

the source time differentiation through the following identity [27]:

∂
∂t

�
�

1

1 −MR

∂
∂τ

�
e

(30)

E1 then becomes
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E1 �
1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�
Q ~Ri

R��1 −MR�
�
e

dS

�
Z
S

�
Q ~R�

i

R�2�1 −MR�
�
e

dS � 1

c0

Z
S

�
_Q ~Ri

R��1 −MR�2
�
e

dS

�
Z
S

�
Q
−Mi � γ2�MR� ~R�

i −M∞MM∞i�
R�2�1 −MR�2

�
e

dS

� 1

c0

Z
S

�
Q ~Ri

R� _MR � c0�MR� −M2�
R�2�1 −MR�3

�
e

dS

−
1

c0

Z
S

�
Q ~Ri

c0MR� �MR − γ2MR� � � c0γ
2M2

∞M

R�2�1 −MR�3
�
e

dS

�
Z
S

�
Q ~R�

i

R�2�1 −MR�
�
e

dS (31)

Following the same steps used to obtain Eqs. (28) and (31), and

employing an extra relation that is used to simplify the equations,

∂
∂xi

δ�g� �
~Ri

c0
δ 0�g� � −

~Ri

c0

∂
∂t
�δ�g�� (32)

Equation (26) would be further written as

4π
∂p 0

β�x; t;M∞�
∂xi

� 1

c0

∂
∂t
E2

�
Z
S

1∕γ2 ⋅ Fi �M∞iM∞F − 3 ~R�
i FR�

R�3�1 −MR�
dS (33)

where

E2�−
1

c0

Z
S

�
_FR

~Ri

R��1−MR�2
�
e

dS

−
Z
S

�
γ2 ~Ri�MR�FR� −M∞MM∞F�−FM

~Ri

R�2�1−MR�2
�
e

dS

−
Z
S

�
γ2FR�MR� ~R�

i −M∞MM∞i�−FRMi

R�2�1−MR�2
�
e

dS

−
1

c0

Z
S

�
FR

~RiR
� _MR�c0FR

~Ri�MR� −M2�
R�2�1−MR�3

�
e

dS

�
Z
S

�
FR

~RiMR� �MR−γ2MR� ��γ2FR
~RiM

2
∞M

R�2�1−MR�3
�
e

dS

�
Z
S

�
Fi�γ2�M∞iM∞F− ~R�

i FR� �− ~R�
i FR− ~RiFR�

R�2�1−MR�
�
e

dS (34)

It should be noted that Eqs. (21), (28), and (33) are together called

formulation G1-M, which can be seen as an extension of formulation

G1 to the moving medium cases. Comparing formulation G1-M with

the acoustic pressure formulation [Eqs. (6–8)], it is found that nomore

data are needed to calculate the acoustic pressure gradient than those

used to predict the acoustic pressure in a moving medium; therefore,

the two acoustic variables could be calculated at the same time. The

observer time derivatives outside the integrals in Eqs. (28) and (33) can

be evaluated numerically with various difference algorithms, such as

the forward, backward, and central differences [29]. Compared with

the direct numerical evaluation of the acoustic pressure gradient by

using the acoustic pressure data of several observers, it is also an

advantage that formulation G1-M does save considerable computing

resources because the integral data of only one observer are needed.
Themain drawback of formulationG1-M is that it is inconvenient to

deal with the cases where the observer is not stationary. If the observer

is stationary, the numerical observer time derivatives of the integrals in

formulationG1-M are easy to deal with because the time history of the

integrals in formulation G1-M can be obtained together with the

acoustic pressure data at each observer time step. However, if the

observer is moving, several extra evaluations of the integrals are

needed to calculate the numerical observer time derivatives at each

observer time step. To eliminate the numerical observer time

derivatives of the acoustic pressure gradient calculation, an analytic

formulation called G1A-M is deduced in the following.
The procedure for eliminating the observer time derivatives is to

apply Eq. (30) to formulation G1-M and then evaluate the source

time derivatives of the relevant variables. Inspired by the work of

Lee et al. [23], some new functions and key source time derivatives

are given in the following to make formulation G1A-M more

concise:

U�m; n� � 1

�R��m�1 −MR�n
(35)

V�m;n��∂U�m;n�
∂τ

�nR� _MR�nc0γ
2�M2

R�−M2
∞M��mc0MR� �1−MR�−nc0M2

�R��m�1�1−MR�n�1

(36)

W � R� _MR � c0�MR� −M2� (37)

_W � R� �MR � c0� _MR� −MR� _MR −Mi
_Mi�

� c0γ
2�MR� _MR� −M∞MM∞ _M�

� c20γ
2�M2

R� −M2
∞M� − c20M

2

γ2R� (38)

Z � c0MR� �MR − γ2MR� � � c0γ
2M2

∞M (39)

_Z � �MR − γ2MR� ��c0R� _MR � c20�γ2M2
R� −M2� − c20γ

2M2
∞M�

R�

� c0MR� � _MR − γ2 _MR� � � 2c0γ
2M∞MM∞ _M (40)

Bi � −Mi � γ2�MR� ~R�
i −M∞MM∞i� (41)

_Bi�− _Mi−γ2M∞ _MM∞i�
γ2R� _MR� ~R�

i

R�

�c0γ
2�2M2

R� ~R�
i −M2

∞M
~R�
i −MR�M∞MM∞i�−c0�M2 ~R�

i �MR�Mi�
R�

(42)

Ai � ~Ri�γ2�MR�FR� −M∞MM∞F� − FM� (43)

_Ai �
~Ri

R� �γ2R��FR� _MR� �MR� _FR� ��

� c0γ
2 ~Ri�2M2

R�FR� −M2
∞MFR� −M∞MM∞FMR� �
R�

�
~Ri

R� �−c0�FR�M2 � FMMR� �
− γ2R��M∞ _MM∞F �M∞MM∞ _F��

� c0Bi

R� �γ2�MR�FR� −M∞MM∞F� − FM� (44)
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D � R� _MR � c0�MR� −M2� (45)

_D � −c0MR� _MR � R� �MR � c0γ
2�MR� _MR� −M∞MM∞ _M�

− c0Mi
_Mi �

c0
γ2R� �γ2R� _MR� − c0M

2

� c0γ
2�M2

R� −M2
∞M� − 2γ2R�M _M� (46)

H � MR� �MR − γ2MR� � � γ2M2
∞M (47)

_H � �MR − 2γ2MR� ��γ2R� _MR� − c0M
2 � c0γ

2�M2
R� −M2

∞M��
γ2R�

� R�MR� _MR � c0�γ2M3
R� −MR�M2� − c0γ

2MR�M2
∞M

R�

� 2γ2M∞MM∞ _M (48)

Ki � Fi � γ2�M∞iM∞F − ~R�
i FR� � − ~R�

i FR − ~RiFR� (49)

_Ki � _Fi � γ2M∞iM∞ _F − _FR� � ~Ri � γ2 ~R�
i �

−
�−c0FM � c0γ

2�MR�FR� −M∞MM∞F��� ~Ri � 2γ2 ~R�
i �

γ2R�

−
c0Bi�FR − 2γ2FR� �

γ2R� (50)

It should be noted that the second partial derivativewith respect to

the source time is denoted by two dots over the quantity, and dots

over the subscripts mean differentiation of the associated vectors

implied by the subscripts: for example, �MR � �M ~Ri and

M∞ _M � M∞i
_Mi. Taking the observer time derivatives inside the

integrals of G1-M and using the aforementioned definitions, one

obtains

4π
∂p 0

α�x; t;M∞�
∂xi

� −
1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

� _Q ~RiU�1; 2��e dS

−
1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�Q ~RiU�2; 3�W�e dS

� 1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�Q ~RiU�2; 3�Z�e dS

−
Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�Q ~R�
i U�2; 1��e dS

−
Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�QBiU�2; 2��e dS (51)

and

4π
∂p 0

β�x; t;M∞�
∂xi

� −
1

c20

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

� _FR
~RiU�1; 2��e dS

−
1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�AiU�2; 2��e dS

−
1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�FRBiU�2; 2��e dS

−
1

c20

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�FR
~RiDU�2; 3��e dS

� 1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�FR
~RiHU�2; 3��e dS

� 1

c0

Z
S

�
1

�1 −MR�
�
e

∂
∂τ

�KiU�2; 1��e dS

�
Z
S
�1∕γ2 ⋅ Fi �M∞iM∞F − 3 ~R�

i FR� �U�3; 1� dS (52)

The last step is to further rewrite Eqs. (51) and (52) as

4π
∂p 0

α�x; t;M∞�
∂xi

� I1 � I2 � I3 � I4 � I5 (53)

4π
∂p 0

β�x; t;M∞�
∂xi

� I6 � I7 � I8 � I9 � I10 � I11 � I12 (54)

where I1 to I12 correspond to each of the integrals in Eqs. (51) and

(52). The forms of Ii are given as follows:

I1 � −
1

c0

Z
S

h
�Q ~RiU�1; 3� � _Q _~RiU�1; 3� � _Q ~RiV�1; 2�U�0; 1�

i
e
dS (55)

I2 � −
1

c0

Z
S

h
_Q ~RiU�2; 4�W �Q _~RiU�2; 4�W �Q ~RiV�2; 3�U�0; 1�W �Q ~RiU�2; 4� _W

i
e
dS (56)

I3 �
1

c0

Z
S

h
_Q ~RiU�2; 4�Z�Q _~RiU�2; 4�Z�Q ~RiV�2; 3�U�0; 1�Z�Q ~RiU�2; 4� _Z

i
e
dS (57)

I4 � −
Z
S

h
_Q ~R�

i U�2; 2� �Q _~R
�
i U�2; 2� �Q ~R�

i V�2; 1�U�0; 1�
i
e
dS (58)

I5 � −
Z
S

h
_QBiU�2; 3� �Q _BiU�2; 3� �QBiV�2; 2�U�0; 1�

i
e
dS (59)

I6 � −
1

c20

Z
S

��
∂ _FR

∂τ

�
~RiU�1; 3� � _FR

_~RiU�1; 3� � _FR
~RiV�1; 2�U�0; 1�

�
e

dS (60)
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I7 � −
1

c0

Z
S

h
_AiU�2; 3� � AiV�2; 2�U�0; 1�

i
e
dS (61)

I8 � −
1

c0

Z
S

��
∂FR

∂τ

�
BiU�2; 3� � FR

_BiU�2; 3� � FRBiV�2; 2�U�0; 1�
�
e

dS (62)

I9 � −
1

c20

Z
S

��
∂FR

∂τ

�
~RiDU�2; 4� � FR

_~RiDU�2; 4�
�
e

dS −
1

c20

Z
S

h
FR

~Ri
_DU�2; 4� � FR

~RiDV�2; 3�U�0; 1�
i
e
dS (63)

I10 �
1

c0

Z
S

��
∂FR

∂τ

�
~RiHU�2; 4� � FR

_~RiHU�2; 4� � FR
~Ri
_HU�2; 4� � FR

~RiHV�2; 3�U�0; 1�
�
e

dS (64)

I11 �
1

c0

Z
S

h
_KiU�2; 2� � KiV�2; 1�U�0; 1�

i
e
dS (65)

I12 �
Z
S
�1∕γ2 ⋅ Fi �M∞iM∞F − 3 ~R�

i FR� �U�3; 1� dS (66)

It should be noted that
_~R
�
i ,

_~Ri, and ∂FR∕∂τ are defined as

_~R
�
i � ∂ ~R�

i

∂τ
� −c0Mi � c0γ

2�MR� ~R�
i −M∞MM∞i�

γ2R� (67)

_~Ri �
∂ ~Ri

∂τ
� γ2

∂ ~R�
i

∂τ
(68)

∂FR

∂τ
� _FR � −c0FM � c0γ

2�MR�FR� −M∞MM∞F�
R� (69)

Equations (21), (53), and (54), together with the definitions of Ii,
are referred to as formulation G1A-M. Formulation G1A-M can be
seen as an extension of formulation G1A to a moving medium case
because it explicitly takes into account the effects of constant
uniform flow. Compared with formulation G1-M, the observer time
derivatives of the integrals in formulation G1A-M are no longer
needed; thus, it is an advantage that only the time-dependent input
data of the flowfield or (at most) numerical differentiation of them is
required. Moreover, formulation G1A-M is more suitable to obtain
the acoustic pressure gradient in cases where the observer is not
stationary. However, it should be noted that a disadvantage of
suggested formulation G1A-M is its mathematical complexity, in
spite of the fact that some new functions and key source time
derivatives are defined to make the expression of G1A-M concise.

III. Numerical Simulations

In this section, numerical simulations of three test cases in a
moving medium are presented to validate the time-domain acoustic
pressure gradient formulations developed in this paper. The first two
test cases are the stationary monopole and dipole sources located in a
moving medium with moving observers, whereas the third case
consists of a rotatingmonopolewith amoving observer for validating
the corresponding moving source and moving observer case.
In the first two test cases, the stationary spherical surfaces are used

as the data surfaces. The acoustic pressure gradient time history at the
observer is evaluated and compared against the analytic solution. In
the third test case, amoving spherical surface enclosing themonopole
source is used as the data surface and the predicted acoustic pressure
gradient time history at the observer is compared against the analytic
solution.Moreover, the efficiency of formulationsG1-MandG1A-M
is compared in all three test cases.

To avoid any error related to flowfield simulation codes, all input

flowfield data on the data surface are obtained from the analytic

solutions of the flowfield generated by the sources. In this paper, the

two-order central difference algorithm is performed to obtain the

results from formulation G1-M.

A. Test Case 1: Monopole Source in a Moving Medium

The first test case is to consider a single-frequency monopole

source located at the origin of a Cartesian coordinate system in a

uniform flow with an arbitrary orientation.
The velocity potential for the monopole contains the uniform flow

with an arbitrary direction defined as follows [27]:

φ�x; t� � A

4πR� exp�iω�t − R∕c0�� (70)

where the acoustic radiiR� andR have been defined in Sec. II.A. The

acoustic particle velocity can be obtained from the gradient of the

velocity potential

u�x; t� � ∇φ�x; t� (71)

The induced acoustic pressure and density in a uniformly moving

flow with an arbitrary direction are given by the unsteady Bernoulli

equation:

p 0�x; t� � −ρ0
�
∂φ�x; t�

∂t
�U∞i

∂φ�x; t�
∂xi

�
(72)

and

ρ 0�x; t� � p 0�x; t�∕c20 (73)

The acoustic pressure gradient in the xi direction is given by

∂p 0�x; t�
∂xi

� −ρ0
�
iω

∂
∂xi

�U∞j

∂2

∂xj∂xi

�
φ�x; t� (74)

The analytic solutions of the acoustic pressure gradient at an

observer point can be obtained through Eq. (74).
In this test case, the velocity potential amplitude of themonopole is

A � 1 m2∕s. The angular frequency isω � 10π rad∕s. The ambient

speed of sound c0 is chosen as 340 m∕s. The freestream flow density

ρ0 is assumed to be 1.234 kg∕m3. Two different mean flow Mach

numbers of M∞ � �0; 0; 0� and M∞ � �0.6; 0.1; 0.5� are

considered. The radius of the spherical data surface S is 1 m, and

there are 15,292 triangular elements uniformly distributed on S for a

fine enough spatial resolution. There are 30 time points used per

source period �T � 2π∕ω� to ensure enough temporal resolution.
Figure 1 shows the predicted acoustic pressure gradient time

history at the moving observer with different mean flow Mach

numbers. The observer is moving along the x1 axis at a constant
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velocity of vo � 30 m∕s, and its initial position is x � �20; 0; 0�m. It

can be seen that the predicted results obtained from formulations

G1A-M and G1-M both accurately match the analytic solutions, and

thus the accuracy of the proposed time-domain formulations for the

prediction of the acoustic pressure gradient is confirmed. When

using a computer with an i7 CPU and 16 GB of memory, the

computation time for formulation G1-M is 3.255 s and that for

formulation G1A-M is 1.402 s. The reason why the computation

time of formulationG1-M is longer than that of formulationG1A-M

is that formulation G1-Mneeds to calculate several extra integrals at

each time step when the observer is moving, and the differentiation

calculation is time consuming.

B. Test Case 2: Dipole Source in a Moving Medium

The second test case is a dipole source located at the origin of a

Cartesian coordinate system in a uniform flow with an arbitrary

orientation, and the dipole axis is aligned with the x2 axis. The

velocity potential for such a dipole can be obtained by

φ�x; t� � ∂
∂x2

�
A

4πR� exp
�
iω

�
t −

R

c0

��	
(75)

The procedure for obtaining the analytic acoustic pressure gradient

is similar to that in themonopole source case. The following relations

may be used in the calculation:

∂
∂xi

�
∂ ~R�

2

∂x1

�
� −

�∂ ~R�
2∕∂xi� ⋅ ~R�

1 � �∂ ~R�
1∕∂xi� ⋅ ~R�

2 � �∂ ~R�
2∕∂x1� ⋅ ~R�

i

R�

(76)

∂
∂xi

�
∂ ~R�

2

∂x2

�
� −

�∂ ~R�
2∕∂xi� ⋅ 2 ~R�

2 � �∂ ~R�
2∕∂x2� ⋅ ~R�

i

R� (77)

∂
∂xi

�
∂ ~R�

2

∂x3

�
� −

�∂ ~R�
2∕∂xi� ⋅ ~R�

3 � �∂ ~R�
3∕∂xi� ⋅ ~R�

2 � �∂ ~R�
2∕∂x3� ⋅ ~R�

i

R�

(78)

∂
∂xi

�
∂ ~R2

∂x1

�
� γ2

∂
∂xi

�
∂ ~R�

2

∂x1

�
(79)

Fig. 1 Acoustic pressure gradient time history of a stationary monopole: a–c) M∞ � �0;0;0�; d–f)M∞ � �0.6;0.1;0.5�.
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∂
∂xi

�
∂ ~R2

∂x2

�
� γ2

∂
∂xi

�
∂ ~R�

2

∂x2

�
(80)

∂
∂xi

�
∂ ~R2

∂x3

�
� γ2

∂
∂xi

�
∂ ~R�

2

∂x3

�
(81)

where the spatial derivatives on the right-hand sides of Eqs. (76–78)
have been defined in Sec. II.A.
In this test case, two different mean flow Mach numbers of

M∞ � �0; 0; 0� and M∞ � �0.8; 0.1; 0.4� are considered. The
spherical data surface together with its mesh data used here are the
same as those in the first test case; parametersA,ω, c0, and ρ0, as well
as the time sampling points in one source period, are also set to the
same values as those in the first test case.
Figure 2 shows the predicted acoustic pressure gradient time history

at themoving observer, which ismoving along the x1 axis at a constant
velocity of vo � 30 m∕s, and its initial position is x � �50; 50; 0�m.

Fig. 2 Acoustic pressure gradient time history of a stationary dipole: a–c) M∞ � �0;0;0�; d–f) M∞ � �0.8;0.1;0.4�.

Fig. 3 Schematic of a rotating monopole in a moving medium.
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The excellent agreement further validates the reliability and accuracy
of proposed formulations G1-M and G1A-M for acoustic pressure
gradient prediction in the time domain. Because of the aforementioned
reasons, the computation time for formulation G1-M of 3.505 s is
longer than that for formulation G1A-M of 1.541 s.

C. Test Case 3: Rotating Monopole Source in a Moving Medium

To show the feasibility and applicability of the proposed
formulations for a moving source in a moving medium, a rotating
monopole case is considered, as shown in Fig. 3.
The monopole rotates counterclockwise around the x3 axis with

an angular speed of ωr � 2π rad∕s at a radius of rs � 1 m in the
x1x2 plane, and the initial position is xs � �1; 0; 0�m when τ � 0.
Corresponding parameters A, ω, c0, and ρ0, as well as the time
sampling points in one source period, are set the same values as
those in the stationary monopole case. In this case, a spherical data
surface, which is the same as the one used in the previous two test
cases enclosing the monopole moving along with the source, is
adopted to predict the acoustic pressure gradient time history at the
observer.
The observer is moving along the x1 axis at a constant velocity of

vo � 30 m∕s, and its initial position is xo � �5; 5; 0�m. In this test

case, there are two flowMach numbers considered, corresponding to
a medium at rest and a moving medium of M∞ � �0.4; 0.3; 0.5�.
Figure 4 depicts the acoustic pressure gradient time history predicted
by formulations G1-M and G1A-M. The excellent agreement
between the predicted results and the analytic solutions proves the
capability of the derived formulations to predict accurately the
acoustic pressure gradient in a moving medium. Here, the
computation time for formulation G1-M is 9.410 s and that for
formulation G1A-M is 3.947 s.

IV. Conclusions

In this paper, based on the convective FW–H equation, both
semianalytic time-domain formulation G1-M and analytic time-
domain formulation G1A-M for the prediction of the acoustic
pressure gradient in a moving medium were derived. Although a
moving medium (for example, in a wind tunnel) can be equivalently
solved in a stationary medium as well by using a moving observer,
which was justified in [23], formulations G1-M and G1A-M (which
explicitly take into account the presence of the uniform flow) are
more easily interpreted to examine the convective effects.
The validity and applicability of the derived formulations were

verified through three computational test cases consisting of a

Fig. 4 Acoustic pressure gradient time history of a rotating monopole: a–c) M∞ � �0;0;0�; d–f)M∞ � �0.4;0.3;0.5�.
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stationary monopole source, a stationary dipole source, as well as a
rotating monopole source. Different flow configurations were
considered to obtain the predicted acoustic pressure gradient data,
and the agreement between the predicted results and analytic
solutions was excellent. Meanwhile, the computational efficiencies
of formulations G1-M and G1A-M to deal with the moving observer
cases were compared, and it was found that formulation G1A-M led
to a more efficient calculation than formulation G1-M because it
eliminated the observer time differentiation of the integrals.
Derived formulations G1-M and G1A-M explicitly take into

account the presence of the moving medium, and thus can be used to
predict the acoustic pressure gradient on the scattering surface, which
can serve as the boundary condition in the aeroacoustic scattering
calculation. In future work, the authors will consider aeroacoustic
scattering phenomena in the time domain using these formulations.
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