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Recurrence Operators

Definition

Let D = C(x)[τ ] =

{
k∑

i=0

aiτ
i

∣∣∣∣∣ai ∈ C(x)

}
. A recurrence

operator is an element L ∈ D. Here L =
k∑

i=0

aiτ
i acts on a

function f (x) as

L(f )(x) =
k∑

i=0

ai f (x + i).

In particular, τ ∈ D is the shift operator τ(f )(x) = f (x + 1).

Multiplication in the ring D is defined as composition of operators,
e.g. if a ∈ C(x) ⊆ D then τ · a = τ(a)τ ∈ D.
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Recurrence Operators

A solution of L is a function f (x) with L(f ) = 0. i.e
ak f (x + k) + · · ·+ a0f (x) = 0.
We say f is a rational solution if f ∈ C(x).

If f (x+1)
f (x) ∈ C(x) then f (x) corresponds to a right factor τ − r of L

where r = f (x+1)
f (x) .

More generally, we consider solutions in a D−module S defined as
S = CN/ ∼ where two sequences u, v ∈ CN are equivalent if
u − v : N −→ C, has finite support.
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Recurrence Operators

Definition

The solution space V (L) of operator L is the set{
u ∈ S

∣∣∣L(u) = 0
}
.

This is a C−vector space of dim ord(L):

(Key Property of S)

If L =
k∑

i=0

aiτ
i with a0 ̸= 0 and ak ̸= 0, then L has k linearly

independent solutions in S .
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Liouvillian operator

Definition

A difference operator is said to be Liouvillian, if it has a non-zero
Liouvillian solution built from

solutions of order 1 operators

+,·, shift
indefinite sum (defined on next slide)

interlacing (defined on next slide)
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Definition (Indefinite Sum)

v is an indefinite sum of u if (τ − 1)v = u.

Definition (Interlacing)

Let Ai = (ai ,0, ai ,1, ai ,2, . . .). The interlacing of A1, . . . ,Ak is the
sequence A := (a1,0, . . . , ak,0, a1,1, . . . , ak,1, . . .).

Example (Interlacing)

The interlacing of u = (u0, u1, . . .) and v = (v0, v1, . . .) is
(u0, v0, u1, v1, . . .).
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Definition (Least Common Left Multiple)

Let L1, L2 ∈ D. LCLM(L1,L2) is the unique monic generator of
DL1 ∩ DL2.

Definition (Symmetric Product)

Let L1, L2 ∈ D. The symmetric product L1ⓈL2 of L1 and L2 is
defined as the monic operator L ∈ D of smallest order such that
L(u1u2) = 0 for all u1, u2 ∈ S with L1u1 = 0 and L2u2 = 0.

Definition (Symmetric Square)

LⓈ2 := LⓈL
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Liouvillian Seq closed under

Solns of order 1 operators

u1 + u2

u1 · u2∑
u1

Intl(u1, . . . , un)

Liouvillian Op closed under

τ − r1, τ − r2, . . .

L1, L2 ⇝ LCLM(L1, L2)

L1, L2 ⇝ L1ⓈL2

L1 ⇝ L1 · (τ − 1)

L1, L2 ⇝ Intl(L1, . . . , Ln)

Factors



Background and Definitions Example Main Theorem Summary and Closure

2-Expressible Seq closed under

Solns of order 2 operators

u1 + u2

u1 · u2∑
u1

Intl(u1, . . . , un)

2-Solvable Op closed under

a2τ
2 + a1τ + a0, . . .

L1, L2 ⇝ LCLM(L1, L2)

L1, L2 ⇝ L1ⓈL2

L1 ⇝ L1 · (τ − 1)

L1, L2 ⇝ Intl(L1, . . . , Ln)

Factors
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OEIS Example: A295371. IS IT 2-SOLVABLE?

The sequence is

a(n) =
1

2n

n−1∑
k=0

(
n − 1

k

)(
n + k

k

)(
2k

k

)
(k + 2)(−3)(n−1−k).

OEIS list the recurrence:

L3 = (2x + 1)(x + 3)2τ3 − (2x + 1)(7x2 + 38x + 52)τ2

− 3(2x + 5)(7x2 + 4x + 1)τ + 27(2x + 5)x2

equivalently,

(2n + 1)(n + 3)2a(n + 3) = (2n + 1)(7n2 + 38n + 52)a(n + 2)

+ 3(2n + 5)(7n2 + 4n + 1)a(n + 1)− 27(2n + 5)n2a(n)

Zhi-Wei-Sun conjectured that a(n) is a positive odd integer for all
n > 0.
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OEIS Example: A295371

For the order 3 recurrence L3, we have two cases to consider:

Case 1: If L3 is solvable, then how to find such solutions ?

We need an algorithm. That is the topic of this talk.

Case 2: If L3 is not 2-solvable, proving that requires Galois theory:

Difference Case: Heba Bou KaedBey, Mark van Hoeij, and
Man Cheung Tsui, 2024.

Differential Case: Michael F Singer, 1985.
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Main Theorem

Theorem (Theorem 7.1 in Bou KaedBey, van Hoeij, and Tsui 2024)

Let L ∈ D be an order 3 linear difference operator. Then, one of
the following holds.

1 (Reducible Case) L admits a non trivial factorization over
C(x).

2 (Liouvillian Case) L is irreducible but has Liouvillian solutions.

3 L is gauge equivalent to LⓈ2
2 Ⓢ(τ − r) for some order 2

operator L2 and r ∈ C(x). (will define gauge equivalent in the
next slide)

4 Not 2-solvable.
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Gauge Transformation

Definition (Gauge Transformation)

Let D = C(x)[τ ]. If L ∈ D \ {0} then D/DL is a D−module.
L1 is gauge equivalent to L2 when

D/DL1 and D/DL2 are isomorphic as D−modules.
or equivalently,

there exists G ∈ D such that G (V (L2)) = V (L1) and L1, L2
have the same order.

This G defines a bijection V (L2) → V (L1). This bijection is called
a gauge transformation.
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Goal: Reduce order 3 recurrence L3 to an order 2 recurrence L2.

L3 ⇝ LⓈ2
2 Ⓢ(τ − r)

when possible (Case 3).

Motivation: Solvers for order 2:

Yongjae Cha, Mark Van Hoeij, and Giles Levy. ”Solving recurrence
relations using local invariants.” Proceedings of ISSAC’10.
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ReduceOrder Algorithm

We first compute LⓈ2
3 , which will have order 5 or 6:

Case 1 (Simplest Case): ord(LⓈ2
3 ) = 5

Theorem

Let L3 = τ3 + c2τ
2 + c1τ

1 + c0 be a difference operator over C(x).
L3 = (τ2 + τ + b)Ⓢ2Ⓢ(τ − r) for some b ∈ C(x) \ {0, 1} and
r ∈ C(x) \ {0} ⇐⇒ LⓈ2

3 has order 5.

Theorem 5.1 in our ISSAC paper directly gives us a formula for b
and r . That formula effectively covers this case.
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Case 2 : ord(LⓈ2
3 ) = 6

Goal: To reduce:

L3 ⇝Lwant

Case 2⇝want Case 1

ord(LⓈ2
3 ) = 6⇝ ord(LⓈ2

want) = 5

solved by Theorem 5.1
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Let L3 = a3τ
3 + a2τ

2 + a1τ + a0.

G = b0 + b1τ + b2τ
2, where the bi ’s are unknowns in C(x).

Commutative Diagram (If in Case 3)

0 V (L1) V (LⓈ2
3 ) V (LⓈ2

want) 0

V (L3) V (Lwant)

G2

u2

↑
u

G

v2

↑
v
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Commutative Diagram (If in Case 3)

0 V (L1) V (LⓈ2
3 ) V (LⓈ2

want) 0

V (L3) V (Lwant)

G2

u2

↑
u

G

v2

↑
v

The induced map G2 is a map from a 6 dimensional vector space
V (LⓈ2

3 ) to a 5 dimensional vector space V (LⓈ2
want).
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Commutative Diagram (If in Case 3)

0 V (L1) V (LⓈ2
3 ) V (LⓈ2

want) 0

V (L3) V (Lwant)

G2

u2

↑
u

G

v2

↑
v

This means that G2 should have a kernel. Since the map G2 is
onto, and we are going from a 6 dimensional vector space to a 5
dimensional vector space, then the kernel, V (L1), should have
dimension 1.

This means that if in case 3, LⓈ2
3 has an order 1 right factor L1.

If there is no right factor of order 1, then we are not in case 3, and
the algorithm stops.
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G2(sol ofL1) = 0⇝ quadratic equation in b0, b1, b2.

Using ”Conic Solver”

b0, b1, b2 ∈ C(x)

now,G = b0 + b1τ + b2τ
2 is known

get Lwant

find L2 and r

by theorem 5.1
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

A formula forA295371(n) in terms of a solution u ∈ V (L2)

ProvesA295371(n) ∈ Z? Is u(n) ∈ Z?

our program
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

A formula forA295371(n) in terms of a solution u ∈ V (L2)

ProvesA295371(n) ∈ Z? Is u(n) ∈ Z?

our program
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

A formula forA295371(n) in terms of a solution u ∈ V (L2)

ProvesA295371(n) ∈ Z? Is u(n) ∈ Z?

our program
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

A formula forA295371(n) in terms of a solution u ∈ V (L2)

ProvesA295371(n) ∈ Z? Is u(n) ∈ Z?

our program

Idea: L2 ⇝ something in the OEIS.
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

Solves L2 in terms ofA001006 ,A002426, and many more

our program

Giles implementation

This way A295371 is written in terms of known integer sequences.
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OEIS A295371 (order 3 irreducible)

L2 (order 2)

Solves L2 in terms ofA001006 , A002426 , and many more

our program

Giles implementation

This way A295371 is written in terms of known integer sequences.

Tried several: A002426 gives the smallest formula, namely

A295371(n) = b(n)2+3b(n−1)2

4 , where b(n) is A002426.



Background and Definitions Example Main Theorem Summary and Closure

1 Background and Definitions

2 Example

3 Main Theorem

4 Summary and Closure



Background and Definitions Example Main Theorem Summary and Closure

differential equation or recurrence relation

solvers

closed form expressions or other formulas

proofs

There are a number of solvers for differential equations and
recurrence relations of order 2. That motivates the question
of when can we reduce order 3 to order 2 (Goal in paper).
Next Goal: Reduce order 4 to order 2:

– Absolute Factorization (in paper)
– · · · (work in progress)(differential Galois theory results ⇝

difference case)
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Thank You!
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