◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Solving Third Order Linear Difference Equations in Terms of Second Order Equations

Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui

Florida State University

Talk presented by Heba Bou KaedBey

Main Theorem

Summary and Closure

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Main Theorem

Summary and Closure

Recurrence Operators

Definition

Let
$$D = \mathbb{C}(x)[\tau] = \left\{ \sum_{i=0}^{k} a_i \tau^i \middle| a_i \in \mathbb{C}(x) \right\}$$
. A recurrence **operator** is an element $L \in D$. Here $L = \sum_{i=0}^{k} a_i \tau^i$ acts on a function $f(x)$ as

function
$$f(x)$$
 as

$$L(f)(x) = \sum_{i=0}^{k} a_i f(x+i).$$

In particular, $\tau \in D$ is the **shift operator** $\tau(f)(x) = f(x+1)$.

Multiplication in the ring D is defined as composition of operators, e.g. if $a \in \mathbb{C}(x) \subseteq D$ then $\tau \cdot a = \tau(a)\tau \in D$.

Main Theorem

Summary and Closure

うして ふゆう ふほう ふほう うらつ

Recurrence Operators

A solution of L is a function
$$f(x)$$
 with $L(f) = 0$. i.e
 $a_k f(x + k) + \cdots + a_0 f(x) = 0$.
We say f is a rational solution if $f \in \mathbb{C}(x)$.

If $\frac{f(x+1)}{f(x)} \in \mathbb{C}(x)$ then f(x) corresponds to a right factor $\tau - r$ of L where $r = \frac{f(x+1)}{f(x)}$.

More generally, we consider solutions in a D-module S defined as $S = \mathbb{C}^{\mathbb{N}} / \sim$ where two sequences $u, v \in \mathbb{C}^{\mathbb{N}}$ are equivalent if $u - v : \mathbb{N} \longrightarrow \mathbb{C}$, has finite support.

Main Theorem

Summary and Closure

Recurrence Operators

Definition

The solution space V(L) of operator L is the set $\left\{ u \in S \mid L(u) = 0 \right\}$.

This is a \mathbb{C} -vector space of dim ord(*L*):

(Key Property of S)

If
$$L = \sum_{i=0}^{k} a_i \tau^i$$
 with $a_0 \neq 0$ and $a_k \neq 0$, then L has k linearly independent solutions in S.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Main Theorem

Summary and Closure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Liouvillian operator

Definition

A difference operator is said to be **Liouvillian**, if it has a non-zero Liouvillian solution built from

- solutions of order 1 operators
- +, \cdot , shift
- indefinite sum (defined on next slide)
- interlacing (defined on next slide)

Main Theorem

Summary and Closure

Definition (Indefinite Sum)

v is an indefinite sum of u if
$$(\tau - 1)v = u$$
.

Definition (Interlacing)

Let $A_i = (a_{i,0}, a_{i,1}, a_{i,2}, ...)$. The **interlacing** of $A_1, ..., A_k$ is the sequence $A := (a_{1,0}, ..., a_{k,0}, a_{1,1}, ..., a_{k,1}, ...)$.

Example (Interlacing)

The interlacing of
$$u = (u_0, u_1, ...)$$
 and $v = (v_0, v_1, ...)$ is $(u_0, v_0, u_1, v_1, ...)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Main Theorem

Summary and Closure

うして ふゆう ふほう ふほう うらつ

Definition (Least Common Left Multiple)

Let $L_1, L_2 \in D$. **LCLM** (L_1, L_2) is the unique monic generator of $DL_1 \cap DL_2$.

Definition (Symmetric Product)

Let $L_1, L_2 \in D$. The symmetric product $L_1(S)L_2$ of L_1 and L_2 is defined as the monic operator $L \in D$ of smallest order such that $L(u_1u_2) = 0$ for all $u_1, u_2 \in S$ with $L_1u_1 = 0$ and $L_2u_2 = 0$.

Definition (Symmetric Square)

 $L^{\otimes 2} := L \otimes L$

Main Theorem

Summary and Closure

Liouvillian Seq closed under

- Solns of order 1 operators
- $u_1 + u_2$
- $u_1 \cdot u_2$
- $\sum u_1$
- $Intl(u_1, \ldots, u_n)$

Liouvillian Op closed under $\tau - r_1, \tau - r_2, \dots$ $L_1, L_2 \rightsquigarrow LCLM(L_1, L_2)$ $L_1, L_2 \rightsquigarrow L_1(\widehat{S})L_2$ $L_1 \rightsquigarrow L_1 \cdot (\tau - 1)$ $L_1, L_2 \rightsquigarrow Intl(L_1, \dots, L_n)$ Factors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Summary and Closure

- 2-Expressible Seq closed under
 - Solns of order 2 operators
 - $u_1 + u_2$
 - *u*₁ · *u*₂
 - $\sum u_1$
 - $Intl(u_1, ..., u_n)$

2-Solvable Op closed under $a_2\tau^2 + a_1\tau + a_0, \dots$ $L_1, L_2 \rightsquigarrow \text{LCLM}(L_1, L_2)$ $L_1, L_2 \rightsquigarrow L_1(\mathbb{S})L_2$ $L_1 \rightsquigarrow L_1 \cdot (\tau - 1)$ $L_1, L_2 \rightsquigarrow \text{Intl}(L_1, \dots, L_n)$ Factors

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Main Theorem

Summary and Closure

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Main Theorem

Summary and Closure

OEIS Example: A295371. IS IT 2-SOLVABLE?

The sequence is

$$a(n) = \frac{1}{2n} \sum_{k=0}^{n-1} {\binom{n-1}{k} \binom{n+k}{k} \binom{2k}{k} (k+2)(-3)^{(n-1-k)}}.$$

OEIS list the recurrence:

$$L_3 = (2x+1)(x+3)^2\tau^3 - (2x+1)(7x^2+38x+52)\tau^2 -3(2x+5)(7x^2+4x+1)\tau + 27(2x+5)x^2$$

equivalently,

$$(2n+1)(n+3)^2 a(n+3) = (2n+1)(7n^2+38n+52)a(n+2) + 3(2n+5)(7n^2+4n+1)a(n+1) - 27(2n+5)n^2a(n)$$

Zhi-Wei-Sun conjectured that a(n) is a positive odd integer for all n > 0.

Main Theorem

Summary and Closure

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

OEIS Example: A295371

For the order 3 recurrence L_3 , we have two cases to consider:

Case 1: If L_3 is solvable, then how to find such solutions ?

We need an algorithm. That is the topic of this talk.

Case 2: If L_3 is not 2-solvable, proving that requires Galois theory:

- Difference Case: Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, 2024.
- Differential Case: Michael F Singer, 1985.

Summary and Closure

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Main Theorem

Summary and Closure

うして ふゆう ふほう ふほう うらつ

Main Theorem

Theorem (Theorem 7.1 in Bou KaedBey, van Hoeij, and Tsui 2024)

Let $L \in D$ be an order 3 linear difference operator. Then, one of the following holds.

- (Reducible Case) L admits a non trivial factorization over C(x).
- **2** (Liouvillian Case) L is irreducible but has Liouvillian solutions.
- L is gauge equivalent to L₂^{®2}S(τ − r) for some order 2 operator L₂ and r ∈ C(x). (will define gauge equivalent in the next slide)
- Not 2-solvable.

Main Theorem

Summary and Closure

うして ふゆう ふほう ふほう うらつ

Gauge Transformation

Definition (Gauge Transformation)

Let $D = \mathbb{C}(x)[\tau]$. If $L \in D \setminus \{0\}$ then D/DL is a D-module.

- L_1 is gauge equivalent to L_2 when
 - D/DL₁ and D/DL₂ are isomorphic as D-modules. or equivalently,
 - there exists $G \in D$ such that $G(V(L_2)) = V(L_1)$ and L_1, L_2 have the same order.

This G defines a bijection $V(L_2) \rightarrow V(L_1)$. This bijection is called a **gauge transformation**.

Goal: Reduce order 3 recurrence L_3 to an order 2 recurrence L_2 .

$$L_3 \rightsquigarrow L_2^{\$2} \$(\tau - r)$$

when possible (Case 3).

Motivation: Solvers for order 2:

Yongjae Cha, Mark Van Hoeij, and Giles Levy. "Solving recurrence relations using local invariants." Proceedings of ISSAC'10.

Main Theorem

Summary and Closure

うして ふゆう ふほう ふほう うらつ

ReduceOrder Algorithm

We first compute $L_3^{\otimes 2}$, which will have order 5 or 6:

Case 1 (Simplest Case): $\operatorname{ord}(L_3^{\otimes 2}) = 5$

Theorem

Let $L_3 = \tau^3 + c_2\tau^2 + c_1\tau^1 + c_0$ be a difference operator over $\mathbb{C}(x)$. $L_3 = (\tau^2 + \tau + b)^{\otimes 2} \otimes (\tau - r)$ for some $b \in \mathbb{C}(x) \setminus \{0, 1\}$ and $r \in \mathbb{C}(x) \setminus \{0\} \iff L_3^{\otimes 2}$ has order 5.

Theorem 5.1 in our ISSAC paper directly gives us a formula for b and r. That formula effectively covers this case.

Main Theorem

Summary and Closure

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

Case 2 : ord
$$(L_3^{\otimes 2}) = 6$$

Goal: To reduce:

$$\begin{array}{l} L_3 \rightsquigarrow L_{want} \\ \text{Case 2 } \rightsquigarrow \text{want Case 1} \\ \text{ord}(L_3^{\textcircled{S}2}) = 6 \rightsquigarrow \text{ord}(L_{want}^{\textcircled{S}2}) = 5 \\ \text{ solved by Theorem 5.1} \end{array}$$

Main Theorem

ション ふゆ アメリア メリア しょうめん

Let
$$L_3 = a_3\tau^3 + a_2\tau^2 + a_1\tau + a_0$$
.

 $G = b_0 + b_1 \tau + b_2 \tau^2$, where the b_i 's are unknowns in $\mathbb{C}(x)$.

Main Theorem

うして ふゆう ふほう ふほう うらつ

The induced map G_2 is a map from a 6 dimensional vector space $V(L_3^{\otimes 2})$ to a 5 dimensional vector space $V(L_{want}^{\otimes 2})$.

Main Theorem

Summary and Closure

Commutative Diagram (If in Case 3)

$$0 \longrightarrow V(L_{1}) \longrightarrow V(L_{3}^{\otimes 2}) \xrightarrow{G_{2}} V(L_{want}^{\otimes 2}) \longrightarrow 0$$

$$\downarrow^{u^{2}\uparrow}_{\downarrow u} \qquad \qquad \downarrow^{v^{2}\uparrow}_{V(L_{3})} \xrightarrow{G} V(L_{want})$$

This means that G_2 should have a kernel. Since the map G_2 is onto, and we are going from a 6 dimensional vector space to a 5 dimensional vector space, then the kernel, $V(L_1)$, should have dimension 1.

This means that if in case 3, $L_3^{(S)2}$ has an order 1 right factor L_1 .

If there is no right factor of order 1, then we are not in case 3, and the algorithm stops.

Background and Definitions

Example 000 Main Theorem

Summary and Closure

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

OEIS A295371 (order 3 irreducible) $\downarrow^{our program}$ L_2 (order 2) \downarrow A formula for A295371(n) in terms of a solution $u \in V(L_2)$ \downarrow Proves A295371(n) $\in \mathbb{Z}$? Is $u(n) \in \mathbb{Z}$?

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Idea: $L_2 \rightsquigarrow$ something in the OEIS.

This way A295371 is written in terms of known integer sequences.

This way A295371 is written in terms of known integer sequences.

Tried several: A002426 gives the smallest formula, namely $A295371(n) = \frac{b(n)^2 + 3b(n-1)^2}{4}$, where b(n) is A002426.

Main Theorem

Summary and Closure $_{\odot OOOO}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- There are a number of solvers for differential equations and recurrence relations of order 2. That motivates the question of when can we reduce order 3 to order 2 (Goal in paper).
- Next Goal: Reduce order 4 to order 2:
 - Absolute Factorization (in paper)
 - ··· (work in progress)(differential Galois theory results ↔ difference case)

Main Theorem

Summary and Closure 00000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Thank You!

Background and Definitions	Example	Main Theorem	Summary and Closure
	000	00000000000000	○○○●●

References I

- Peter Hendricks, Michael Singer, *Solving difference equations in finite terms*, Journal of symbolic computation (1999).
- Marius van der Put, Michael Singer, *Galois theory of difference equations*, Springer (2006).
- Mark van Hoeij, *Solving third order linear differential equations in terms of second order equations*, Proceedings of the 2007 international symposium on Symbolic and algebraic computation (2007).
- Yongjae Cha, Mark van Hoeij, *Liouvillian solutions of irreducible linear difference equations*, Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation (2009).

Background and Definitions	Example 000	Main Theorem 000000000000000	Summary and Closure
References II			

- Mark van Hoeij, Giles levy, *Liouvillian solutions of irreducible second order linear difference equations*, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (2010).
- Marius van der Put, Michael Singer, Galois theory of linear differential equations, Springer Science & Business Media (2012).
- Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, Solving Order 3 Difference Equations, arXiv preprint arXiv:2402.03868 (2024).

うして ふゆう ふほう ふほう うらつ