
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

RIEMANNIAN BROYDEN FAMILY OF LIMITED-MEMORY QUASI-NEWTON METHODS

By

SHUGUANG ZHANG

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

2024

Copyright c© 2024 Shuguang Zhang. All Rights Reserved.

Shuguang Zhang defended this dissertation on March 14 2024.

The members of the supervisory committee were:

Kyle A. Gallivan

Professor Co-Directing Dissertation

Wen Huang

Professor Co-Directing Dissertation

Gordon Erlebacher

University Representative

Mark Sussman

Committee Member

Giray Okten

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies

that the dissertation has been approved in accordance with university requirements.

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisors, Kyle A. Gallivan and Wen

Huang, for their invaluable guidance throughout my PhD journey. I would also like to thank my

committee members, Gordon Erlebacher, Mark Sussman and Giray Okten for their contributions

and counsel on this dissertation. I would like to express my deep gratitude to the love of my life

and to those who love and support me unconditionally, in particular to my parents, Haixia Shu

and Ming Zhang, my girlfriend, Bingyu Su.

iii

TABLE OF CONTENTS

List of Tables . vii

List of Figures . x

Abstract . xi

1 INTRODUCTION 1

1.1 Motivation and Problem . 1

1.2 Research Overview and Dissertation Statement . 3

1.3 Dissertation Outline . 4

2 PRELIMINARIES 6

2.1 Riemannian Geometry . 6

2.1.1 Tangent Space . 6

2.1.2 Riemannian Metric . 7

2.1.3 Affine Connections, Geodesics, Exponential Mapping and Parallel Translation 7

2.1.4 Riemannian Gradient and Hessian . 9

2.1.5 Retraction and Vector Transport . 10

2.1.6 Coordinate Expressions . 12

2.2 Broyden Family of Quasi-Newton Methods in Euclidean Space 12

2.3 Broyden Family of Limited-memory Quasi-Newton Methods in Euclidean Space . . . 14

2.4 A Secant Condition on a Riemannian manifold . 16

3 RIEMANNIAN BROYDEN FAMILY OF LIMITED-MEMORY QUASI-NEWTON

METHODS 18

3.1 RBroyden Family of Methods . 18

3.2 Two-loop Recursive LRBroyden Family of Methods 19

3.3 Implementation Techniques . 24

3.4 Full LRBroyden Family of Methods . 26

3.5 Methods of Choosing φ
(k)
i . 29

3.6 Convergence Analysis . 32

3.6.1 Basic Assumptions and Preliminary Lemmas 32

3.6.2 Global Convergence Analysis . 35

iv

3.6.3 R-Linear Convergence Analysis of the LRBroyden family 38

4 EXPERIMENTS OF LRBROYDEN METHODS 39

4.1 Test Problems and Test Data Parameters . 39

4.1.1 Euclidean Quadratic . 40

4.1.2 Brockett Cost Function on the Stiefel Manifold 40

4.1.3 Low-rank Matrix Completion . 41

4.1.4 Computing Low-rank Solutions of Lyapunov Equations 43

4.1.5 Weighted Low-rank Approximation . 44

4.2 Notation and Algorithm Parameters . 45

4.3 LRBroyden with Constant φ . 47

4.4 Davidon’s Choice of φ
(k)
i . 50

4.4.1 Optimally Conditioned Method . 50

4.4.2 Experiments in Euclidean Space . 53

4.4.3 Experiments on Riemannian Manifold . 55

4.4.4 Experiments on φ
(k)
i Distribution . 58

5 RIEMANNIAN HYBRID LRDAVIDON-BFGS METHOD 62

5.1 Hybrid LRDavidon-BFGS Strategy for φ
(k)
i . 62

5.2 LRDavidon on General Problems . 65

5.3 Parameter Selection of Hybrid LRDavidon-BFGS . 67

5.4 Comparison of LRBFGS, LRDavidon and Hybrid LRDavidon-BFGS 69

6 RIEMANNIAN STOCHASTIC BROYDEN FAMILY OF QUASI-NEWTON

METHODS 75

6.1 Stochastic Methods for Large-scale Optimization . 76

6.1.1 Euclidean Stochastic Methods . 76

6.1.2 Riemannian Stochastic Methods . 77

6.1.3 Accelerating Stochastic Methods with Variance Reduction 78

6.2 LR-SBroyden-VR Methods . 80

6.3 Convergence Analysis . 83

6.3.1 Assumptions and Preliminary Lemmas . 83

6.3.2 Global Convergence Theorem . 88

6.3.3 Local Convergence Rate Theorem . 91

6.3.4 Remark . 92

v

7 EXPERIMENTS OF RIEMANNIAN STOCHASTIC BROYDEN FAMILY OF

QUASI-NEWTON METHODS 93

7.1 Test Problems . 94

7.1.1 PCA Problem . 94

7.1.2 ICA Problem . 95

7.1.3 Low-rank Matrix Completion Problem . 95

7.2 Algorithm Parameters and Evaluation Criteria . 96

7.3 Parameter Selection . 97

7.3.1 Knowledge of Stochastic Parameters . 98

7.3.2 Experiments to Determine b and mk . 99

7.4 Comparison of Performances Between Stochastic Algorithms 106

7.4.1 Principal Components Analysis(PCA) . 107

7.4.2 Joint Diagonalization in ICA . 111

7.4.3 Low-rank Matrix Completion Problem . 111

8 CONCLUSION AND FURTHER RESEARCH 119

References . 121

Biographical Sketch . 126

vi

LIST OF TABLES

2.1 Complexity comparison between Broyden family of limited-memory quasi-Newton
methods in Euclidean space. 16

3.1 Relationship between the values of φ
(k)
i and values of Φ

(k)
i 30

4.1 Comparison of LRBFGS and LRDavidon without historical usage for the Stiefel Brock-
ett problem. The subscript −k indicates a scale of 10−k. 46

4.2 Comparison of LRDavidon with historical φ
(k)
i vs LRDavidon with historical φ

(k)
i

adopting the convergence bounds that φ
(k)
i = 0 if φ

(k)
i ≤ 0.95φ

(k)c
i or φ

(k)
i ≥ 0.95 for

the Stiefel Brockett problem. The subscript −k indicates a scale of 10−k. 47

4.3 Number of steps using the BFGS update for cases (a), (b), (c), (d) as depicted in
Figure 4.2 when the constant φ is negative. The reported numbers represent the total
count of φ, with the count of instances using the BFGS update enclosed in parentheses
due to the convergence safeguard criteria (4.3). 50

4.4 Range of φDk with different values of a, b, c. 52

4.5 Comparison of LRBFGS and LRDavidon in Euclidean quadratic with n = 1000. The
3 largest and smallest eigenvalues of A are 1000, 0.9973, 0.9969 and 2.6×10−3, 1.8×
10−3, 2.6× 10−4. The subscript −k indicates a scale of 10−k. 55

4.6 Comparison of LRBFGS and LRDavidon in Euclidean quadratic with n = 1000. The
3 largest and smallest eigenvalues of A are 1000, 999, 0.9971 and 2.4 × 10−3, 1.7 ×
10−3, 2.4× 10−4. The subscript −k indicates a scale of 10−k. 55

4.7 Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =
1000, p = 1, D is diagonal with one element equal to 100 and others from the uniform
distribution on the interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian
at the solution are 200, 1.997, 1.996 and 4.7 × 10−3, 1.2 × 10−3, 3.5 × 10−4. The
subscript −k indicates a scale of 10−k. 56

4.8 Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =
1000, p = 1, D is diagonal with all elements from the uniform distribution on the
interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian at the solution are
1.993, 1.991, 1.990 and 5.6×10−3, 3.5×10−3, 1.6×10−3. The subscript −k indicates
a scale of 10−k. 56

4.9 Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =
1000, p = 5, D is diagonal with one element equal to 100 and others from the uniform
distribution on the interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian at
the solution are 1000, 800, 600 and 8.9× 10−4, 7.9× 10−4, 1.4× 10−5. The subscript
−k indicates a scale of 10−k. 57

vii

4.10 Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =
1000, p = 5, D is diagonal with all elements from the uniform distribution on the
interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian at the solution are
9.965, 9.953, 9.951 and 9.2×10−4, 8.3×10−4, 4.5×10−4. The subscript −k indicates
a scale of 10−k. 57

5.1 Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem. The sub-
script −k indicates a scale of 10−k. 66

5.2 Comparison of LRBFGS and LRDavidon for the low-rank matrix completion problem.
The subscript −k indicates a scale of 10−k. 66

5.3 Comparison of LRBFGS and LRDavidon for the Steel Rail cooling problem. The
subscript −k indicates a scale of 10−k. 66

5.4 Comparison of LRBFGS and LRDavidon for the weighted low-rank approximation
problem. The subscript −k indicates a scale of 10−k. 67

7.1 Dominant computations of Euclidean gradient for each test problem. 97

7.2 Dominant computations of the updates in LR-SBroyden-VR. 97

7.3 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with
n = 1000 and different b,mk. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 101

7.4 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with
n = 1000 and different b,mk. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 101

7.5 Comparison of R-SVRG for the PCA problem with n = 1000 and different b,mk. The
reported numbers are #nJ that measure the computational cost (with the number of
successful runs out of 50 in the parentheses). 102

7.6 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with
n = 10000 and different b,mk. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 102

7.7 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the ICA problem with dif-
ferent b,mk. The reported numbers are #nJ that measure the computational cost
(with the number of successful runs out of 50 in the parentheses). 103

7.8 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the ICA problem with dif-
ferent b,mk. The reported numbers are #nJ that measure the computational cost
(with the number of successful runs out of 50 in the parentheses). 104

7.9 Comparison of R-SVRG for the ICA problem with different b,mk. The reported
numbers are #nJ that measure the computational cost (with the number of successful
runs out of 50 in the parentheses). 104

viii

7.10 Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the low-rank matrix comple-
tion problem with different b,mk. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 105

7.11 Comparison of R-SVRG for the low-rank matrix completion problem with different
b,mk. The reported numbers are #nJ that measure the computational cost (with the
number of successful runs out of 50 in the parentheses). 105

7.12 Results for the PCA problem Scenario 1. The reported numbers are #nJ that measure
the computational cost (with the number of successful runs out of 50 in the parentheses).108

7.13 Results for the PCA problem Scenario 2. The reported numbers are #nJ that measure
the computational cost (with the number of successful runs out of 50 in the parentheses).109

7.14 Results for the PCA problem Scenario 3. The reported numbers are #nJ that measure
the computational cost (with the number of successful runs out of 50 in the parentheses).109

7.15 Comparison of different δ in Hybrid for the PCA problem. The reported numbers are
#nJ that measure the computational cost. 110

7.16 Results for the ICA problem. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 112

7.17 Comparison of different δ in Hybrid for the ICA problem. The reported numbers are
#nJ that measure the computational cost. 112

7.18 Results for the low-rank matrix completion problem. The reported numbers are #nJ
that measure the computational cost (with the number of successful runs out of 50 in
the parentheses). 114

7.19 Results for the low-rank matrix completion problem Scenario 3 with modified stop-
ping criteria and initial condition. The reported numbers are #nJ that measure the
computational cost (with the number of successful runs out of 50 in the parentheses). 115

7.20 Comparison of different δ in Hybrid for the low-rank matrix completion problem. The
reported numbers are #nJ that measure the computational cost. 115

7.21 Comparison of mean(γk) and mean(φ
(k)
i) between LR-SBFGS-VR and LR-SBroyden-

VR. Row “max,min eig” represents the maximum and minimum eigenvalues of the
Hessian from initial point to solution. 118

ix

LIST OF FIGURES

4.1 φ = −0.25: averaging nf derived from 10 runs versus α0. 49

4.2 Performance of LRBroyden with different fixed φ values. Left: the best-tuned α0

versus φ; Right: averaging nf versus φ. 51

4.3 φ
(k)D
i distribution for the Euclidean quadratic problem (Table 4.5) with L = 32. . . . 59

4.4 φ
(k)D
i distribution for the Stiefel Brockett problem (Table 4.7) with L = 4. 59

4.5 φ
(k)D
i distribution for the Stiefel Brockett problem (Table 4.8) with L = 4. 60

4.6 Comparison of LRBFGS and LRDavidon with perturbation in φ
(k)
i for the Stiefel

Brockett problem case in Table 4.7. 61

5.1 Performance of Hybrid LRDavidon-BFGS: averaging nf versus δ. 64

5.2 Performance of Hybrid LRDavidon-BFGS with different δ: Left: the best-tuned α0

versus δ; Right: averaging nf versus δ, the average values of nf for LRBFGS, LR-
Davidon, LRDavidon(adaptive intial stepsize) are highlighted as the vertical line. . . . 70

5.3 Comparison of φ
(k)D
i and φ

(k)H
i distribution for the Stiefel Brockett problem. 71

5.4 Comparison of φ
(k)D
i and φ

(k)H
i distribution for the low-rank matrix completion problem. 72

5.5 Comparison of φ
(k)D
i and φ

(k)H
i distribution for the Steel Rail cooling problem. 73

5.6 Comparison of LRBFGS, LRDavidon and Hybrid LRDavidon-BFGS: time(s) versus
|grad|. 74

7.1 Comparison of stochastic algorithms for the PCA problem: Top: #nJ versus ‖gf‖;
Bottom: #nJ versus |f − f ∗ |. 110

7.2 Comparison of stochastic algorithms for the ICA problem: Top: #nJ versus ‖gf‖;
Bottom: #nJ versus |f − f∗|. 113

7.3 Comparison of stochastic algorithms for the low-rank matrix completion problem:
Top: #nJ versus ‖gf‖; Bottom: #nJ versus |f |. 116

x

ABSTRACT

Quasi-Newton methods have gained popularity across various domains, providing efficient iterative

algorithms for finding optimal solutions to unconstrained optimization problems. Their limited-

memory variants offer advantages in terms of reduced storage and computational requirements.

This dissertation generalizes full Broyden family of limited-memory quasi-Newton optimization

methods on Riemannian manifold (LRBroyden). The work encompasses the comprehensive anal-

ysis, implementation, application and evaluation of LRBroyden. An essential extension to this

research involves the adaptation of these algorithms to stochastic methods tailored for large-scale

optimization. This results in the generalization of the stochastic variant of the Riemannian full

Broyden family of limited-memory quasi-Newton methods, incorporating with variance reduction

(LR-SBroyden-VR). The dissertation provides empirical insights into parameter selection and offers

a thorough evaluation of the performance of various methods.

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem

Riemannian optimization, or optimization on Riemannian manifolds is to find an optimum of

a real-valued function f defined on a Riemannian manifold, i.e.,

min
x∈M

f(x), (1.1)

where M is a Riemannian manifold. Optimization on manifolds can be viewed as unconstrained

optimization on a constrained space. If the manifold M is Rn, then the problem is simply a

Euclidean unconstrained optimization problem.

In the last fifty years, there has been significant development in a powerful collection of algo-

rithms designed for the unconstrained optimization of smooth functions. The concept of quasi-

Newton methods can be traced back to mid 1950s. These methods, which require only gradient

information but achieve superlinear convergence, are highly competitive in the field of optimization.

The Broyden class represents a family of quasi-Newton methods that depend on a real parameter

φk, which has the Hessian approximation update formula

Bk+1 = (1− φk)BBFGS
k+1 + φkB

DFP
k+1 ,

where BBFGS
k+1 denotes the update of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and

BDFP
k+1 denotes the update of the Davidon-Fletcher-Powell (DFP) method. The family of restricted

Broyden methods is defined with φk ∈ [0, 1] and has been a topic of much interest over the past

few years, owing to its effectiveness and well-developed convergence analysis. Nevertheless, some

researchers have advocated for considering a broader range of values for φk and have suggested that

there may be benefits in exploiting other members within the full Broyden family, as discussed in,

e.g., [11, 61, 8, 32].

In recent years, the Broyden family of methods have been developed on a Riemannian manifold,

evolving into a highly effective optimization algorithm with efficient implementations such as that

in ROPTLIB [26]. The concept of optimizing a real-valued function on a manifold dates back

1

to the early 1970s. In 2008, Absil et al. [1] introduced a practical approach to optimization on

manifolds, leveraging the principles of differential geometry. In 2011, Qi [40] proposed a method to

generalize BFGS to Riemannian manifolds and conducted convergence analysis in her dissertation.

Ring and Wirth [47] presented another approach for implementing BFGS on Riemannian manifolds.

More recently, Huang [22] explored quasi-Newton optimization algorithms on Riemannian manifolds

in his dissertation, introducing the Riemannian Broyden Family of methods (RBroyden). These

developments have significantly advanced the field of optimization on Riemannian manifolds.

In both Euclidean and Riemannian contexts, when dealing with large-scale problems, the Broy-

den family faces challenges in terms of storage requirements and associated costs due to the use

of Hessian approximation. To address this, limited-memory variant of quasi-Newton methods have

been developed. The limited-memory BFGS method in Euclidean space was initially proposed by

Liu and Nocedal [33]. Reed [46] extended the limited-memory BFGS to the Broyden family. Erway

and Marcia [18] applied a compact representation, as introduced by Byrd, Nocedal and Schnabel

[9], within the LBroyden family, albeit with constraints on the choice of the Broyden parameter.

Deguchy et al. [3] further extended the results from [18] to cover the full Broyden family, allowing

the Broyden parameter to take any real values. However, none of these papers delved deeper into

the methodology for selecting the Broyden parameters.

On a Riemannian manifold, Huang et al. [27] proposed the Riemannian limited-memory variant

of BFGS method, known as LRBFGS. The method is known for its robustness, effectiveness and

suitability for solving large problems where computing Hessian matrices is prohibitively expensive.

Other than LRBFGS, however, a limited-memory variant of the RBroyden family has not been

explored until now. This dissertation aims to address several questions: Can we develop a robust

and efficient limited-memory quasi-Newton algorithm by considering other members of the Broyden

family? How can we choose from the members of the LRBroyden family for different large-scale

problems? Is it possible to efficiently implement the LRBroyden family of methods, similar to

LRBFGS? In this work, these questions are answered by proposing an LRBroyden algorithm that

accommodates a wider range of Broyden parameters, allowing for different values at each step. The

performance of various members in the LRBroyden family is thoroughly investigated.

The idea of the LRBroyden family of methods can also be applied to the stochastic optimization

methods. The focused problem is of the following form:

min
ω∈M
{f(ω) :=

1

n

n∑
i=1

fi(ω)}, (1.2)

2

where f is a smooth real-valued functions on a Riemannian manifold M. This problem type

finds widespread applications in machine learning, statistical inference, and image processing, par-

ticularly when dealing with large datasets (i.e., when n is very large). Stochastic optimization

methods, in this context, introduce randomness either in the objective function or in the optimiza-

tion algorithm. Since 1951, with the work of Robbins and Monro [48], stochastic gradient descent

(SGD) has been a core strategy for addressing such problems. Unlike traditional gradient descent,

SGD considers only a sub-sample or a small batch of the loss function, significantly reducing the

computational complexity per iteration.

Several adaptive methods have been established based on SGD to enhance its performance,

including AdaGrad [17], Adam [31], and AMSGrad [45]. Variance-reduced SGD, proposed by

Johnson and Zhang [28], aims to mitigate the issues introduced by the randomness of noisy gradient

estimates. In the pursuit of achieving faster convergence, the research on stochastic quasi-Newton

methods emerged. Byrd, Hansen, Nocedal, and Singer [7] introduced a stochastic quasi-Newton

method, suggesting that it outperforms SGD more effectively than gradient rescaling. Another

approach by Moritz et al. [36] demonstrated rapid convergence to high levels of precision and

performed well across a wide range of step sizes. These developments offer promising avenues for

tackling stochastic optimization problems more efficiently.

In recent years, many of these stochastic methods have been generalized to certain Riemannian

settings, including Riemannian SGD [4], Riemannian adaptive gradient methods like RAdaGrad,

RAdam, RAMSGrad [3], as well as variance-reduced Riemannian SGD [60]. Moreover, stochastic

quasi-Newton methods have been adapted to Riemannian manifolds by researchers like Roychowd-

hury [49] and Sato et al. [30]. Their focus was on the stochastic LRBFGS, employing variance

reduction techniques, and their experiments demonstrated that these algorithms outperformed

other state-of-the-art Riemannian stochastic gradient methods. Nevertheless, other members of

the Broyden family have not been explored in the context of stochastic algorithms, neither in Eu-

clidean nor Riemannian settings. Motivated by the above considerations, we equip the LRBroyden

family of methods with stochastic strategy and investigate its robustness and efficiency in this

dissertation.

1.2 Research Overview and Dissertation Statement

The primary objective of this dissertation is to develop, analyze, and assess the limited-memory

variant of Riemannian full Broyden family methods. We propose to exploit a strategy for select-

3

ing φ in LRBroyden that is more efficient and robust than LRBFGS; to investigate how to select

appropriate stepsizes with varing φ values; to propose and analyze the efficient and robust Rie-

mannian stochastic Broyden family of quasi-Newton mtehods; to provide user guidelines on how to

choose between various stochastic parameters. We also provide a tool box for LRBroyden and LR-

SBroyden-VR. The toolbox relies on ROPTLIB, an object-oriented C++ library for optimization

on Riemannian manifolds [26].

Through these objectives, the dissertation aims to enhance the effectiveness and practicality

of the limited-memory variant of Riemannian full Broyden family methods, positioning them as

valuable tools for optimization tasks. This dissertation asserts that the proposal above can be

achieved by the following:

1. the development of LRBroyden, the use of intrinsic representation and compact representation

in the implementation, and the convergence analysis of LRBroyden (Chapter 3);

2. the development of methodologies for selecting φ in LRBroyden, and the experimental ev-

idence that illustrates robustness and effectiveness of the chosen methodology used in this

dissertation (Chapter 3, 4);

3. the experimental evidence that exploits the relationship between φ and initial stepsize to

enhance performance of LRBroyden, and the numerical results that show the superiority of

Davidon’s φ in specific synthetic problems (Chapter 4);

4. the design of a hybrid strategy between the choices of Davidon’s and BFGS’s φ in LRBroy-

den, and the numerical results that illustrate the improvements of the hybrid strategy with

appropriate initial stepsize selection (Chapter 5);

5. the application of the LRBroyden family to stochastic method, and the development of LR-

SBroyden-VR, and the convergence analysis of LR-SBroyden-VR (Chapter 6);

6. the experimental evidence that LR-SBroyden-VR with Davidon’s φ offers advantages in the

selection of stochastic parameters, and the heuristic conclusion on how to determine these

parameters based on practical insights (Chapter 7);

7. the experimental evidence that LR-SBroyden-VR is more efficient and more robust compared

to the existing stochastic quasi-Newton algorithms (Chapter 7).

1.3 Dissertation Outline

The dissertation is organized as follows.

4

Chapter 2. This chapter briefly reviews some basic definitions and concepts for Riemannian

manifolds and Riemannian optimization. It goes on to introduce the Broyden family of quasi-

Newton methods in Euclidean space, covering both non-limited-memory and limited-memory vari-

ants. The chapter also includes a complexity comparison with some existing algorithms in the

LBroyden family. Finally, it reviews a secant condition under Riemannian settings.

Chapter 3. This chapter generalizes the LBroyden family on a Riemannian manifold, providing

implementation details and computational efficiency analysis. It also delves into the methods for

selecting the Broyden parameters within the algorithm. The convergence analysis includes global

convergence and R-linear convergence for the LRBroyden family of methods.

Chapter 4. This chapter explores the relationship between initial stepsize and Broyden param-

eter by testing with a constant φ. Then LRBroyden is tested with Davidon’s choice of φ in some

specific synthetic problems and found to be superior than LRBFGS.

Chapter 5. This chapter provides a hybrid strategy of choosing φ between Davidon and BFGS.

With a suitable choice of the initial stepsize, the efficiency and robustness of the strategy are

investigated and demonstrated empirically.

Chapter 6. This chapter applies the stochastic LRBroyden family of methods. Inspired by

Kasai et al. [30], we generalize an LR-SBroyden-VR algorithm with its implementation details and

computational efficiency analysis. Then the global convergence and local convergence rate of the

LR-SBroyden-VR method is provided.

Chapter 7. This chapter includes a systematic empirical comparison of LR-SBroyden-VR,

existing Riemannian stochastic LRBFGS and Riemannian stochastic variance-reduced gradient

descent methods. We set up the experiments with different parameter pairs in order to determine

the appropriate values in each situation. Then all the methods are evaluated under the selected

parameter settings.

Chapter 8. This chapter gives a summary of completed work.

5

CHAPTER 2

PRELIMINARIES

This section reviews some important concepts and definitions of Riemannian manifolds that

are used in this dissertation. Additionally, the Riemannian optimization algorithms of interest are

identified and characterized briefly.

2.1 Riemannian Geometry

2.1.1 Tangent Space

The direction of motion on a manifold must be defined to apply line search algorithms. Consider

a smooth mapping γ: R → M which satisfies γ(0) = x. Given a smooth real-valued function f :

M→ R, we can define a mapping that is the direction at x along γ, also called a tangent vector

to the curve γ at t = 0:

γ̇(0)f = (f ◦ γ)′(0) = lim
h→0

f(γ(h))− f(γ(0))

h
.

The formal definition of tangent vectors is as follows.

Definition 2.1. (tangent vector). Let Fx(M) denote the set of smooth real-valued functions on a

neighborhood of x. A tangent vector ξx to a manifold M at a point x is a mapping from Fx(M) to

R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f =
df(γ(t))

dt
|t=0

for all f ∈ Fx(M). The curve γ is said to realize the tangent vector ξx. The point x is called the

root of the tangent vector ξx.

The set of all tangent vectors at x is called the tangent space to M at x, denoted as TxM.

This generalizes the idea of direction and allows us to perform the line search on the tangent space.

For Riemannian optimization, we work on a tangent space and go back to the manifold using

retraction, which is discussed later. The union of all tangent spaces is called the tangent bundle of

the manifold and denoted as TM.

A vector field ξ on a manifold M is a smooth function from M to the tangent bundle, which

assigns to each point x ∈M a tangent vector ξx ∈ TxM.

6

2.1.2 Riemannian Metric

The tangent space at a point on the manifold provides us with a vector space of tangent vectors

that give an idea of direction on the manifold. Endowing the tangent space with an inner product

allows us to compute angles and lengths of tangent vectors.

Definition 2.2. (inner product). Let M be a smooth manifold and x ∈ M. An inner product

〈·, ·〉x on TxM is a bilinear, symmetric positive-definite form, i.e., ∀ξx, ζx, ηx ∈ TxM, a, b ∈

R, 〈aξx + bζx, ηx〉x = a〈ξx, ηx〉x + b〈ζx, ηx〉x, 〈ξx, ζx〉x = 〈ζx, ξx〉x, and 〈ξx, ξx〉x ≥ 0 with 〈ξx, ξx〉x =

0⇔ ξx = 0.

The inner product 〈·, ·〉x induces a norm,

‖ξx‖x :=
√
〈ξx, ξx〉x,

on TxM. A Riemannian metric g is defined on each tangent space TxM as a smoothly varying

inner product gx : TxM× TxM → R. Consider ηx, ξx ∈ TxM, we will use interchangeably the

notation

gx(ηx, ξx) = g(ηx, ξx) = 〈ηx, ξx〉x = 〈ηx, ξx〉

to denote the inner product of two elements ηx and ξx on TxM. ξ[x denotes a function TxM→ R

such that ξ[xηx = gx(ξx, ηx) for all ηx ∈ TxM. A Riemannian manifold is the combination (M, g).

The length of a curve on Riemannian manifold is defined by the the inner product as

d(x, y) = inf
γ
{
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt} = inf

γ
{
∫ 1

0
‖γ̇(t)‖gγ(t)dt},

where γ is a smooth curve on M with γ(0) = x and γ(1) = y.

2.1.3 Affine Connections, Geodesics, Exponential Mapping and Parallel
Translation

In Euclidean space, straight lines are curves γ with zero acceleration that satisfy d2

dt2
γ(t) = 0

for all t. On a Riemannian manifold, we already know γ̇(t) is defined to show the direction along

the curve. A “straight line”, called a geodesic on a Riemannian manifold, is a curve γ(t) with zero

acceleration. We define first an affine connection, which provides the idea of differentiating tangent

vectors.

7

Definition 2.3. (Affine Connection). Let and X (M) denote the set of smooth vector fields on M,

and Fx(M) denote the set of all smooth functions on a neighborhood of x. An affine connection ∇

on a manifold M is a mapping

∇ : X (M)×X (M)→ X (M) : (ξ, η) 7→ ∇ξη,

that satisfies the following properties:

1.F(M)-linearity in the first argument: ∇fη+gζξ = f∇ηξ + g∇ζξ;

2.R-linearity in the second argument: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ;

3.Product rule (Leibniz’s law): ∇η(fξ) = (ηf)ξ + f∇ηξ,

where a, b ∈ R, η, ξ, ζ ∈ X (M) and for any x ∈M, f, g ∈ Fx(M).

∇ξη ∈ TxM is a covariant derivative of η with respect to ξ. There is an infinite number of

affine connections for a general manifold. The Levi-Civita connection, also called the Riemannian

connection is the one satisfies the following conditions:

1. (∇ηξ −∇ξη)f = η(ξf)− ξ(ηf) (symmetry);

2. ζ〈η, ξ〉 = 〈∇ζη, ξ〉+ 〈η,∇ζξ〉 (compatibility with the Riemannian metric).

Let γ be a curve in M with domain I ⊆ R. A vector field on the curve γ smoothly assigns to each

t ∈ I a tangent vector to M at γ(t). The set of all smooth vector fields on γ is denoted by X (γ).

It can be shown that there is a unique function ξ 7→ D
dtξ from X (γ) to X (γ) such that:

1. D
dt(aξ + bζ) = aDdtξ + bDdtζ (a, b ∈ R);

2. D
dt(fξ) = f ′ξ + f Ddtξ (f ∈ F(I));

3. D
dt(η ◦ γ)(t) = ∇γ̇(t)η (t ∈ I, η ∈ X (M)).

The acceleration vector field D2

dt2
γ on γ is defined by

D2

dt2
γ :=

D

dt
γ̇.

The geodesic defined by an affine connection is a curve with zero acceleration that satisfies:

∇γ̇(t)γ̇(t) :=
D2

dt2
γ(t) :=

D

dt
γ̇(t) = 0.

If the connection is chosen to be the Riemannian connection, one of the geodesics between two

points on the manifold is also a minimal length curve. This is consistent with the straight line in

Euclidean space.

8

Given a point x ∈M and a tangent vector ηx ∈ TxM, there exists a unique geodesic γ(t;x, ηx)

satisfying γ(0) = x and γ̇(0) = ηx. Moreover, we have the homogeneity property γ(t;x, aηx) =

γ(at;x, ηx). The mapping

Expx : TxM→M : ηx → Expxηx = γ(1;x, ηx)

is called the exponential mapping at x. In the Riemannian optimization algorithm, such as line

search based algorithm, the exponential mapping allows us to move in the tangent space and then

map the resulting tangent vector back to the manifold in a neighborhood of x.

A vector field ξ on a curve γ is called parallel if it satisfies D
dtξ = 0. Given a ∈ R in the domain

of γ and ξγ(a) ∈ Tγ(a)M, there is a unique parallel vector field ξ on γ such that ξ(a) = ξγ(a). The

operator P b←aγ sending ξ(a) to ξ(b) is called parallel translation along γ. In other words, we have

D

dt
(P t←aγ ξ(a)) = 0.

If ∇ is the Riemannian connection, then the parallel translation is an isometry, i.e.,

〈P t←aγ ξ(a), P t←aγ ζ(a)〉 = 〈ξ(a), ζ(a)〉.

2.1.4 Riemannian Gradient and Hessian

The definition of the gradient of a function at a point as the direction of the steepest ascent of an

objective function is required by gradient-based optimization, meanwhile Newton’s method requires

second-order information Hessian. The definition in the Riemannian setting is shown below:

Definition 2.4. (Riemannian gradient). Let f be a function defined on a Riemannian manifold

(M, g). The Riemannian gradient of f at x, denoted as gradf(x), is the unique tangent vector in

TxM satisfying

〈gradf(x), ηx〉x = Df(x)[ηx], ∀ηx ∈ TxM,

where Df(x)[ηx] is the directional derivative of f at x along ηx.

This is consistent with the Euclidean gradient such that given a function f defined on Rn, the

directional derivative along v is

lim
ε→0

f(x+ εv)− f(x)

ε
= gradf(x)T v = 〈gradf(x), v〉2.

9

Definition 2.5. (Riemannian Hessian). Let f be a function defined on a Riemannian manifold

(M, g). The Riemannian Hessian of f at x in the direction of ηx ∈ TxM, denoted by Hessf(x)[ηx],

is defined by

Hessf(x)[ηx] = ∇ηxgradf(x),

where ∇ is the Riemannian connection. The Riemannian Hessian is the linear mapping from TxM

to TxM.

This is also consistent with the idea in Euclidean case, that is, the derivative of gradf(x) along

direction v is

lim
ε→0

gradf(x+ εv)− gradf(x)

ε
= Hessf(x)v.

The Hessian is a self-symmetric(adjoint) operator with respect to the Riemannian metric, for all

ηx, ξx ∈ TxM

〈Hessf(x)[ηx], ξx〉x = 〈ηx,Hessf(x)[ξx]〉x.

2.1.5 Retraction and Vector Transport

For a general line search optimization method on Euclidean space, we can use

x+ = x+ αd

to find the next iteration, with α stepsize and d a descent direction. However, on a Riemannian

manifold, since we work on the tangent space to find a tangent vector to define the next iterate

on the manifold, we need a method to map the tangent vector back to the manifold. Retraction

allows us to move in the direction of a tangent vector while staying on the manifold.

Definition 2.6. (Retraction). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties. Let Rx denotes the restriction of R to

TxM.

1. Rx(0x) = x, where 0x denotes the zero element of TxM;

2. With the canonical identification T0xTxM' TxM, Rx satisfies

DRx(0x) = idTxM,

where idTxM denotes the identity mapping on TxM.

10

The exponential mapping defined earlier is a special case of retraction. When the exponential

mapping is used to map a tangent vector back to the manifold, we move along the geodesic defined

by the tangent vector. Retraction provides a critical alternative to the exponential mapping which

can often be too expensive to define an efficient Riemannian optimization method.

Some Riemannian optimization methods, in particular, quasi-Newton methods, require combin-

ing information in different tangent spaces. Parallel translation provides an idea of moving tangent

vectors between tangent spaces, but it is often too expensive since it is based on the idea of the

exponential mapping. Vector transport provides an alternative to parallel translation, and is built

upon retraction.

Definition 2.7. (Vector Transport). Vector transport on a manifold M is a smooth mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈M.

1. (Associated retraction) There exists a retraction R, called the retraction associated with T , such

that the following diagram commutes

(ηx, ξx) Tηx(ξx)

ηx π(Tηx(ξx))

T

R

π

where π(Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx);

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

Note that TM⊕TM indicates the Whitney sum, or direct sum of the tangent bundle with itself.

combines the tangent spaces ofM at each point with the tangent spaces ofM at the same points.

Vector transport is called isometric if it also satisfies

〈Tηxξx, Tηxζx〉Rηx = 〈ξx, ζx〉x. (2.1)

Vector transport by differentiated retraction is a vector transport given by

Tηxξx = DR(ηx)[ξx] =
d

dt
Rx(ηx + tξx)|t=0.

11

We use TS and TR to denote an isometric vector transport and a differentiated retraction of R

respectively. For a quasi-Newton algorithms on Riemannian manifold, vector transport is crucial

in making use of the information from previous iterations and approximating the action of the

Hessian. The choices of retraction and vector transport play important roles in the design of

efficient Riemannian optimization algorithms.

2.1.6 Coordinate Expressions

Coordinate expressions allow concepts in a vector space to represent concepts on a manifold.

In this dissertation, we use the “hat” notation to denote a coordinate expression when analyzing a

problem and building the optimization algorithm.

Let (U , ϕ) be a chart of a manifold M and x ∈ U . Suppose the coordinate expression of x,

x̂ ∈ Rd, is defined by x̂ = φ(x). And the i-th coordinate vector field of (U , ϕ), Ei , is defined by

(Eif)(x) := ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei].

These coordinate vector fields are smooth and every vector field ξ on U has a decomposition

ξ =
∑
i

(ξϕi)Ei,

where (Eif)x, i = 1, · · · , d is a basis of TxM and the coordinate expression ξ̂x of ξx with this basis

is (ξxϕ1, · · · , ξxϕd). We can always use QR decomposition to form a smooth orthonormal vector

field and thus the coordinate expression of ξx can be obtained with the orthonormal basis.

The coordinate expression of the metric at x is (Gx)ij = 〈Ei, Ej〉x which satisfies gx(ηx, ξx) =

η̂TxGxξ̂x. When the orthonormal vector fields is used, the matrix expression of Gx is a identity and

‖ηx‖ =
√
gx(ηx, ηx) =

√
η̂Tx η̂x = ‖η̂x‖2 is the Euclidean norm. A linear operator B and a vector

transport T have the matrix form as coordinate expressions B̂ and T̂ respectively, where these are

used in our Riemannian algorithm and analysis part.

2.2 Broyden Family of Quasi-Newton Methods in Euclidean
Space

A line search strategy chooses a direction and searches along the direction from the current

iterate for a new iterate with a lower objective function value. Newton’s method has a local

quadratic convergence rate, and is defined by the sequence

xk+1 = xk − (Hessf(x))−1gradf(x).

12

The quasi-Newton methods are motivated by reducing the computational complexity of each step

compared to Newton’s method and are defined by the iteration of the form

xk+1 = xk −B−1
k gradf(x).

The quasi-Newton search direction is an alternative to Newton direction in that it uses Hessian

approximation Bk instead of the true Hessian. In each step, a new Hessian approximation Bk+1 is

chosen to mimic certain properties of the true Hessian. By Taylor’s Theorem,

gradf(xk+1) = gradf(xk) + Hessf(x)(xk+1 − xk) +O(‖xk+1 − xk‖2).

Ignoring the high order term, we have

gradf(xk+1)− gradf(xk) ≈ Hessf(x)(xk+1 − xk).

The quasi-Newton update is required to satisfy the so-called secant condition:

gradf(xk+1)− gradf(xk) = Bk+1(xk+1 − xk).

The matrix Bk+1 that satisfies the secant condition is not unique. By imposing other conditions,

different quasi-Newton methods are obtained including the Broyden family of methods. Let yk =

gradf(xk+1)− gradf(xk) and sk = xk+1 − xk. The simplest of these is the symmetric rank-1(SR1)

update:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
, (2.2)

which is usually combined with the trust region method because the direction is not guaranteed

to be a descent direction. The Davidon-Fletcher-Powell (DFP) update Bk+1 = (I − yks
T
k

yTk sk
)Bk(I −

sky
T
k

yTk sk
) +

yky
T
k

yTk sk
is obtained by imposing the following condition:

min
B
‖B −Bk‖W subject to B = BT , Bsk = yk,

where ‖A‖W = ‖W 1/2AW 1/2‖F and W satisfies Wyk = sk. For the inverse Hessian approximation

Hk = B−1
k , a similar condition

min
H
‖H −Hk‖W subject to H = HT , Hyk = sk

with ‖A‖W = ‖W 1/2AW 1/2‖F and W satisfies Wsk = yk leads to the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kBk

sTkBksk
. The search direction generated by both

13

DFP and BFGS updates are guaranteed to be descent if sTk yk > 0. The core family of methods

discussed in this dissertation, the Broyden family, is defined by taking a combination of BFGS and

DFP updates as in the following:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
+ φk(s

T
kBksk)vkv

T
k , (2.3)

where φk is a scalar, yk = gradf(xk+1)− gradf(xk), sk = xk+1 − xk, and

vk =
yk
yTk sk

− Bksk
sTkBksk

.

Note that BFGS is defined by setting φk = 0 and DFP by setting φk = 1. The restricted Broyden

family with φk ∈ [0, 1] yields a convex combination of BFGS and DFP, thus preserves the positive

definiteness of Hessian approximation. BFGS is the most successful of these restricted Broyden

family of methods in terms of efficiency and robustness.

To address a wide range of optimization problems, there is a significant interest in analyzing the

entire Broyden family, particularly when exploring the use of negative parameters. Davidon [11]

introduced a strategy for choosing φk in Euclidean space, which, in some cases, can enhance the

overall performance of the Broyden family. Zhang and Tewarson [61] provided numerical evidence

indicating that Broyden family methods with negative φk can be more efficient than BFGS in terms

of numbers of iterations. Byrd, Liu and Nocedal [8] demonstrated a theoretically optimal value of

φk that requires the knowledge of Hessf(x∗) at the solution. This value, however, is not practically

usable in a practical algorithm. In the meanwhile, the experiments conducted in [8] illustrated

specific scenarios where Davidon’s update [11] can outperform the BFGS update. These findings

serve as motivation for the experiments conducted in Section 4.4 in this dissertation.

2.3 Broyden Family of Limited-memory Quasi-Newton Methods
in Euclidean Space

Limited-memory quasi-Newton methods are useful for solving large-scale problems for which

the Hessians cannot be computed or stored at a reasonable cost. Instead of storing fully dense

approximation matrices, they save only a few vectors that represent the approximation implicitly.

The idea of limited-memory BFGS was first described by Nocedal [37], and a limited-memory

variant of BFGS (LBFGS) was first proposed by Liu and Nocedal [33]. The BFGS update for the

inverse approximation has the form:

Hk+1 = V T
k HkVk + ρksks

T
k , (2.4)

14

where ρk = 1
yTk sk

and Vk = ρkyks
T
k . The LBFGS update formula is derived by repeated application

of the above inverse BFGS update:

Hk =(V T
k−1 · · ·V T

k−L)H0
k(Vk−L · · ·Vk−1)

+ ρk−L(V T
k−1 · · ·V T

k−L+1)sk−Ls
T
k−L(Vk−L+1 · · ·Vk−1)

+ ρk−L+1(V T
k−1 · · ·V T

k−L+2)sk−L+1s
T
k−L+1(Vk−L+2 · · ·Vk−1)

+ · · ·+ ρk−1sk−1s
T
k−1.

(2.5)

The initial Hessian approximation H0
k is allowed to vary from iteration to iteration. For each

iterate at xk, LBFGS only stores the set of vector pairs {si, yi} for i = k − L, · · · , k − 1, so-

called curvature pairs. In the Limited-memory Quasi-Newton Methods, the computation of the

product −Hkgradfk can be produced efficiently without the need to explicitly compute Hk. The

implementation of LBFGS has an efficient two-loop structure (a special case for Algorithm 2 in

Euclidean space), which ensures its efficiency for the large-scale problems.

Several researchers have focused on exploring other members of the limited-memory Broyden

family of methods, with a primary emphasis on how to compute −Hkgradfk efficiently. Reed [46]

proposed the two-loop recursive limited-memory Broyden family of methods (consider Algorithm

2 in Euclidean space), but the algorithm exhibited certain limitations indicated in Section 3.6.

Reed stated that LBFGS with Shanno scaling [55] remains the most efficient and reliable method

in the family. The choices of φ for the experiments in Reed’s paper [46] include the secondary-

BFGS update (see Section 3.6 for details), the Hoshino update [21] and the SR1 update (2.2).

Byrd, Nocedal and Schnabel [9] presented compact representations of matrices for BFGS and SR1

updates within the Broyden family. However, they did not include any numerical experiments in

their work. Erway and Marcia [18] subsequently developed the compact representation for the

restricted Broyden family, building upon the work by Byrd, Nocedal and Schnabel [9]. Deguchy et

al. [12] further expanded upon Erway and Marcia’s findings [18], applying them to the full Broyden

family (consider Algorithm 3 and 4 in Euclidean space). The extension is realized by incorporating

a permutation matrix which does not produce extra cost if the initial Hessian approximation is

chosen as a constant times identity matrix. The authors of [18] and [12] investigated the accuracy

of the Bk+1 generated by the compact representation compared to the Bk+1 generated by the full

matrix updates.

Consider the limited-memory quasi-Newton algorithms discussed above, denoted as LBFGS

[33], LBroyden by Reed [46], Compact-representation LBroyden [18, 12]. These algorithms are

15

Table 2.1: Complexity comparison between Broyden family of limited-memory quasi-Newton meth-

ods in Euclidean space.

LBFGS [33] LBroyden by Reed [46] Compact-representation LBroyden [18, 12]

Complexity of −Hkgradfk 8Ln+ 2n 14Ln+ 2n 16Ln− 6n+O(L2)

utilized to solve an n-dimensional function while maintaining a memory size of L. There is a

disparity in complexity of these algorithms arising from their particular choices when defining the

computation of −Hkgradfk. The complexity differences among three algorithms are summarized

in Table 2.1. LBFGS stands out as the most computationally efficient algorithm for computing

−Hkgradfk. This efficiency of LBFGS is justified, considering that the other two algorithms pay

for the flexibility of selecting alternative members within the Broyden family. The LBroyden

by Reed has lower computational costs than the compact-representation LBroyden when L > 4,

however, it is important to recognize that the LBroyden by Reed comes with certain limitations,

as highlighted in Section 3.6. These limitations restrict the practical usage of the LBroyden by

Reed, and thus, a careful consideration of these factors is necessary when selecting an appropriate

algorithm for a given problem. Limited-memory quasi-Newton algorithms are designed for solving

large-scale problems. The memory size L should be maintained at a small value in practice, making

it significantly smaller than n.

2.4 A Secant Condition on a Riemannian manifold

Consider a function f(x) defined on a manifold M. Let x ∈ M, V be a normal neighborhood

of x, and ζ be a C1 tangent vector field on M. Taylor’s Theorem for a vector field on a manifold

rather than for f(x) [1] has the following form, that for all y ∈ V

P 0←1
γ ζy = ζx +∇ξζ +

∫ 1

0
(P 0←τ

γ ∇γ′(τ)ζ −∇ξζ)dτ,

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, and ξ = Exp−1
x y =

γ′(0). By Taylor’s Theorem,

P 0←1
γk

gradf(xk+1) = gradf(xk) +∇ξgradf(xk) +

∫ 1

0
(P 0←γ

γk
∇γ′k(τ)gradf(xk)−∇ξgradf(xk))dτ,

where γk is the unique minimizing geodesic satisfying γk(0) = xk and γk(1) = xk+1, and ξ =

Exp−1
xk
xk+1 = γ′k(0). Ignoring the integral reminder term, we have

P 0←1
γk

gradf(xk+1)− gradf(xk) ≈ ∇ξgradf(xk) = Hessf(xk)Exp−1
xk
xk+1.

16

The above is defined on TxkM, the desired Hessian approximation Bk+1 defined on Txk+1
M by

applying parallel translation, yields the following Riemannian secant condition:

gradf(xk+1)− P 1←0
γk

gradf(xk) = Bk+1(P 1←0
γk

Exp−1
xk
xk+1). (2.6)

Let sk denote P 1←0
γk

Exp−1
xk
xk+1 and yk denote gradf(xk+1)− P 1←0

γk
gradf(xk). We require Bk+1 to

be self-adjoint with respect to the Riemannian metric instead of symmetry.

All of the quasi-Newton update formulas below are based on the Riemmanian secant condition

(2.6). SR-1 update is generalized to a Riemannian manifold as:

Bk+1 = B̃k +
(yk − B̃ksk)(yk − B̃ksk)[

g(sk, yk − B̃ksk)
(2.7)

with B̃k = P 1←0
γk
BkP 0←1

γk
. DFP and BFGS updates are generalized on a Riemannian manifold as

the following:

DFP : Bk+1 = (id−
yks

[
k

y[ksk
)B̃k(id−

sky
[
k

y[ksk
) +

yky
[
k

y[ksk
, (2.8)

BFGS : Bk+1 = B̃k −
B̃ksk(B̃ksk)[

s[kB̃ksk
+
yky

[
k

y[ksk
. (2.9)

As in the Euclidean space, the Broyden family on a Riemannian manifold is defined by taking

a combination of the Riemmanian DFP and Riemmanian BFGS operators. The formula for the

RBroyden family is given in the next chapter (3.1), and is discussed thoroughly throughout the dis-

sertation. Rather than the explicit exponential map and parallel translation in the secant condition

(2.6), alternate forms based on retraction and vector transport are used in practice.

17

CHAPTER 3

RIEMANNIAN BROYDEN FAMILY OF

LIMITED-MEMORY QUASI-NEWTON METHODS

This chapter serves as an introduction to the LRBroyden family of methods and provides a

comprehensive development of their convergence analysis. It lays the foundation for understanding

and applying these methods in the context of optimization problems.

3.1 RBroyden Family of Methods

On a Riemannian manifold, suppose the stepsize and search direction at iterate xk → xk+1

are αk and ηk, then xk+1 = Rxk(αkηk) for a line search optimization algorithm. Let sk denote

TSαkηkαkηk, and yk denote gradf(xk+1)/βk −TSαkηkgradf(xk) with βk = ||αkηk||
||TRαkηkαkηk||

. This allows

for a convergence analysis under more general assumptions than those of Qi [41], where βk = 1

but requiring the retraction to be the exponential mapping and vector transport to be the parallel

transport. TS is the isometric vector transport with R as associated retraction and TR is the

differentiated retraction of R. The RBroyden family [22, 27] has the updating formula as follows:

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)[

(B̃k
∗
sk)[sk

+
yky

[
k

y[ksk
+ φkg(sk, B̃ksk)vkv[k, (3.1)

where B̃k = TSαkηk ◦ Bk ◦ T
−1
Sαkηk

, vk = yk
g(yk,sk) −

B̃ksk
g(sk,B̃ksk)

and B̃∗k denotes the adjoint with respect

to the Riemannian metric g.

The non-isometric vector transport can be used but it is not provably convergent in general. An

isometric vector transport preserves the distance on the two tangent spaces, i.e., gR(ηx)(Tηxξx, Tηxζx) =

gx(ξx, ζx). It guarantees that B̃k is self-adjoint if Bk is self-adjoint. The isometric vector trans-

port TS is not necessarily smooth, but required to be in C0. And for any x̄ ∈ M, there exists a

neighborhood U of x̄ and a constant c0 such that for all x, y ∈ U

||TSη − TRη || ≤ c0||η||, (3.2)

||T −1
Sη
− T −1

Rη
|| ≤ c0||η||, (3.3)

18

where η = R−1
x (y) and TR denotes the differentiated retraction. Besides the isometry condition

shown above, the locking condition [22, 27] is also required:

TSξξ = βTRξξ, β =
||ξ||
||TRξξ||

(3.4)

for all ξ ∈ TxM and all x ∈ M. This locking condition and isometry condition are imposed

to guarantee the curvature condition g(sk, yk) > 0 so that the Hessian approximation is positive

definite since, unlike in Euclidean space, the second Wolfe condition (3.6) alone cannot guarantee

g(sk, yk) > 0. These two conditions are also necessary for the proposed the LRBroyden family of

methods.

This locking condition brings us a derivation of potentially efficient algorithm and facilitates

the convergence analysis. Exponential mapping and parallel transport satisfy the locking condition

with β = 1, however, their form is often unknown or computationally expensive. Methods to specify

a retraction and an isometric vector transport that satisfy the locking condition have been proposed

in [27]: (i) Given a retraction and an isometric vector transport, we can modify the given vector

transport so that it satisfies the locking condition. (ii) Given a retraction and bases of tangent

space, we can construct directly an isometric vector transport that satisfies the locking condition.

(iii) Given a transporter [42], we can construct a retraction and its differentiated retraction that

satisfy the locking condition.

The RBroyden family, Algorithm 1, proposed in [27] is presented here to facilitate the conver-

gence proof. The global and q-superlinear convergence of the RBroyden family of methods were

shown in [22] when applied to minimize a retraction-convex objective function. To ensure global

convergence when applied to nonconvex optimization problems, a cautious update method as out-

lined in [25] is imposed as follows in (3.7). This update is designed to enhance the algorithm’s

stability and robustness when dealing with challenging optimization tasks.

Bk+1 =

B̃k −
B̃ksk(B̃∗ksk)[

(B̃k
∗
sk)[sk

+
yky

[
k

y[ksk
+ φkg(sk, B̃ksk)vkv[k, if

y[ksk
‖sk‖2

≥ ϑ(‖gradf(xk)‖)

B̃k, otherwise,

(3.7)

where ϑ is a monotone increasing function satisfying ϑ(0) = 0 and ϑ is strictly increasing at 0.

3.2 Two-loop Recursive LRBroyden Family of Methods

The RBroyden family relies on the explicit representations of the operators Bk, B̃k, TSαkηk
and T −1

Sαkηk
. However, for large-scale problems, obtaining these explicit representations can be

19

Algorithm 1 RBroyden family method proposed in [27]

Require: Riemannian manifold M with Riemannian metric g; a retraction R; isometric vector

transport TS , with R as associated retraction that satisfies the locking condition; continuously

differentiable real-valued function f onM; initial iterate x0 ∈M; initial Hessian approximation

B0 which is a linear transformation of the tangent space Tx0M that is symmetric positive

definite with respect to the metric g; convergence tolerance ε; Wolfe condition constants 0 <

c1 <
1
2 < c2 < 1;

1: k = 0;

2: while ‖gradf(xk)‖ > ε do

3: Obtain ηk ∈ TxkM by solving Bkηk = −gradf(xk);

4: Set xk+1 = Rxk(αkηk). where αk > 0 is computed from a line search procedure to satisfy the

Wolfe conditions

f(xk+1) ≤ f(xk) + c1αkg(gradf(xk), ηk), (3.5)

d

dt
f(R(tηk))|t=αk ≥ c2

d

dt
f(R(tηk))|t=0; (3.6)

5: Define sk = TSαkηkαkηk, yk = gradf(xk+1)/βk − TSαkηkgradf(xk), where βk = ||αkηk||
||TRαkηkαkηk||

and TR is the differentiated retraction of R;

6: Define the linear operator Bk+1 : Txk+1
M→ Txk+1

M by Equation (3.1) with φk ∈ (φck,∞),

φck = 1/(1− µk), µk = (g(yk, B̃−1
k yk)g(sk, B̃ksk))/g(yk, sk)

2;

7: k = k + 1;

8: end while

20

challenging or computationally expensive. LRBroyden addresses this problem by storing only

some of the most recent sk and yk vectors, rather than the entire Hessian approximation. It

constructs the Hessian approximation using curvature information, which leads to an acceptable

rate of convergence and makes it well-suited for many practical applications. This approach helps

alleviate the computational burden associated with explicitly representing these operators in large-

scale problems.

Generalizing the limited-memory full Broyden family methods to Riemannian manifolds is one

of the main contributions in this dissertaion. In this section, we introduce the two-loop recursive

LRBroyden, extending the results obtained in Euclidean space by Reed in [46]. This algorithm

incorporates the adaptation of Nocedal’s two-loop recursive formula, which was originally developed

for LBFGS [37].

Consider Hk, the inverse Hessian approximation update formula:

Hk+1 = H̃k −
H̃kyk(H̃∗kyk)[

(H̃∗kyk)[yk
+
sks

[
k

y[ksk
+ Φkg(yk, H̃ksk)ωkω[k, (3.8)

where Φk = (1−φk)g(yk,sk)2

(1−φk)g(yk,sk)2+φkg(yk,H̃kyk)g(sk,B̃ksk)
, ωk = sk

g(yk,sk) −
H̃kyk

g(yk,H̃kyk)
and H̃k = TSαkηk ◦ Hk ◦

T −1
Sαkηk

. Note that Φk = 0 when φk = 1 and Φk = 1 when φk = 0. We generalize the inverse update

formula to Riemannian setting as follows:

Hk+1 = V[kH̃kVk + ρksks
[
k, (3.9)

where

ρk =
1

g(yk, sk)
and Vk = id− yk(Ask +BH̃kyk)[.

A = ±
√

Φkρk and B = (1∓
√

Φk)/g(yk, H̃kyk) are derived by expansion and coefficients comparison

with Equation (3.8). Note that BFGS update has Φk = 1, A = ρk and B = 0. If the L most recent

sk and yk are stored then we have

Hk =Ṽ[k−1Ṽ[k−2 · · · Ṽ[k−LH̃0
kṼk−L · · · Ṽk−2Ṽk−1

+ ρk−LṼ[k−1Ṽ[k−2 · · · Ṽ[k−L+1s
(k)
k−L(s

(k)
k−L)[Ṽk−L+1 · · · Ṽk−2Ṽk−1

+ · · ·+ ρk−1s
(k)
k−1(s

(k)
k−1)[,

,

where Ṽi = id − y(k)
i (Ais

(k)
i + BiH̃iy(k)

i)[for i = k − L, · · · , k − 1 with Ai = ±
√

Φiρi and Bi =

(1∓
√

Φi)/g(y
(k)
i , H̃iy(k)

i). Note that the vectors s
(k)
i , y

(k)
i requires vector transports, which yield the

21

Step 28 of Algorithm 2. Note that the initial inverse Hessian approximation H̃0
k is not necessarily

H̃k−L. It can be any positive definite self-adjoint operator, and is usually set as

H0
k = γkid,

where γk > 0 is a constant. The update formulae are valid for Φk ≥ 0, hence not all family members

are included. The algorithm generalized for Riemannian manifolds is shown in Algorithm 2.

In the limited-memory algorithms (both Algorithm 2 and 4) with memory size L, the index

k = 0, 1, · · · represents the iteration step. At step k, denote l = max{k−L, 0}, the index i = l, l+

1, · · · , k− 1 represents the local components during the updates of inverse Hessian approximation.

s
(k)
i , y

(k)
i , u

(k)
i , φ

(k)
i and Φ

(k)
i are used for updating the inverse Hessian approximations Hik → H

i+1
k ,

where Hlk is denoted as the initial inverse Hessian approximation that H0
k ≡ Hlk → H

l+1
k → · · · →

Hkk. The inverse Hessian approximations Hik for i = l, l + 1, · · · , k defined on the tangent space

of xk are not explicitly expressed. In Algorithm 2, the notation Φk is employed instead of Φ
(k)
i to

accommodate for the shifting and reuse of values, as discussed in Section 3.5.

Algorithm 2 exhibits three primary drawbacks. Firstly, the two-loop recursive process is com-

putationally efficient only for LRBFGS. LRBFGS (proposed by Huang et al. [27]) is a specialized

case of Algorithm 2 with Ai = ρi, Bi = 0, where u
(k)
i is not needed. For other members that

can be applied to Algorithm 2, the computation and storage regarding to u
(k)
i leads to the extra

cost. In addition to the complexity outlined in Table 2.1 for Algorithm 2 in Euclidean space, it is

noteworthy to consider the additional cost associated with storing and transporting u
(k)
i .

Secondly, Algorithm 2 solely supports the LRBroyden family of methods by storing and shifting

the values of φ
(k)
i and Φ

(k)
i , as indicated in the first approach in Section 3.5. These shifted φ

(k)
i and

Φ
(k)
i , however, may not satisfy the convergence requirement (3.14). It is not applicable to apply

this algorithm if equipping other strategy of choosing φ
(k)
i or Φ

(k)
i .

Thirdly, each Φk corresponds to two updates in the Broyden family, except when Φk = 0 (DFP).

Even in the case of Φk = 1, other than Ai = ρi, Bi = 0 for LRBFGS, there exists a secondary

update with Ai = −ρi, Bi = 2/g(y
(k)
i , u

(k)
i) which did not perform well, as demonstrated in Reed’s

findings [46]. Indeed, Reed concluded that the standard LBFGS with A = ρk and B = 0 stood out

as the most efficient and effective method among the other applicable members of Algorithm 2. Due

to the drawbacks of the algorithm mentioned above, this conclusion prompts further exploration

of the LRBroyden family of methods by allowing for a wider range of φk values.

22

Algorithm 2 Two-loop Recursive LRBroyden by generalization of [46]

Require: Riemannian manifold M with Riemannian metric g; a retraction R; isometric vector

transport TS ; Smooth function f on M; initial iterate x0 ∈M; an integer L > 0;

1: k = 0, ε > 0, 0 < c1 <
1
2 < c2 < 1, γ0 = 1, l = 0;

2: H0
k = γkid. Obtain ηk ∈ TxkM by the following algorithm:

3: Choose Ai =
√

Φiρi, Bi = (1 −
√

Φi)/g(y
(k)
i , u

(k)
i) or choose Ai = −

√
Φiρi, Bi = (1 +

√
Φi)/g(y

(k)
i , u

(k)
i);

4: q ← y
(k)
k−1;

5: for i = k − 2, k − 3, · · · , l do

6: ξi = g(s
(k)
i , q);

7: q ← q − (Big(u
(k)
i , q) +Aiξi)y

(k)
i ;

8: end for

9: r ← H0
kq;

10: for i = l, l + 1, · · · , k − 2 do

11: r ← r −Big(y
(k)
i , r)u

(k)
i + (ρiξi −Aig(y

(k)
i , r))s

(k)
i ;

12: end for

13: Set u
(k)
k−1 = r;

14: q ← gradf(xk);

15: for i = k − 1, k − 2, · · · , l do

16: ξi = g(s
(k)
i , q);

17: q ← q − (Big(u
(k)
i , q) +Aiξi)y

(k)
i ;

18: end for

19: r ← H0
kq;

20: for i = l, l + 1, · · · , k − 1 do

21: r ← r −Big(y
(k)
i , r)u

(k)
i + (ρiξi −Aig(y

(k)
i , r))s

(k)
i ;

22: end for

23: Set ηk = −r;
24: Find αk that satisfies Wolfe conditions;

25: Set xk+1 = Rxk(αkηk). If ||gradf(xk+1)|| > ε, then break;

26: Define s
(k+1)
k = TSαkηkαkηk and y

(k+1)
k = gradf(xk+1)/βk − TSαkηkgradf(xk), where βk =

||αkηk||
||TRαkηkαkηk||

. And calculate ρk = 1/g(s
(k+1)
k , y

(k+1)
k), γk+1 = g(s

(k+1)
k , y

(k+1)
k)/||y(k+1)

k ||2;

27: Set or compute Φk;

28: Let l = max{k − L + 1, 0}. Add s
(k+1)
k , y

(k+1)
k , ρk and Φk into storage and if k > L,

then discard vector pair {s(k)
l−1, y

(k)
l−1, u

(k)
l−1} and scalars ρl−1,Φl−1 from storage; Transport

s
(k)
l , s

(k)
l+1, · · · , s

(k)
k−1, y

(k)
l , y

(k)
l+1, · · · , y

(k)
k−1 and u

(k)
l , u

(k)
l+1, · · · , u

(k)
k−1 from TxkM to Txk+1

M by TS ,

then get s
(k+1)
l , s

(k+1)
l+1 , · · · , s(k+1)

k−1 , y
(k+1)
l , y

(k+1)
l+1 , · · · , y(k+1)

k−1 and u
(k+1)
l , u

(k+1)
l+1 , · · · , u(k+1)

k−1 ;

29: Update u
(k+1)
i =

γk+1

γk
u

(k+1)
i for i = l, l + 1, · · · , k − 1;

30: k = k + 1, go to 2;

23

3.3 Implementation Techniques

This section introduces an effective technique that can be used for LRBroyden. A d-dimensional

Riemannian manifold M often has elements that can be represented by a vector in Rn. There are

some common situations encountered in practice:

1. M is embedded in Rn and inherits its metric from a metric on Rn.

2. M is a subset of Rn with a metric gx on TxM that is not necessarily a restriction of a metric

on Rn nor can it necessarily be extended to be a metric on all of Rn.

3. M is a quotient of a manifold M̄(can be either of the first two types).

4. M is a product of two or more manifolds(each of which is any of the first three types).

With a choice of basis of TxM, one can implement an n-dimensional or a d-dimensional vector

to represent a tangent vector in these four cases. The d-dimensional is also called the intrinsic

representation [24] of tangent vectors and vector transports on matrix manifold. This intrinsic rep-

resentation and vector transport by parallelization provide computational benefits for the proposed

algorithm.

Given a d-dimensional Riemannian manifold M with the Riemannian metric g : (ηx, ξx) 7→

gx(ηx, ξx) ∈ R, where ηx, ξx ∈ TxM. Consider two situations: (i) M is an embedded submanifold

[1, section 3.3] of a n-dimensional Euclidean space; (ii) M is a quotient manifold [1, section 3.4]

M̄/G = {[x]|x ∈ M̄}, where M̄ is a submanifold of a n-dimensional Euclidean space, G is a group

acting on M̄ and [x] = {gx|g ∈ G} The tangent space Tx[x] is called the vertical space Vx at x.

The horizontal space is defined to be the perpendicular space of Vx, i.e., Hx⊕Vx = TxM̄. For any

tangent vector η[x] ∈ T[x]M, the unique representation in Hx is called the horizontal lift of η[x] at

x, denoted by η↑x .

Suppose L(x, y) is a linear operator from TxM to TyM whose dependence on x and y is jointly

smooth and such that L(x, x) is identity for all x, and we are given a retraction R. It has been

shown in [27] that a vector transport T with associated retraction R can be defined as

Tξxηx = L(x,Rx(ξx))ηx.

If M is an embedded submanifold in case (i), The transporter by parallelization is defined by

LPl(x, y)ηx = ByB
†
xηx, (3.10)

24

where B : V → Rn×d : z 7→ Bz is a smooth tangent basis field defined on an open set V of M, and

B† denotes the pseudo-inverse of B. L(x, y) is isometric if Bz forms an orthonormal basis of TzM,

which implies that the vector transport by parallelization Tξxηx = BRx(ξx)B
†
xηx is isometric.

If M is a quotient manifold in case (ii), the transporter by parallelization can be defined as

LPl(x, y)ηx = Bh
y (Bh

x)†ηx, (3.11)

where the columns of Bh
z form an orthonormal basis of the horizontal space Hz. This defines the

transporters by parallelization for the quotient manifold if (3.11) is independent of the representa-

tion chosen in [x] and [y].

Throughout this chapter, the d-dimensional and n-dimensional representations of a tangent

vector are called the intrinsic and extrinsic representations respectively. The functions that denote

the maps converting from one representation to the other representation are shown as:

D2EMx : vx 7→ ηx = Bxvx and E2DMx : ηx 7→ vx = B†xηx,

where vx and ηx are intrinsic and extrinsic representation respectively. The intrinsic representation

of the transporter by parallelization has the form

E2DMx ◦ LPl(x, y) ◦D2EMx vx = B†y(ByB
†
x(Bxvx)) = vx

and is therefore the identity. If the columns of Bx form an orthonormal basis of TxM, the trans-

porter is isometric, and the Riemannian metric reduces to the Euclidean metric for the intrinsic

representations:

g(ηx, ξx) = g(Bxvx, Bxux) = vTx ux.

Many manifolds have been confirmed to have a computationally inexpensive way to transition

between vx and ηx, such as the Stiefel manifold, the Grassmann manifold and the fixed-rank

manifold (see [24]), all which are included in the experiments later in this dissertation.

By employing the intrinsic representation, time and spatial complexity can be reduced by ma-

nipulating smaller dimensional vectors in LRBroyden. The following section illustrates Algorithm

4 with intrinsic representation. In cases where the intrinsic representation is not available for a

given manifold, the algorithm can also be stated with the extrinsic representation, as indicated in

Algorithm 2.

25

3.4 Full LRBroyden Family of Methods

In this section, we introduce the Riemannian Broyden family of limited-memory quasi-Newton

algorithm by generalizing the work by Deguchy et al. [12]. The updating formula of the Hessian

approximation Bk can be rewritten from Equation (2.3) as:

Bk+1 = Bk + (Bksk yk)

 − (1−φk)

sTkBksk
− φk
yTk sk

− φk
yTk sk

(1 + φk
sTkBksk
yTk sk

) 1
yTk sk

 (Bksk yk)
T .

In the compact representation, the updating formula can be expressed as

Bk+1 = B0 + Ψ̂kM̂kΨ̂
T
k ,

where B0 is the initial guess, Ψ̂k ∈ Rn×p is formulated in terms of the curvature information,

M̂k ∈ Rp×p is obtained recursively and their expressions can be found in Algorithm 3. The update

of Broyden class can be either rank-one with p = k+1 for SR1 update or rank-two with p = 2(k+1)

for other members. The inverses of these matrices, denoted Hk, possess a similar expression. All

these formula details are incorporated into the following algorithm and the proof by induction can

be found in [12].

The generalization LBroyden is shown in Algorithm 3 and Algorithm 4. Algorithm 3 oulines the

compact representation of the L (memory size) Broyden updates from B0
k and H0

k to Bkk and Hkk,

where B0
k ≡ Blk → B

l+1
k → · · · → Bkk and H0

k ≡ Hlk → H
l+1
k → · · · → Hkk with l = max{k − L, 0}.

Denote Bik and Hik as Bi and Hi for clarity in Algorithm 3. The outputs M̃k−1 and Ψ̃k−1 are used

for computing the search direction in Step 5 and Step 6 in Algorithm 4. Algorithm 4 presents

the loop for k = 0, 1, · · · , which is based on the intrinsic representation as described in [24]. For

manifolds that do not have an acceptable intrinsic representation, it is possible to obtain the

extrinsic version by employing similar expressions as in Algorithm 2. The intrinsic representation

employed in Algorithm 4 allows for efficient implementation, and the identity implementation of

the transporter through parallelization enhances computational efficiency. The vectors sk, yk, η
d
k are

all d-dimensional vectors and ηk represents the extrinsic representation of ηdk. The transformation

between ηk and ηdk relies on the orthonormal basis, and more details can be found in [24].

The LRBroyden family of methods, through generalizing the approach in [12], allows for different

φ
(k)
i at each step and φ

(k)
i can take on negative values. These φ

(k)
i can be determined in advance

or calculated during the updates. During the update process, the matrix times vector terms in

Step 3, 6, 7 are computationally efficient since B0
k and H0

k are essentially identity matrix multiplied

26

by scalar values. Additionally, M̂l and M̃l are two symmetric small matrices with a maximum

size 2L × 2L and sTj+1Bj+1sj+1 and yTj+1Hj+1yj+1 are scalar values for j = l, · · · , k − 2, further

contributing to the computational efficiency of the algorithm.

The primary computational cost in Algorithm 3 arises from the calculation of Ψ̂T
j sj+1 at Step 4

and Ψ̃T
j yj+1 at Step 7. The columns of Ψ̂j and Ψ̃j are essentially the curvature-related vectors s, y

multiplied by scalars. Therefore, calculating Ψ̂T
j sj+1 and Ψ̃T

j yj+1 invloves computing inner products

between these curvature-related vectors. By storing the previous inner products, the computation

at step k requires calculations of sTk−1si, s
T
k−1yi, y

T
k−1yi, y

T
k−1si with i = l, · · · , k − 2. Suppose

the intrinsic representation is d-dimensional, the computational complexity of determining search

directions in Algorithm 4 is 8(L− 1)d+ 8Ld+ 2d+O(L2). Compared to the cost of 8Ld+ 2d for

finding search directions in LRBFGS (as presented in [24]), the additional cost for LRBroyden is

8(L− 1)d+O(L2). This additional cost is acceptable since the memory size L is typically small for

solving large-scale problems. The outer structure Algorithm 4 is essentially the same as the existing

intrinsic algorithm of LRBFGS [24], hence there is no difference in the computational complexity

there.

Algorithm 4 effectively addresses the drawbacks of Algorithm 2 in both the Riemannian and

Euclidean versions. Notably, Algorithm 4 does not require the computation, storage and trans-

portation of u
(k)
i . Moreover, the update mechanism within Algorithm 4 is unique with a chosen

φ
(k)
i and the choice of φ

(k)
i can be any real numbers. It is important to note that the experiments

conducted by Deguchy et al. [12] did not include a performance comparison across different mem-

bers of LBroyden. This dissertation makes a significant contribution by exploring and identifying

robust and efficient member of the LRBroyden family, as detailed in Chapter 4 and 5.

27

Algorithm 3 Update M̃j , Ψ̃k at step k by generalization of [12]

Require: B0
k,H0

k and φ
(k)
i ρi, si, yi for i = l, · · · , k − 1, with l = max{k − L, 0}. For clarity, we

ignore the superscript (k) for φ
(k)
i ;

1: Define M̂l =


− β̂l, φl = φSR1

l(
α̂l β̂l
β̂l δ̂l

)
, otherwise

and M̃l =


− β̃l, φl = φSR1

l(
α̃l β̃l
β̃l δ̃l

)
, otherwise

, these scalars

are defined in the line 11− 13;

2: for j = l : k − 2 do

3: Ψ̂j ←
[
(B0

ksl yl)El (B0
ksl+1 yl+1)El+1 · · · (B0

ksj yj)Ej
]
,

where Ej =

{
(−1 1)T , φj = φSR1

j

I2, otherwise;

4: Calculate Ψ̂T
j sj+1;

5: Calculate pj+1 = M̂j(Ψ̂
T
j sj+1);

6: sTj+1Bj+1sj+1 ← sTj+1(B0
ksj+1) + pTj+1(Ψ̂T

j sj+1);

7: Calculate Ψ̃T
j yj+1 = Ψ̂T

j H0
kyj+1;

8: Calculate p̃j+1 = M̃j(Ψ̃
T
j yj+1);

9: yTj+1Hj+1yj+1 ← yTj+1(H0
kyj+1) + p̃Tj+1(Ψ̃T

j yj+1);

10: Φj+1 ← (1− φj+1)/((1− φj+1) + ρ2
j+1φj+1(yTj+1Hj+1yj+1)(sTj+1Bj+1sj+1));

11: α̂j+1 ← −(1− φj+1)/(sTj+1Bj+1sj+1), and α̃j+1 ← (1 + Φj(y
T
j+1Hj+1yj+1)ρj+1)ρj+1;

12: β̂j+1 ← −φj+1ρj+1, and β̃j+1 ← −Φj+1ρj+1;

13: δ̂j+1 ← (1 + φj+1(sTj+1Bj+1sj+1)ρj+1)ρj+1, and δ̃j+1 ← −(1− Φj+1)/(yTj+1Hj+1yj+1);

14: Form M̂j+1 ←



(
M̂j − β̂j+1p̂j+1p̂

T
j+1 −β̂j+1p̂j+1

−β̂j+1p̂
T
j+1 −β̂j+1

)
, φj+1 = φSR1

j+1 M̂j + α̂j+1pj+1p
T
j+1 α̂j+1pj+1 β̂j+1pj+1

α̂j+1p
T
j+1 α̂j+1 β̂j+1

β̂j+1p
T
j+1 β̂j+1 δ̂j+1

 , otherwise;

15: Form M̃j+1 ←



(
M̃j − β̃j+1p̃j+1p̃

T
j+1 −β̃j+1p̃j+1

−β̃j+1p̃
T
j+1 −β̃j+1

)
, φj+1 = φSR1

j+1 M̃j + δ̃j+1p̃j+1p̃
T
j+1 β̃j+1p̃j+1 δ̃j+1p̃j+1

β̃j+1p̃
T
j+1 α̃j+1 β̃j+1

δ̃j+1p̃
T
j+1 β̃j+1 δ̃j+1

 , otherwise;

16: end for

17: Output: Ψ̃k−1 = H0
kΨ̂k−1 and M̃k−1.

28

Algorithm 4 Full LRBroyden by generalization of [12] using intrinsic representation and vector

transport by parallelization

Require: Riemannian manifold M with Riemannian metric g; a retraction R; Smooth function

f on M; initial iterate x0 ∈ M; an integer L > 0. The superscript d means the intrinsic

representations;

1: k = 0, ε > 0, 0 < c1 <
1
2 < c2 < 1, γ0 = 1, l = 0;

2: H0
k = γkI, B0

k = 1/γkI. Obtain ηk ∈ TxkM by the following algorithm:

3: Given si, yi, ρi and the method to set φ
(k)
i for i = k − 1, k − 2, · · · , l;

4: q ← graddf(xk);

5: Compute M̃k−1, Ψ̃k−1 based on Algorithm 3;

6: Set ηdk = −H0
kq − Ψ̃k−1M̃k−1Ψ̃T

k−1q;

7: Find αk that satisfies Wolfe conditions

f(xk+1) ≤ f(xk) + c1αk(graddf(xk))
T ηdk,

(ηdk)T graddf(xk+1) ≥ c2(ηdk)T graddf(xk);

8: Compute the extrinsic representation ηk of ηdk;

9: Set xk+1 = Rxk(αkηk). Compute the intrinsic representation graddf(xk+1) of gradf(xk+1). If

‖gradf(xk+1)‖ > ε, then break;

10: define sk = αkη
d
k and yk = graddf(xk+1)− graddf(xk);

11: if
sTk yk
‖sk‖22

≥ ϑ‖graddf(xk)‖2 then

12: Calculate ρk = 1/sTk yk and γk+1 = sTk yk/y
T
k yk;

13: Let l = max{k − L+ 1, 0}. Add sk, yk and ρk into storage and if k ≥ L, then discard vector

pair {sl−1, yl−1} and scalar ρl−1 from storage, i.e. store {sl, sl+1, · · · , sk}, {yl, yl+1, · · · , yk}
and {ρl, ρl+1, · · · , ρk};

14: else

15: Set γk+1 ← γk, {ρl, · · · , ρk} ← {ρl−1, · · · , ρk−1}, {sl, · · · , sk} ← {sl−1, · · · , sk−1},
{yl, · · · , yk} ← {yl−1, · · · , yk−1};

16: end if

17: k = k + 1, go to 2;

3.5 Methods of Choosing φ
(k)
i

The parameter φ
(k)
i is related to the update formula of Bik → B

i+1
k , while Φ

(k)
i is related to the

update formula of Hik → H
i+1
k . The relationship between φ

(k)
i and Φ

(k)
i is as follows and is the same

29

Table 3.1: Relationship between the values of φ
(k)
i and values of Φ

(k)
i .

φ
(k)
i φ

(k)c
i 0 1 +∞

Φ
(k)
i +∞ 1 0 φ

(k)c
i

as Step 10 in Algorithm 3 (in which the superscript is suppressed):

Φ
(k)
i =

1− φ(k)
i

(1− φ(k)
i) + (ρ

(k)
i)2φ

(k)
i g(y

(k)
i ,Hiky

(k)
i)g(s

(k)
i ,Biks

(k)
i)

. (3.12)

To guarantee the convergence of the LRBroyden family of methods, φ
(k)
i is required to be set in an

appropriate range. Choosing φ
(k)
i equal to or less than the following negative critical value φ

(k)c
i

makes B̂i+1
k singular or indefinite

φ
(k)c
i =

1

1− g(y
(k)
i ,Hiky

(k)
i)g(s

(k)
i ,Biks

(k)
i)

g(y
(k)
i ,s

(k)
i)2

. (3.13)

The values of g(y
(k)
i ,Hiky

(k)
i), g(s

(k)
i ,Biks

(k)
i) and g(y

(k)
i , s

(k)
i) are explicitly calculated during the

update indicated in Algorithm 3. All choices of φ
(k)
i should be greater than φ

(k)c
i in order to

guarantee the positive definiteness of B̂i+1
k . Based on the formula (3.12), Φ

(k)
i and φ

(k)
i are symmetric

with respect to “y = x”. Consider φ
(k)c
i as a value, the following Table 3.1 illustrates the relationship

between the values of Φ
(k)
i and φ

(k)
i . In this dissertation, φ

(k)
i is used as the primary parameter

in the analysis and experimental setting. The convergence analysis for the LRBroyden family of

methods are presented in the next section under the following guard for φ
(k)
i :

φ
(k)
i ∈ ((1− ν)φ

(k)c
i , 1− δ) (3.14)

with ν ∈ (0, 1) and δ ∈ (0, 1].

There are two ways to update the Broyden parameter of φ
(k)
i within the LRBroyden family.

The first approach is to store, shift and discard the values of φ
(k)
i along with s

(k)
i , y

(k)
i for i =

max{k−L, 0}, · · · , k−1 at step k. In this approach, historical values of φ
(k)
i are retained temporarily

and updated over time. In contrast, the second approach does not involve storing historical values

of φ
(k)
i . Instead, it computes or sets the values of φ

(k)
i directly for each update from B0

k ≡ Blk to

Bk ≡ Bkk at step k.

Consider LBroyden in Euclidean space with L = 2 as an example, suppose B0
k is positive

definite, Broyden updates B0
k → B1

k → B2
k ≡ Bk at step k, and denote U as the Broyden update

30

matrices. The first three steps following the first approach can be expressed as:

B1 = B0
1 + U(s0, y0, B

0
1 , φ0),

B2 = B0
2 + U(s0, y0, B

0
2 , φ0) + U(s1, y1, B

1
2 , φ1),

B3 = B0
3 + U(s1, y1, B

0
3 , φ1) + U(s2, y2, B

1
3 , φ2),

where B3 reuses φ1 from last update. However, it may not be acceptable to use the same φ1 if φ1

falls outside the guard range (3.14). Even though U(s1, y1, B
1
2 , φ1) preserves positive definiteness

for B2, the new update U(s1, y1, B
0
3 , φ1) does not guarantee that for B3 unless it is constrained or

replaced with a new computed value.

For the second approach, the φ
(k)
i is computed or set at each step k each update i so that the

positive definite property is preserved, as indicated in the following expression of B3:

B3 = B0
3 + U(s1, y1, B

0
3 , φ

(3)
1) + U(s2, y2, B

1
3 , φ

(3)
2).

One way to justify this approach is by considering LBroyden as restarting from a new initial point.

Following the safeguard (3.14) for φ
(k)
i , the first approach is only applicable when the Broyden

parameters are chosen within the restricted Broyden family.

More generally, the first approach is presented in Algorithm 2, where we use Φk in place of

Φ
(k)
i to account for the shift and reuse of values. The second approach without the need to store

historical φ
(k)
i is illustrated in Algorithm 4. It is possible but not necessary to use the shifting φ

(k)
i ,

while the convergence guard (3.14) should always be checked during the update. We primarily

consider the following choices of φ
(k)
i in this dissertation:

• BFGS update with φ
(k)
i = 0.

• Constant value c ∈ R for the update, where φ
(k)
i = c for each i, k. Set φ

(k)
i = 0 if the

convergence bound (3.14) is not satisfied.

• Davidon update (see Section 4.4) with historical usage, as mentioned in the first approach.

Set φ
(k)
i = 0 if the convergence bound (3.14) is not satisfied.

• Davidon update without historical usage, as mentioned in the second approach.

31

3.6 Convergence Analysis

In the Euclidean setting, the global and superlinear convergence of restricted Broyden family

of methods was presented in [10], based on the Dennis Moré condition [13, 14]. The result was

extended to the full Broyden family in [8] under some strengthened assumptions on the choice of

φk. On a Riemannian manifold, the global and superlinear convergence proof of the RBroyden

family with φk ∈ [0, 1 − δ] was presented in [27], where δ ∈ (0, 1]. For a limited-memory variant,

the R-linear convergence of LBFGS was proved in [33]. In this section, the global convergence

proof of the RBroyden family is extended to the wider range (1− ν)φck ≤ φk ≤ 1− δ, where φck =

1

1−
(y[
k
H̃kyk)(s

[
k
B̃ksk)

(y[
k
sk)

2

. Then the global convergence and R-linear convergence rate for the LRBroyden

family are proved.

3.6.1 Basic Assumptions and Preliminary Lemmas

Throughout the convergence analysis, consider the update formula for the RBroyden family

shown in Equation (3.1). {xk}, {Bk}, {B̃k}, {αk}, {sk}, {yk}, and {ηk}, are infinite sequences

generated by Algorithm 1, Ω denotes the sublevel set {x : f(x) ≤ f(x0)}, and x∗ is a local

minimizer of f in the level set Ω. The manifold M is assumed to be compact so Ω is compact,

which guarantees the existence of such an x∗.

Assumption 3.1. The objective function f is twice continuously differentiable.

Let Ω̃ be a neighborhood of x∗ and ρ be a positive constant such that, for all y ∈ Ω̃, Ω̃ ⊂

Ry(B(0y, ρ)) and Ry(·) is a diffeomorphism on B(0y, ρ).

Assumption 3.2. Rxk(tηk) ∈ Ω̃ for all t ∈ [0, αk].

The convergence analysis depends on the property of retraction-convexity. For a function f :

M → R : x 7→ f(x) on a Riemannian manifold M with retraction R, define mx,η(t) = f(Rx(tη))

for x ∈M and η ∈ TxM. The function f is retraction-convex with respect to the retraction R in a

set S if for all x ∈ S, all η ∈ TxM and ‖η‖ = 1, mx,η(t) is convex for all t which satisfy Rx(τη) ∈ S

for all τ ∈ [0, t]. Moreover, f is strongly retraction-convex in S if mx,η(t) is strongly convex, i.e.,

there exist two constants 0 < a0 < a1 such that

a0 ≤
d2mx,η

dt2
(t) ≤ a1, (3.15)

for all x ∈ S, all ‖η‖ = 1 and all t such that Rx(τη) ∈ S for all τ ∈ [0, t].

32

Assumption 3.3. f is strongly retraction-convex with respect to the retraction R in Ω̃.

The global convergence proof for the RBroyden family is an extension to the existing convergence

proof in [27]. Therefore, the following Lemmas 3.1-3.10 are restatements of the existing lemmas in

[27]. Lemma 3.11 is novel based on the fact that the bound for φk is different.

Lemma 3.1. (see [27, Lemma 3.1]) Suppose Assumption 3.1 holds and Hessf(x∗) is positive def-

inite. Define m̃x,η(t) = f(Rx(tη)). Then there exists a neighbor N of x∗ and two constants

0 < ã0 < ã1 such that

ã0 ≤
d2m̃x,η

dt2
(t) ≤ ã1,

for all x ∈ N and t which satisfies Rx(tη) ∈ N .

Lemma 3.2. (see [27, Lemma 3.2]) Using Lemma 3.1 and the first Wolfe condition (3.5), if

Assumption 3.1, 3.2 and 3.3 hold then there exists a constant a0 > 0 such that

1

2
a0‖sk‖2 ≤ (c1 − 1)αkg(gradf(xk), ηk),

where constant a0 can be chosen as in (3.15).

Lemma 3.3. (see [27, Lemma 3.3]) Using the locking condition (3.4), if Assumption 3.1, 3.2 and

3.3 hold then there exists constants 0 < a0 ≤ a1 such that

a0g(sk, sk) ≤ g(sk, yk) ≤ a1g(sk, sk),

where constants a0 and a1 can be chosen as in (3.15).

Lemma 3.4. (see [27, Lemma 3.4]) Using Lemma 3.2, if Assumption 3.1, 3.2 and 3.3 hold then

there exists constants 0 < a2 < a3 such that

a2‖gradf(xk)‖ cos θk ≤ ‖sk‖ ≤ a3‖gradf(xk)‖ cos θk,

for all k, where cos θk = −g(gradf(xk),ηk)
‖gradf(xk)|‖‖ηk‖ .

Lemma 3.5. (see [27, Lemma 3.5]) Let M be a Riemannian manifold endowed with two vector

transports T1 ∈ C0 and T2 ∈ C∞ where T1 satisfies ‖TSη − TRη‖ ≤ c0‖η‖, ‖T −1
Sη
− T −1

Rη
‖ ≤ c0‖η‖

and both transports are associated with a same retraction R. Then for any x̄ ∈ M there exists a

constant a4 and a neighborhood of x̄,U , such that for all x, y ∈ U

‖T1ηξ − T2ηξ‖ ≤ a4‖ξ‖‖η‖,

where η = R−1
x y and ξ ∈ TxM.

33

Lemma 3.6. (see [27, Lemma 3.6]) Using Lemma 3.5, let M be a Riemannian manifold endowed

with a retraction R whose differentiated retraction is denoted TR. Let x̄ ∈ M, then there is a

neighborhood U of x̄ and constant ã4 > 0 such that for all x, y ∈ Un any ξ ∈ TxM with ‖ξ‖ = 1,

the effect of the differentiated retraction is bounded with

|‖TRη‖ − 1| ≤ ã4‖η‖,

where η = R−1
x y.

Lemma 3.7. (see [27, Lemma 3.7]) Using Lemma 3.6, if Assumption 3.1, 3.2 and 3.3 hold then

there exists a constant a5 > 0 such that for all k

f(xk+1)− f(x∗) ≤ (1− a5 cos2 θk)(f(xk)− f(x∗)).

Lemma 3.8. (see [27, Lemma 3.8]) Using Lemma 3.2, if Assumption 3.1, 3.2 and 3.3 hold then

there exists constants 0 < a6 < a7 such that for all k

a6
g(sk, B̃ksk)

‖sk‖2
≤ αk ≤ a7

g(sk, B̃ksk)

‖sk‖2
.

Lemma 3.9. (see [27, Lemma 3.9]) Using Lemma 3.3, Lemma 3.5, Lemma 3.6 and Lemma 3.8,

if Assumption 3.1 holds then there exists a constant a9 > 0 such that for all k

g(yk, yk) ≤ a9g(sk, yk).

Lemma 3.10. (see [27, Lemma 3.10]) Using the above lemmas, if Assumption 3.1, 3.2 and 3.3

hold then there exists constants a10 > 0, a11 > 0, a12 > 0 such that for all k

g(sk, B̃ksk)

g(sk, yk)
≤ a10αk,

‖B̃ksk‖2

g(sk, B̃ksk)
≥ a11

αk
cos2 θk

,

|g(yk, B̃ksk)|
g(yk, sk)

≤ a12
αk

cos θk
.

Lemma 3.11. (This is a modification of [27, Lemma 3.11]) Using Lemma 3.7, Lemma 3.8, Lemma

3.9 and Lemma 3.10, if Assumption 3.1, 3.2 and 3.3 hold, the parameter (1− ν)φck ≤ φk ≤ 1 where

ν ∈ (0, 1) and φck defined in (3.13). Then there exists a positive constant a13 such that for all k ≥ 1

k∏
j=1

αj ≥ ak13.

34

Proof. Use hat to denote the coordinates expression of the operator Bk and B̃k, consider trace(B̂)

and det(B̂). trace(ˆ̃Bk) = trace(B̂k) and det(ˆ̃Bk) = det(B̂k) since TS is an isometric vector transport.

The determinant of the update formula is

det(B̂k+1) = det(B̂k)
g(yk, sk)

g(sk, B̃ksk)
[1 + φk(µk − 1)], (3.16)

where µk = (g(yk, B̃−1
k yk)g(sk, B̃ksk))/g(yk, sk)

2. With φk ≥ (1 − ν)φck and φck = 1/(1 − µk), it is

not hard to have the inequality det(B̂k+1) ≥ det(B̂k) g(yk,sk)

g(sk,B̃ksk)
ν. With Lemma 3.10, we have

det(B̂k+1) ≥ det(B̂k)
1

a10αk
ν ≥ det(B̂1)

k∏
j=1

1

a10αj
νk.

The trace of the update formula is

trace(B̂k+1) = trace(B̂k)+
‖yk‖2

g(yk, sk)
+φk

‖yk‖2

g(yk, sk)

g(sk, B̃ksk)
g(yk, sk)

−(1−φk)
‖B̃ksk‖2

g(sk, B̃ksk)
−2φk

g(yk, B̃ksk)
g(yk, sk)

.

(3.17)

Based on the Equation (3.1), the trace is monotone function of φk so that the inequalities with

trace(B̂k+1) as Equation (3.20) in [27] involving the trace still holds, that is

trace(B̂k+1) ≤ bk0.

We know det(B̂k+1) ≤ (
trace(B̂k+1)

d)d by inequality of arithmetic and geometric means, where d

is dimension of the manifold. Then

k∏
j=1

1

a10αj
≤ 1

det(B̂1)νk
(
trace(B̂k+1)

d
)d ≤ (bd0)k

det(B̂1)νkdd
.

These derives the inequality
∏k
j=1 αj ≥

det(B̂1)dd

(a10bd0)k
νk, so that there exists a constant a13 > 0 such

that
∏k
j=1 αj ≥ ak13 for all k ≥ 1.

Lemma 3.11 extends the bound of φk from [0, 1] to [(1− ν)φck, 1]. Note that the main difference

of proof between Lemma 3.11 and [27, Lemma 3.11] is ν.

3.6.2 Global Convergence Analysis

With the preliminary lemmas in place, the global convergence result for the RBroyden family

can be stated and proved in the same way as Theorem 3.1 in [27]:

35

Theorem 3.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold and (1 − ν)φck ≤ φk ≤ 1 − δ with

ν ∈ (0, 1), δ ∈ (0, 1] and φck defined in (3.13). Then the sequence {xk} generated by Algorithm 1

converges to a minimizer x∗ of f .

The next theorem states and proves the main convergence result for Algorithm 4. For clarity,

the superscripts and subscripts are reindexed as follows. Suppose B0
k is the initial guess and Bjk

with j = 1, 2, · · · , L are generated on the tangent space TxkM. Denote Bk := BLk . Notice that Bk
can be viewed as updating B0

k L times with the RBroyden formula. The curvature pairs {s(k)
j , y

(k)
j }

with j = 0, 1, · · · , L − 1 are on the tangent space TxkM. One important difference compared to

the RBroyden family is that {s(k)
j , y

(k)
j } are generated at the iterate Bk−L+j but not at the iterate

Bjk, then transported to the current tangent space.

Theorem 3.2. Using Lemma 3.3, Lemma 3.7 and Lemma 3.9, suppose Assumptions 3.1, 3.2 and

3.3 hold and (1−ν)φ
(k)c
i ≤ φ(k)

i ≤ 1−δ. Then the sequence {xk} generated by Algorithm 4 converges

to a minimizer x∗ of f .

Proof. Consider det(B̂Lk) and trace(B̂Lk), the following inequalities are based on the formula (3.16)

and (3.17):

det(B̂Lk) ≥ det(B̂0
k)

L−1∏
j=0

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)

ν,

trace(B̂Lk) ≤ trace(B̂0
k) +

L−1∑
j=0

[
‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

+
‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)

g(y
(k)
j , s

(k)
j)

+ 2
|g(y

(k)
j ,Bjks

(k)
j)|

g(y
(k)
j , s

(k)
j)

]
,

where hat denotes the coordinates expressions of corresponding operators. The second inequality

is derived from the fact that the trace is a monotone function of φ
(k)
i when φ

(k)
i < 1. Notice that

det(B̂0
k) and trace(B̂0

k) are bounded since B̂0
k = 1/γkid. We then prove that det(B̂jk) is bounded

below and trace(B̂jk) is bounded above for j = 1, 2, · · · , L.

Suppose det(B̂jk) ≥M1 and trace(B̂jk) ≤M2, the inequality of the determinant has the form:

det(B̂j+1
k) ≥ det(B̂jk)

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)

ν. (3.18)

The fraction part on the right hand side can be rewritten as

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)

=
g(y

(k)
j , s

(k)
j)

‖s(k)
j ‖2

‖s(k)
j ‖2

g(s
(k)
j ,Bjks

(k)
j)
≥ a0

‖s(k)
j ‖2

g(s
(k)
j ,Bjks

(k)
j)

,

36

since
g(y

(k)
j ,s

(k)
j)

‖s(k)j ‖2
≥ a0 from Lemma 3.3. Then rewrite inverse of the fraction as

g(s
(k)
j ,Bjks

(k)
j)

‖s(k)
j ‖2

=
ŝTGB̂jkŝ
ŝTGŝ

=
ŝTG1/2G1/2B̂jkG

−1/2G1/2ŝ

ŝTG1/2G1/2ŝ
=
sTMs

sT s
,

where s = G1/2ŝ,M = G1/2B̂jkG
−1/2 and G is the matrix expression of the inner product. Notice

that trace(M) = trace(B̂jk) ≤M2. Hence
g(s

(k)
j ,Bjks

(k)
j)

‖s(k)j ‖2
≤M2 with the fact that the Rayleigh quotient

sTMs
sT s

is less than the upper bound of the largest eigenvalue, which is less than the sum of all the

eigenvalues. Combining the above we have:

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)
≥ a0/M2. (3.19)

Plugging all into (3.18) shows us the determinant inequality:

det(B̂j+1
k) ≥M1(a0/M2)ν.

Then we consider the inequality of trace(B̂j+1
k):

trace(B̂j+1
k) ≤ trace(B̂jk) +

‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

+
‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

g(s
(k)
j ,Bjks

(k)
j)

g(y
(k)
j , s

(k)
j)

+ 2
|g(y

(k)
j ,Bjks

(k)
j)|

g(y
(k)
j , s

(k)
j)

. (3.20)

Notice that
‖y(k)j ‖

2

g(y
(k)
j ,s

(k)
j)
≤ a9 by Lemma 3.9;

g(s
(k)
j ,Bjks

(k)
j)

g(y
(k)
j ,s

(k)
j)

≤ M2/a0 by (3.19);
‖s(k)j ‖

2

g(y
(k)
j ,s

(k)
j)
≤ 1/a0 by

Lemma 3.3;
‖Bjks

(k)
j ‖

‖s(k)j ‖
≤ ‖Bjk‖ ≤ trace(B̂jk) ≤ M2. The second and the third term in (3.20) are

bounded above with these inequalities. For the last term
|g(y(k)j ,Bjks

(k)
j)|

g(y
(k)
j ,s

(k)
j)

, it can be derived that

|g(y
(k)
j ,Bjks

(k)
j)|2

g(y
(k)
j , s

(k)
j)2

≤
‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

‖Bjks
(k)
j ‖2

g(y
(k)
j , s

(k)
j)

=
‖y(k)
j ‖2

g(y
(k)
j , s

(k)
j)

‖Bjks
(k)
j ‖2

‖s(k)
j ‖2

‖s(k)
j ‖2

g(y
(k)
j , s

(k)
j)
≤ a9

a0
M2

2 .

Hence the inequality of trace is as follows:

trace(B̂j+1
k) ≤M2 + a9 + a9M2/a0 +

√
a9/a0M2.

Since det(B̂0
k) and trace(B̂0

k) are bounded, there exists constants M3,M4 such that det(B̂Lk) ≥M3

and trace(B̂Lk) ≤M4 by recursion. And Bk = BLk as the one used for updating xk, we have

cos θk =
−g(gradf(xk), ηk)

‖gradf(xk)‖‖ηk‖
=
−g(gradf(xk), sk)

‖gradf(xk)‖‖sk‖
=
g(Bksk, sk)
‖Bksk‖‖sk‖

=
‖sk‖
‖Bksk‖

g(Bksk, sk)
‖sk‖2

.

37

Notice that ‖sk‖
‖Bksk‖ ≥ 1/trace(B̂k) ≥ 1/M4 since ‖Bksk‖‖sk‖ ≤ ‖B̂k‖ ≤ trace(B̂k). Also g(Bksk,sk)

‖sk‖2
≥ λmin,

where λmin is the minimum eigenvalue of B̂k and is bounded away from 0 because of the explicit

bound for det(B̂k) and trace(B̂k). There exists a constant δ = λmin/M4 > 0 such that

cos θk ≥ δ.

Therefore, applying Lemma 3.7 such that for all k,

f(xk+1)− f(x∗) ≤ (1− a5 cos2 θk)(f(xk)− f(x∗)) (3.21)

completes the proof.

3.6.3 R-Linear Convergence Analysis of the LRBroyden family

It is possible to show q-superlinear convergence rate for the RBroyden family of methods with

the restriction
∑

φk≤0
φk
φck
< ∞ [8]. For the LRBroyden family of methods, R-linear convergence is

stated and proved in the following theorem:

Theorem 3.3. Based on Theorem 3.2, then the sequence {xk} generated by Algorithm 4 satisfies

that, there is a constant 0 ≤ a15 < 1 such that

f(xk+1)− f(x∗) ≤ ak15(f(x1)− f(x∗)),

holds for all sufficiently large k.

Proof. By applying Inequality (3.21) k times,

f(xk+1)− f(x∗) ≤
k∏
i=1

(1− a5 cos2 θi)
k(f(x1)− f(x∗)). (3.22)

Since a5 cos2 θi ≥ a5δ
2 is bounded away from 0, we can find a constant a15 ∈ [0, 1), such that

f(xk+1)− f(x∗) ≤ ak15(f(x1)− f(x∗)), which completes the proof.

Notice that the proof of R-linear convergence rate of the LRBroyden family is much easier than

the RBroyden family (see Section 6.2.1 in [22]) due to the explicit bound for each cos θi. Even

though imposing the limited-memory constraint may decrease the convergence rate theoretically,

however, LRBroyden is still powerful since it reduces the complexity of storage and computational

time for each iteration. There is a significant amount of application evidence for the success of

LRBFGS in recent years. In the following chapters, the proposed LRBroyden family of methods is

implemented and analyzed with different test problems to compare with the state-of-art LRBFGS.

38

CHAPTER 4

EXPERIMENTS OF LRBROYDEN METHODS

The LRBroyden family of methods is designed for solving large-scale problems and therefore

it is preferred to keep the memory size reasonably small. The exploration and investigation of

this dissertation explores a more robust and efficient library of LRBroyden for solving large-scale

problem. The selection of the parameter φ
(k)
i plays a key role in determining the performance of

LRBroyden. The easiest way is to choose a constant φ, such as LRBFGS with φ = 0. A dynamic

φ
(k)
i is more complicated and is the main interest in this dissertation.

Experiments in this chapter are designed to isolate and address the aspects influencing the

performance of the proposed algorithm. When considering various members of the LRBroyden

family, their performances for different memory sizes become a notable aspect. It is crucial to bear

in mind that the emphasis is on keeping memory size small. Besides the choice of φ
(k)
i , the initial

stepsize α0 also plays an important role in the performance of LRBroyden. In Section 4.3, a constant

φ is tested to illustrate the relationship between φ and α0. LRBroyden with a constant φ does not

generally provide a better performance than LRBFGS with φ = 0, but some values are competitive.

In Section 4.4, a dynamic φ
(k)
i selection by Davidon [11] is introduced. The Davidon’s choice of

φ
(k)
i incorporating with LRBroyden outperforms LRBFGS in the synthetic problems constructed

on Euclidean space and the Stiefel manifold. In the next chapter, a hybrid strategy φ
(k)
i between

the choices of Davidon and BFGS is considered.

4.1 Test Problems and Test Data Parameters

We consider quadratic problems in Euclidean space and four well-known optimization problems

defined on manifolds: minimization of the Brockett function on the Stiefel manifold, the low-rank

matrix completion problem on the 2-factor quotient representation for the fixed rank manifold,

finding a low-rank approximation for the solution of the Lyapunov equation on the manifold of

symmetric positive semidefinite fixed rank matrices, and the weighted low-rank approximation

problem on the fixed-rank manifold. All problems tested here are smooth and unconstrained.

39

4.1.1 Euclidean Quadratic

A quadratic problem in Euclidean space is defined for symmetric positive definite A ∈ Rd×n as

min
x∈Rd

0.5xTAx.

It is easy to track the true Hessian so that the behavior of the algorithms can be analyzed according

to the eigenvalues of Hessian.

In the experiments, the Hessian matrix is set to be A := QDQT , where D is diagonal. Q

is obtained by applying Matlab ORTH command on a matrix whose entries are drawn from the

standard normal distribution. The initial point x0 is generated by the standard normal distribution.

The Euclidean quadratic problem is parameterized to easily control the eigenvalues of Hessian

matrix and is used to probe characteristics of Hessian that indicate an advantage for particular

members of the LRBroyden family [8].

4.1.2 Brockett Cost Function on the Stiefel Manifold

The minimization problem of the Brockett cost function [1] on the Stiefel manifold St(p, n) :=

{X ∈ Rn×p : XTX = Ip} has the following form:

min
X∈St(p,n)

f(X) = trace(XTAXN), (4.1)

where N = diag(µ1, · · · , µp) with 0 < µ1 < · · · < µp, A ∈ Rn×n and A = AT . The tangent space of

the Stiefel manifold is

TXSt(p, n) = {XΩ +X⊥K : ΩT = −Ω,K ∈ R(n−p)×p}.

Viewing St(p, n) as an embedded submanifold of the Euclidean space Rn×p, the metric endowed

from the Euclidean space is

g(ξX , ηX) = trace(ξTXηX),

where ξX , ηX ∈ TXSt(p, n). The corresponding Riemannian gradient is

gradf(X) = PX(2AXN),

where the projection PX(ξX) = ξX − Xsym(XT ξX) is onto TXSt(p, n) with sym(M) := (M +

MT)/2. The retraction is taken to be

RX(ηX) = qf(X + ηX),

40

where qf(A) denotes the Q factor of the QR decomposition of A ∈ Rn×p∗ with strictly positive

elements on the diagonal of R.

In the experiments, A = M+MT where the elements of M are drawn from the standard normal

distribution; N = diag(1, · · · , p − 1, p) is a diagonal matrix whose diagonal elements are integers

from 1 to p. The initial point X0 is generated by applying Matlab’s function ORTH to a matrix

whose elements are drawn randomly from the standard normal distribution.

4.1.3 Low-rank Matrix Completion

Let A ∈ Rm×n be an m×n matrix that is only known on a subset Ω of the complete set of entries

{1, · · · ,m}× {1, · · · , n}. The low-rank matrix completion optimization problem (see [57, 35, 6]) is

defined as

min
X∈Mr

f(X) :=
1

2
‖PΩ(X −A)‖2F ,

where

Mr := {X ∈ Rm×n : rank(X) = r}

and

PΩ : Rm×n → Rm×n, Xi,j 7→
{
Xi,j , if (i, j) ∈ Ω
0, if (i, j) /∈ Ω.

A popular way to parameterize fixed-rank matrices is through full-rank factorization [15]. A

rank r matrix X ∈Mr is factorized as

X = GHT ,

where G ∈ Rm×r∗ and H ∈ Rn×r∗ are full column-rank matrices. Such a factorization is not unique

as X remains unchanged by

(G,H) 7→ (GM−1, HMT),

for any non-singular matrix M ∈ GL(r) where the set GL(r) denotes the general linear group of

degree r.

Consider a product space M̄r := Rm×r∗ ×Rn×r∗ of matrices with full column rank r, the projection

π : Rm×r∗ ×Rn×r∗ →Mr : (G,H) 7→ GHT induces the equivalence relation ∼ on M̄r. The structure

of the fibers of π can be characterized by the linear group GL(r). Hence Mr can be defined as a

quotient space

Mr := M̄r/GL(r) ' Rm×r∗ × Rn×r∗ /GL(r).

41

The product space M̄r is referred to as the total space. A point in M̄r is denoted by x̄ = (Gx̄, Hx̄)

or simply (G,H). The tangent space to M̄r at x̄ is Tx̄M̄r = Rm×r × Rn×r. Given a matrix

X ∈ Mr and a tangent vector ξ ∈ TXMr, the mapping π induces infinitely many representations

of ξ : for x̄ ∈ π−1(X), any element ξ̄ ∈ Tx̄M̄r that satisfies Dπ(x̄)[ξ̄] = ξ can be considered as

a representation of ξ. Decompose the tangent space Tx̄M̄r := Vx̄ ⊕ Hx̄, where the vertical space

Vx̄ := Tx̄(π−1(X)) is the tangent space at x̄ to the equivalence class [x̄] and the horizontal space

Hx̄ is the complementary of Vx̄. Consequently, there is a unique representation ξ̄ ∈ Hx̄ ⊂ Tx̄M̄r

of ξ such that Dπ(x̄)[ξ̄] = ξ. The tangent vector ξ̄ is called the horizontal lift of ξ.

The optimization of a real-valued function f onMr can be seen as the following matrix factor-

ization optimization problem:

min
(G,H)∈Rm×r∗ ×Rn×r∗

f̄(G,H) := f ◦ π(G,H).

The Riemannian metric on the total space M̄r has the form

ḡx̄(ξ̄x̄, η̄x̄) = trace(ξ̄TGη̄G(HTH)) + trace(ξ̄TH η̄H(GTG)),

where x̄ = (G,H) ∈ M̄r, ξ̄x̄, η̄x̄ ∈ Tx̄M̄r are denoted as (ξ̄G, ξ̄H), (η̄G, η̄H). Given the horizontal

lifts ξ̄x̄, η̄x̄ ∈ Hx̄M̄r as the matrix representation of tangent vectors to the quotient manifold Mr,

a metric g in Mr is induced such that, for any X ∈Mr and ξX , ηX ∈ TXMr,

gX(ξX , ηX) = ḡx̄(ξ̄x̄, η̄x̄).

The Riemannian gradient has the form

gradf(G,H) = (G− SH(HTH)−1, H − STG(GTG)−1),

where S = PΩ(MNT −A) and the retraction is taken to be

R(G,H)(η̄G, η̄H) = (G+ η̄G, H + η̄H),

where η̄x̄ ∈ Hx̄M̄r.

In the experiments, the matrix is defined as A := ALA
T
R, where AL ∈ Rm×r, AR ∈ Rn×r with

i.i.d. standard Gaussian entries; the set of observations Ω is sampled uniformly at random among

all sets of |Ω|. As for the initial point X0, instead of taking a random guess, we use the r leading

singular vectors U, V with corresponding diagonal matrix D(entries are leading singular values) of

42

A to construct X0 = UDV T . This is an effective way to avoid being far away from the global

optimizer. We use two parameters rank(r) and oversampling ratio(OS) to control the difficulties

of the problem, where the oversampling ratio is defined as the ratio of the number of samples to

the degrees of freedom in a non-symmetric matrix of rank r (OS = |Ω|/(r(m+ n− r))).

4.1.4 Computing Low-rank Solutions of Lyapunov Equations

A generalized Lyapunov equation has the form

AXMT +MXAT = C, (4.2)

where A,M are symmetric positive definite and C is symmetric positive semidefinite given matri-

ces. The solution X is symmetric and unique positive semidefinite matrix. It is widely used in

signal processing, model reduction, system and control theory. As an alternative to factorization-

based methods for solving a Lyapunov equation, Vandereycken and Vandewalle [58] proposed a

method based on optimizing an objective function on the Riemannian manifold of symmetric pos-

itive semidefinite matrices of fixed rank. The cost function is defined as:

F : S+(n, n)→ R : X 7→ trace(XAXM)− trace(XC),

where S+(n, n) denotes the symmetric positive semidefinite matrices. Adding low-rank constraints,

we have

min
X∈S+(r,n)

f(X) = trace(XAXM)− trace(XC),

where S+(r, n) = {Y Y T : Y ∈ Rn×r∗ } denotes the symmetric positive semidefinite n × n matrices

with fixed rank r, and Rn×r∗ denotes all full-rank real n× r matrices.

The tangent space is TY Y TS+(p, r) = {Y Ẏ T + Ẏ Y T |Ẏ ∈ Rn×r, Ẏ = Y S + Y⊥K,S = ST ∈

Rr×r,K ∈ R(n−r)×r}. Viewing S+(r, n) as an embedded submanifold of Rn×n, the Riemannian

metric endowed from Euclidean inner product is

g(ξX , ηX) = trace(ξTXηX),

where ηX , ξX ∈ TXS+(r, n). The corresponding Riemannian gradient has the form

gradf(X) = PTXS+(r,n)(AXM +MXA− C),

where PTXS+(r,n)(Z) = PY ZPY + P⊥Y ZPY + PY ZP
⊥
Y , P

⊥
Y = I − PY , PY = Y (Y TY)−1Y T . The

retraction is taken to be

RX(ηX) = PS+(r,n)(X + ηX),

43

where the projection PS+(r,n)(Z) =
∑r

i=1 σiviv
T
i , Z = V ΣV T , V = [v1, · · · , vn],Σ = diag(σ1, · · · , σn)

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Details are in [58].

In the experiments, the matrices A,M,C are generated from the semidiscretization of a steel rail

cooling problem [39] with dimension 821 and 3113, and the initial point Y is generated randomly

from the standard normal distribution.

4.1.5 Weighted Low-rank Approximation

The weighted low-rank approximation problem [34] determines a matrix approximation X of a

given matrix R with respect to a certain weighted norm

min
X∈Mr

f(X) = ‖R−X‖2W ,

where R ∈ Rm×n is given,Mr denotes the matrices with rank r, W ∈ Rmn×mn is a positive definite

symmetric weighting matrix, ‖R − X‖2W = vec{R − X}TWvec{R − X} and vec{A} denotes the

vectorized form of a matrix A.

Using the singular value decomposition [20], Mr = {UDV T : U ∈ St(m, r), V ∈ St(n, r), D =

diag(σ1, · · · , σr), σ1 ≥ · · ·σr > 0}, where St(m, k) = {X ∈ Rm×k|XTX = Ik} is the Stiefel

manifold. This representation is not unique but the update is established based on the unique

associated tangent vector [62]. For ∀X = UrDrV
T
r ∈Mr, TXMr := {UrAV T

r +UrBV
T
r⊥+Ur⊥CV

T
r :

A,B,C are arbitrary matrices}. The Riemannian metric inherited from Rm×n is

g(ξX , ηX) := 〈ξX , ηX〉F = vec{ξX}Tvec{ηX}

with X ∈ Mr and ξX , ηX ∈ TXMr. The orthogonal projection onto the tangent space at X =

UrDrV
T
r ∈ Mr is PX : Rm×n → TXMr, Z → PXZ = UrU

T
r Z + ZVrV

T
r − UrUTr ZVrV T

r . The

resulting Riemannian gradient on fixed-rank manifold Mr is

gradfr := −PX(2vec−1(Wvec{R−X})).

The retraction is taken to be

RX(ηX) = PMr(X + ηX),

where PMr(Z) =
∑r

i=1 σiuiv
T
i , Z = UΣV T , U = [u1, · · · , umin(m,n)], V = [v1, · · · , vmin(m,n)], Σ =

diag(σ1, · · · , σmin(m,n)) and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

In the experiments, the real matrix R is generated as R1R
T
2 ∈ Rm×n, where R1 ∈ Rm×r and

R2 ∈ Rn×r are drawn from the standard normal distribution. The weighted matrix W has the form

44

UΣUT with U orthonormal and Σ diagonal. We control W by setting the diagonal of Σ a vector of

logarithmically spaced points (logspace(−1, 1) for 10−1 and 10) multiplied element-wise by a vector

drawn from the uniform distribution on [0.5, 1.5]. The initial point X0 := U0D0V
T

0 is generated

with D0 ∈ Rr×r randomly from the standard normal distribution, and U0 ∈ Rm×r, V0 ∈ Rn×r

by applying Matlab’s function ORTH to a matrix whose elements are drawn randomly from the

standard normal distribution.

4.2 Notation and Algorithm Parameters

In the experiments, LRBFGS, which employs the two-loop recursion form proposed in Huang et

al. [27], serves as the benchmark for evaluating members of the LRBroyden family. Both LRBFGS

and LRBroyden are tested with intrinsic representation and vector transport by parallelization.

Let L denotes the memory size; iter, nf, ng, nV, nR denote the number of iterations, the number of

function evaluations, the number of gradient evaluations, the number of actions of vector transport

and the number of actions of a retraction respectively; gff denotes the final norm of the gradient

and gff/gf0 denotes the ratio of the final norm of the gradient over the initial, t denotes the average

run time (seconds). To obtain sufficiently stable timing results, an average time is taken of 10 runs

with identical parameters and same initial conditions. The comparisons presented are performed

in Matlab 9.8.0 on a Mac platform with 2.7 GHz and 8 GB memory.

Unless otherwise indicated in the description of the experiments, the following linesearch pa-

rameters are used for LRBFGS and LRBroyden.

• Line Search type: Wolfe condition with constants c1 = 10−4 and c2 = 0.999;

• Initial stepsize: ONESTEP[α0 = 1];

• Initial inverse Hessian approximation: H0
k = γkid where γk =

g(sk−1,yk−1)
g(yk−1,yk−1) ;

• Stopping criteria: ‖gff‖/‖gf0‖ < 10−6(final norm of gradient over the initial).

The initial Hessian approxiamtion H0
0 is set to be the identity matrix. After one iteration is

completed, all methods update with H0
k = γkid, where γk =

g(sk−1,yk−1)
g(yk−1,yk−1) is the Barzilai-Borwein

(BB) scaling [2] that attempts to estimate the size of the true Hessian matrix (see [38])) along the

most recent search direction. Once the search direction is determined after the limited-memory

procedure, the stepsize αk determines how far the iterate moves. γk =
g(sk−1,yk−1)
g(yk−1,yk−1) with α0 = 1

is an effective way of introducing the scale for LRBFGS (see [33] and [38]), hence are set as the

45

Table 4.1: Comparison of LRBFGS and LRDavidon without historical usage for the Stiefel Brockett

problem. The subscript −k indicates a scale of 10−k.

(n, p) (1000,5)

method LRBFGS LRDavidon

L 1 2 4 8 16 1 2 4 8 16

iter 629 589 529 488 469 683 693 609 523 525
nf 681 630 564 514 493 738 740 623 538 541
ng 631 590 530 489 470 684 694 610 524 526
nV 680 629 563 513 493 737 739 622 537 540
nR 1259 1177 1059 976 939 1365 1386 1218 1045 1050
gff 5.86−4 6.14−4 6.06−4 6.07−4 6.17−4 6.17−4 6.04−4 6.05−4 6.14−4 6.25−4

gff/gf0 8.80−7 9.23−7 9.09−7 9.11−7 9.27−7 9.27−7 9.07−7 9.09−7 9.22−7 9.39−7

t 9.98−1 9.79−1 9.09−1 9.42−1 1.10 1.08 1.15 1.06 1.02 1.29

default parameters for LRBroyden. The influence of different values of α0 on the performance of

LRBroyden is assessed in the experiments.

To evaluate the performance of two different approaches to update φ
(k)
i for i = max{k −

L, 0}, · · · , k − 1 discussed in Section 3.5, the Stiefel Brockett problem is tested in this section.

The main difference between the two approaches is whether or not to use historical values of φ
(k)
i .

The results are indicative of the trends observed in both Euclidean and Riemannian problems. In

the following experiments, the Stiefel Brockett problem is run 10 times with the same problem

setting but varying initial settings for each method with each memory size L. Table 4.1 presents

the results for LRBFGS and LRDavidon (see Section 4.4 for details) without historical usage, that

is, φ
(k)
i is calculated for each i and k.

Table 4.2 presents the results for LRDavidon with historical usage and LRDavidon with histori-

cal usage but adopting the convergence bounds (3.14). At step k, both of them utilize the historical

values φ
(k)
i from the previous step k− 1, where φ

(k)
i = φ

(k−1)
i for i = max{k−L, 0}, · · · , k− 2 with

only φ
(k)
k−1 being set or computed at step k. It is worth noting that LRDavidon with historical usage

fail to converge when L = 2, 4, as indicated in the row “# fail”. The average numbers of φ
(k)
i out

of the bounds (3.14) are shown as the row “# φ
(k)
i out of bounds/ # total φ

(k)
i ”.

In all the remaining experiments in this dissertation, the φ
(k)
i values in the LRBroyden family

are computed or set directly without historical storing. To avoid the failure of convergence, a

safeguard for φ
(k)
i is set as follows

φ
(k)
i =

{
0, if φ

(k)
i ≤ 0.95φ

(k)c
i or φ

(k)
i ≥ 0.95

φ
(k)
i , otherwise.

(4.3)

46

Table 4.2: Comparison of LRDavidon with historical φ
(k)
i vs LRDavidon with historical φ

(k)
i adopt-

ing the convergence bounds that φ
(k)
i = 0 if φ

(k)
i ≤ 0.95φ

(k)c
i or φ

(k)
i ≥ 0.95 for the Stiefel Brockett

problem. The subscript −k indicates a scale of 10−k.

(n, p) (1000,5)

method LRDavidon with historical φ
(k)
i LRDavidon with historical φ

(k)
i adopting (3.14)

L 1 2 4 8 16 1 2 4 8 16

fail - 10 10 7 0 0 0 0 0 0

φ
(k)
i out of bounds/ # total φ

(k)
i - - - - - 0/683 246/1325 338/2758 259/4412 248/8312

iter 683 43 100 327 520 683 663 691 555 517
nf 738 99 153 381 532 738 704 712 571 532
ng 684 44 101 328 521 684 664 692 556 518
nR 737 98 152 380 531 737 703 711 570 531
nV 1365 87 199 655 1040 1365 1326 1381 1110 1034
gff 6.17−4 2.751 1.181 1.66 6.34−4 6.17−4 6.28−4 5.60−4 5.87−4 6.37−4

gff/gf0 9.27−7 4.14−2 1.77−2 2.49−3 9.53−7 9.27−7 9.43−7 8.41−7 8.82−7 9.57−7

t 9.77−1 1.46−1 2.37−1 6.61−1 1.21 10.00−1 9.94−1 1.10 1.02 1.21

The guarded value of φ
(k)
i is set to be the BFGS update since it satisfies the convergence condition

and BFGS update is the benchmark in the tests. The utilization of historical φ
(k)
i within LRBroyden

does not yield substantial benefits and the convergence guard (4.3) is critical to the robustness of

LRBroyden.

4.3 LRBroyden with Constant φ

A constant φ strategy is the simplest way to select a method in the (L)RBroyden family and po-

tentially achieving effective convergence, e.g., (L)RBFGS method with φ = 0. The first experiment

for LRBroyden is to compare the performances when a constant φ is selected. Besides the value

of constant φ, another consideration for the experiments in this section is the initial stepsize α0.

When γk is chosen to ensure that the search direction is well scaled, α0 determines the efficiency

of the line search.

For the non-limited-memory Broyden update (2.3) in Euclidean space, Liu and Vander Wiel

[32] gave an optimal estimation of the stepsize in the following formula:

α̂
(k+1)
0 =

gTk+1B
−1
k+1gk+1

gTk+1B
−1
k+1gk+1 − φk(sTkBk+1sk)(g

T
k+1B

−1
k+1vk)

2
, (4.4)

where vk, Bk+1 are defined in Equation (2.3) and gk+1 = gradf(xk+1). For BFGS (φk = 0) update,

the optimal estimation is α̂
(k+1)
0 = 1. For Broyden update with a negative parameter (φk < 0),

the optimal estimation is α̂
(k+1)
0 < 1. For Broyden update with a positive parameter (φk > 0), the

optimal estimation is α̂
(k+1)
0 > 1. Zhang and Tewarson [61] commented that their algorithms in the

47

Euclidean Broyden family using negative φk improve iteration counts but little or no savings are

achieved on the number of function evaluations. This is because the initial steps are often too long

to provide a sufficient decrease in the function value and a large number of line search iterations

result.

The non-limited-memory Broyden does not have the scaling term γk in each iterate. However,

the findings by Liu and Vander Wiel [32] underscores the importance of α0 on the performance of

different members within Broyden family. Consider the default parameter settings γk =
g(sk−1,yk−1)
g(yk−1,yk−1)

and α0 = 1 mentioned in Section 4.2, which is a good choice for LRBFGS. If this combination is not

suitable for other members in the (L)RBroyden family, many function evaluations may be required

to find a suitable value for the stepsize under the Wolfe conditions. The hypothesis here is that

without changing the BB scaling γk =
g(sk−1,yk−1)
g(yk−1,yk−1) , a shortened or lengthened α0 can improve the

performance of (L)RBroyden.

The experiments in this section are designed to illustrate and validate the influence of α0

on the performance of LRBroyden. For LRBroyden, α0 is employed after B0
k ≡ Blk → B

l+1
k →

· · · → Bkk and H0
k ≡ Hlk → H

l+1
k → · · · → Hkk with l = max{k − L, 0}, thereby hindering the

utilization of the optimal α0 as proposed by Liu and Vander Wiel [32]. Instead, the value of

α0 is selected as a constant from the set [−0.5,−0.4,−0.3, · · · , 0.5]. Various α0 are tested to

compare performances across different values of a φ, where φ is selected as a constant from the set

[−0.5,−0.45,−0.4, · · · , 0.45, 0.5]. All other parameters are the same as mentioned in Section 4.2.

Four cases are tested here: (a) Stiefel Brockett with n = 1000, p = 1; (b) Stiefel Brockett with

n = 1000, p = 5; (c) Low-rank matrix completion with m = n = 1000, r = 5, OS = 2.5; (d) Steel

Rail Cooling with n = 3113, r = 5. Problems are generated by the same procedure as in Section

4.1. Memory size is fixed as L = 4.

Figure 4.1 compares the required nf for case (a) Stiefel Brockett with n = 1000, p = 1 when

various of α0 are selected with φ = −0.25. It is evident that an α0 around 0.75 delivers superior

performance compared to α0 = 1. Performance deteriorates rapidly when α0 is either excessively

large or exceedingly small. The finding aligns with the results presented by Liu and Vander Wiel [32]

and provides the impact of α0 on the performance of LRBroyden. In the forthcoming experiments,

we use the term “best-tuned α0” to denote the specific value of the constant α0 that yields the best

performance of LRBroyden across the α0 set with the comparison metric chosen as the number of

function evaluations (nf).

48

Figure 4.1: φ = −0.25: averaging nf derived from 10 runs versus α0.

In Figure 4.2, the blue dots represent the best-tuned α0 when a specific φ is selected. These

y-axis values are computed by averaging the best-tuned α0 from 10 runs with identical parameters

but different initial conditions. The red plus signs represent the averaging nf values derived from

10 runs with different initial conditions when the specific φ and the best-tuned α0 are selected. In

the left blue dots graph, a negative φ uses α0 < 1 for better performance while a positive φ uses

α0 > 1. Notice that α0 around 1 is proven to be optimal for LRBFGS. This observation aligns

with the theoretical conclusion of Liu and Vander Wiel [32] for the Euclidean Broyden update. In

the right red plus graph, a closer-to-zero φ provides a better performance and LRBFGS keeps its

dominance over other constant φ.

For a negative constant φ, LRBroyden in case (a), (b), (d) demonstrate competitive performance

to LRBFGS. Note that φ adheres to the convergence safeguard criteria as defined in (4.3) to

guarantee convergence. Consequently, some updates use the BFGS update rather than the Broyden

family when a negative constant φ is employed. Table 4.3 provides the proportions of how many

φ = 0 (in the parenthesis) to the total count of φ. When φ is close to −0.5, all four cases exhibit

a substantial occurrence of φ = 0. For cases (a) and (c), the proportion of φ = 0 is diminished

49

Table 4.3: Number of steps using the BFGS update for cases (a), (b), (c), (d) as depicted in Figure

4.2 when the constant φ is negative. The reported numbers represent the total count of φ, with the

count of instances using the BFGS update enclosed in parentheses due to the convergence safeguard

criteria (4.3).

φ -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05

(a) 586(178) 577(124) 574(119) 578(114) 568(103) 575(88) 572(75) 562(35) 558(15) 532(3)
(b) 2914(1313) 3013(1401) 3034(1189) 2753(1162) 2718(976) 2703(978) 2694(780) 2698(699) 2681(648) 2690(522)
(c) 348(64) 339(59) 343(58) 348(51) 352(40) 331(39) 338(26) 325(17) 318(3) 310(0)
(d) 1454(571) 1434(521) 1386(494) 1374(393) 1326(406) 1337(374) 1218(321) 1318(321) 1242(269) 1249(217)

significantly as φ approaches 0. Conversely, for cases (b) and (d), the proportion of φ = 0 is

diminished from over 1/3 to less than 1/5 as φ ranges from −0.5 to 0.

The results in this section reveal that LRBroyden exhibits suboptimal performance when sub-

jected to a positive constant φ that deviates from zero. The reasoning behind this is that if φ

increases further to φ = 1, the algorithm employes the DFP update, known for its lackluster prac-

tical performance [38]. On the contrary, adopting a negative constant φ in LRBroyden results in

frequent utilization of the BFGS updates, owing to the convergence safeguard criteria (4.3) imposed

on φ. Despite employing a careful selection of α0, LRBroyden with a constant φ struggles to achieve

a higher level of robustness compared to LRBFGS. This leads us to consider dynamically choosing

of φ for a more robust and efficient LRBroyden algorithm, which is disclosed in the next section.

4.4 Davidon’s Choice of φ
(k)
i

In the preceding section, it was observed that a constant φ does not consistently deliver com-

parable or better performance than LRBFGS. In this section, we explore Davidon’s [11] strategy

for generating φk and incorporate it into LRBroyden. Tests are conducted using the synthetic

Euclidean quadratic problem the Stiefel Brockett problem, allowing us to compare the performance

of LRBFGS and LRBroyden when utilization Davidon’s φ
(k)
i .

4.4.1 Optimally Conditioned Method

Davidon [11] defines an “optimally conditioned” update for φk by minimizing the condition

number of B−1
k Bk+1. The condition number of a nonsingular matrix A is defined as κ(A) :=

‖A‖2‖A−1‖2. If A is symmetric and positive definite, κ(A) is the ratio of the largest to the smallest

eigenvalue of A. Following the update (2.3) in Euclidean form, it has been proved that κ(Bk+1) ≤

κ(Bk) · κ(B
−1/2
k Bk+1B

−1/2
k). Since B

−1/2
k Bk+1B

−1/2
k is a rank two update of the identity, it has

50

(a) Stiefel Brockett: n = 1000, p = 1, L = 4

(b) Stiefel Brockett: n = 1000, p = 5, L = 4

(c) Low-rank matrix completion: m = 1000, n = 1000, r = 5, OS = 2.5, L = 4

(d) Steel Rail Cooling Problem: n = 3113, r = 5, L = 4

Figure 4.2: Performance of LRBroyden with different fixed φ values. Left: the best-tuned
α0 versus φ; Right: averaging nf versus φ.

51

Table 4.4: Range of φDk with different values of a, b, c.

b(a−b)
ac−b2

b
b−c φDk

b ≤ a, c (0, 1) < φck (0, 1)
a > b > c > 1 > 1 (1, φSR1

k]
a < b < c (φck, 0) (φck, 0) [φSR1

k , 0)

two eigenvalues denoted as λ±(φk) and remaining are unit eigenvalues. Minimizing the condition

number of B−1
k Bk+1 is then equivalent to

min
φk

max(λ+(φk), 1)

min(λ−(φk), 1)
, λ−(φk) > 0.

Given the RBroyden update formulas (3.1) and (3.8), the Riemannian version of the strategy can

be generalized as:

φDk =


g(yk,sk)(g(yk,H̃kyk)−g(yk,sk))

g(sk,B̃ksk)g(yk,H̃kyk)−g(yk,sk)2
, if g(yk, sk) ≤ 2g(sk,B̃ksk)g(yk,H̃kyk)

g(sk,B̃ksk)+g(yk,H̃kyk)
g(yk,sk)

g(yk,sk)−g(sk,B̃ksk)
, otherwise.

The first value g(yk,sk)(g(yk,H̃kyk)−g(yk,sk))

g(sk,B̃ksk)g(yk,H̃kyk)−g(yk,sk)2
is equal to φck(1− g(yk, H̃kyk)/g(yk, sk)) and is therefore

greater than φck (3.13). The second g(yk,sk)

g(yk,sk)−g(sk,B̃ksk)
coincides with the parameter for SR1 update

(2.7) and can also be proved to be greater than φck. If a = g(yk, H̃kyk), b = g(yk, sk), c =

g(sk, B̃ksk), the two values in the expression φDk are b(a−b)
ac−b2 and b

b−c respectively. Table 4.4 shows

values of φDk in three different situations, where φDk is guaranteed to be greater than φck. The only

situation that falls outside the bound (1−ν)φck ≤ φk ≤ 1−δ in Theorem 3.2 is when a > b > c, that

φDk ∈ (1, φSR1
k]. However, with the condition b > c, the denominator term of the SR1 update (2.7)

is guaranteed to be positive. The trace is therefore bounded above which ensures the convergence.

Denote a = g(yk, H̃kyk), b = g(yk, sk), c = g(sk, B̃ksk). The values of a and c can be ob-

tained directly in Algorithm 3 while b is calculated and stored during the updates in Algorithm 4.

This optimally conditioned idea of choosing φk does not require extra computations since it uses

parameters that are already computed.

Byrd et al. [8] and Huang et al. [27] show that (R)Broyden with Davidon’s φ performs bet-

ter than (R)BFGS in the specific setting where the initial Hessian approximation is set to be a

diagonal matrix with one extremely large element. The better performance can be explained by

the self-correcting property [10, 8] of the Broyden family. From the determinant of the Hessian

52

approximation Equation (3.16):

det(B̂k+1) = det(B̂k)
g(yk, sk)

g(sk, B̃ksk)
[1 + φk(µk − 1)],

when g(sk, B̃ksk) is small compared to g(yk, sk), the determinant increases hence some of the eigen-

values of B̂k increases. With the fact that µk ≥ 1 and 1 + φk(µk − 1) > 0, the ability to correct

small eigenvalues is strong when φk ≥ 0. From the trace of the Hessian approximation Equation

(3.17):

trace(B̂k+1) = trace(B̂k)+
‖yk‖2

g(yk, sk)
+φk

‖yk‖2

g(yk, sk)

g(sk, B̃ksk)
g(yk, sk)

−(1−φk)
‖B̃ksk‖2

g(sk, B̃ksk)
−2φk

g(yk, B̃ksk)
g(yk, sk)

,

the fourth term on the right-hand side is the only one that is guaranteed to be negative. Thus, we

must rely on this term to reduce the trace of B̂k. When φk < 0, the fourth term remains negative

and increases in magnitude and the third term becomes negative, hence the update is more able

to correct large eigenvalues. This is consistent with the φDk formula that negative φDk is selected

when g(yk, H̃kyk) < g(yk, sk) < g(sk, B̃ksk) (Table 4.4). When there are large eigenvalues in the

Hessian approximation, g(sk, B̃ksk) tends to be large and a negative φDk is chosen to correct the

large eigenvalues.

4.4.2 Experiments in Euclidean Space

In the context of the limited-memory Broyden algorithm in Euclidean space, previous research

has not presented conclusive evidence supporting the selection of φ
(k)
i that outperforms the BFGS

update, as detailed in Section 2.3. This section is dedicated to designing experiments that aims to

showcase the scenarios in which LRBroyden with Davidon’s φ
(k)
i (LRDavidon) demonstrates supe-

rior perfomrance compared to LRBFGS. Our experimental approach is motivated by the findings

of Byrd, Liu and Nocedal [8] and Huang et al. [27] in the context of (R)Broyden.

The first experiment involves solving the quadratic problem in Euclidean space, i.e., min
x∈Rn

0.5xTAx.

The behavior of the algorithms can be analyzed based on the eigenvalues of the true Hessian A.

The Hessian matrix is constructed as A := QDQT , where Q is obtained by applying Matlab ORTH

command to a matrix whose entries are drawn from the standard normal distribution. D is diago-

nal with elements drawn from the uniform distribution on the interval (0, 1]. In the first case, one

element in D is set to 1000; in the second case, two elements in D are set to 1000, 999. Both cases

have invariable positive definite non-singular Hessian matrices. The initial point x0 is generated

from a standard normal distribution, and α0 is set to 1 for both LRBFGS and LRDavidon. The

53

chosen Euclidean geometry for LRDavidon and LRBFGS aligns with the Euclidean LBroyden [12]

and the Euclidean LBFGS [33].

The results are presented in Table 4.5 and 4.6. Both cases exhibit a condition number exceeding

106. The primary difference in the eigenvalues of A between the two cases lies in the value of the

second largest eigenvalue, which is 0.9973 and 999 respectively. In the first case, the largest eigen-

value 1000 is significantly larger than the other eigenvalues. This choice of eigenvalue distribution

is inspired by the experiments in [8] and [27] where (R)Broyden with Davidon’s φk demonstrated

strong performance. Table 4.5 reveals that LRDavidon outperforms LRBFGS in terms of iterations,

function evaluations and time for each value of L = 4, 8, 16, 32. In fact, the performance is better

by a factor of at least 2 for each L. The best performance in terms of time for LRDavidon (L = 32)

surpasses that of LRBFGS (L = 64).

In Table 4.6, LRDavidon consistently outperforms LRBFGS from L = 4 to L = 32, but the

degree of the superiority is smaller compared to the first case. This aligns with expectation, as the

property of an ”extremely largest eigenvalue” is diminished due to the eigenvalue 999. The least

computational time for LRDavidon (L = 32) is greater than for LRBFGS (L = 128). For L = 128

in the first case and L = 64, 128 in the second case, iterations, function evaluations and time are

either less than or very close to those of LRBFGS, but the computational time for LRDavidon

is greater than for LRBFGS. This discrepancy is attributed to the additional cost of LRDavidon

becoming more noticeable when the memory size is large. However, it is important to note that

the LRBroyden family of methods are typically considered for large-scale problems, and as such,

L should be kept low. In practice, it is important and natural to run with a fixed L as small as

possible for large-scale problems. The results in this section support the argument that LRDavidon

with a small L has the potential to be competitive or even superior for problems with local Hessians

characterized by skewed spectra.

54

Table 4.5: Comparison of LRBFGS and LRDavidon in Euclidean quadratic with n = 1000. The 3

largest and smallest eigenvalues of A are 1000, 0.9973, 0.9969 and 2.6×10−3, 1.8×10−3, 2.6×10−4.

The subscript −k indicates a scale of 10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 1306 855 678 513 326 174 114 1251 479 272 212 136 130 117
nf 1749 1049 813 612 379 194 121 1680 515 289 222 142 136 120
ng 1365 857 679 515 327 176 116 1317 480 273 213 137 132 118
nV 1748 1048 812 611 378 193 120 1679 514 288 221 141 135 119
nR 2669 1711 1356 1027 652 349 229 2567 958 543 424 272 261 234
gff 5.53−4 6.30−4 6.09−4 5.92−4 5.64−4 5.97−4 5.91−4 6.21−4 5.71−4 5.89−4 5.57−4 6.00−4 6.19−4 6.05−4

gff/gf0 8.52−7 9.19−7 9.23−7 8.95−7 8.59−7 8.61−7 9.12−7 9.19−7 8.56−7 8.63−7 8.50−7 8.81−7 9.05−7 8.67−7

t 9.95−1 6.16−1 5.06−1 4.08−1 2.96−1 1.84−1 1.91−1 9.43−1 3.13−1 1.90−1 1.66−1 1.35−1 2.22−1 3.96−1

Table 4.6: Comparison of LRBFGS and LRDavidon in Euclidean quadratic with n = 1000. The 3

largest and smallest eigenvalues of A are 1000, 999, 0.9971 and 2.4× 10−3, 1.7× 10−3, 2.4× 10−4.

The subscript −k indicates a scale of 10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 819 1297 1080 858 606 300 135 867 1093 726 537 322 222 123
nf 998 1454 1206 963 683 333 142 1055 1173 760 554 333 228 128
ng 827 1299 1082 860 607 302 136 876 1095 728 538 324 223 124
nV 997 1453 1205 962 682 332 141 1054 1172 759 553 332 227 127
nR 1644 2595 2161 1717 1212 601 270 1742 2187 1453 1074 645 444 246
gff 1.01−3 9.54−4 9.63−4 9.64−4 9.03−4 8.48−4 9.49−4 1.03−3 9.29−4 9.79−4 9.71−4 8.89−4 9.67−4 9.77−4

gff/gf0 9.33−7 8.92−7 8.95−7 8.97−7 8.68−7 7.99−7 8.72−7 9.57−7 8.68−7 9.19−7 8.67−7 8.36−7 8.95−7 8.98−7

t 6.42−1 9.92−1 8.00−1 6.96−1 5.74−1 3.56−1 1.96−1 6.51−1 7.81−1 5.60−1 4.40−1 3.50−1 4.54−1 4.51−1

4.4.3 Experiments on Riemannian Manifold

The experiments on Riemannain manifold are motivated by those in Euclidean space. On

a Riemannian manifold, the problem of Brockett cost function on the Stiefel Manifold (4.1) is

constructed with A := QDQT . Q is obtained by applying Matlab ORTH command to a matrix

whose entries are drawn from the standard normal distribution. In the cases presented in Table

4.7 and 4.9, D is diagonal with one element equal to 100 and others from the uniform distribution

on the interval (0, 1]. In the cases presented in Table 4.8 and 4.10, D is diagonal with all elements

drawn from the uniform distribution on the interval (0, 1]. N = diag(1, · · · , p− 1, p) is a diagonal

matrix whose diagonal elements being integers from 1 to p.

It can be observed that LRDavidon outperforms LRBFGS in Table 4.7 and 4.9, where the largest

eigenvalue significantly surpasses the others. For each value of L = 4, 8, 16, 32 in Table 4.7 and

L = 32, 64 in Table 4.9, LRDavidon’s performance is better by a factor of at least 2. Furthermore,

55

Table 4.7: Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with

n = 1000, p = 1, D is diagonal with one element equal to 100 and others from the uniform

distribution on the interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian at the solution

are 200, 1.997, 1.996 and 4.7 × 10−3, 1.2 × 10−3, 3.5 × 10−4. The subscript −k indicates a scale

of 10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 2200 1282 802 580 399 272 216 1942 633 339 256 222 217 204
nf 2785 1503 931 670 456 298 231 2451 695 364 269 230 223 209
ng 2212 1284 803 582 400 273 218 1953 634 341 258 223 218 206
nV 2784 1502 930 669 455 297 230 2450 694 363 268 229 222 208
nR 4411 2565 1604 1161 798 544 433 3894 1266 679 513 444 434 409
gff 5.79−6 5.88−6 5.69−6 5.95−6 5.55−6 5.02−6 5.73−6 5.91−6 6.13−6 5.47−6 5.28−6 5.80−6 5.73−6 5.52−6

gff/gf0 8.72−7 8.83−7 8.89−7 9.01−7 8.42−7 7.95−7 8.65−7 9.00−7 9.46−7 8.31−7 8.14−7 8.91−7 8.65−7 8.50−7

t 1.74 9.75−1 6.33−1 4.92−1 3.92−1 3.11−1 3.22−1 1.54 4.73−1 2.73−1 2.33−1 2.41−1 4.25−1 1.14

Table 4.8: Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =

1000, p = 1, D is diagonal with all elements from the uniform distribution on the interval (0, 1].

The 3 largest and smallest eigenvalues of Hessian at the solution are 1.993, 1.991, 1.990 and

5.6× 10−3, 3.5× 10−3, 1.6× 10−3. The subscript −k indicates a scale of 10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 271 220 200 197 180 163 160 275 256 226 203 190 170 166
nf 286 230 207 202 185 168 164 293 258 227 204 191 171 167
ng 272 221 201 198 181 164 161 276 257 227 204 191 171 167
nV 285 229 206 201 184 167 163 292 257 226 203 190 170 166
nR 542 440 400 394 360 325 319 550 513 453 406 379 339 331
gff 4.87−7 4.61−7 5.03−7 4.97−7 5.06−7 4.61−7 4.74−7 4.73−7 5.15−7 4.93−7 5.21−7 5.31−7 5.13−7 5.06−7

gff/gf0 8.57−7 8.12−7 8.85−7 8.75−7 8.91−7 8.11−7 8.33−7 8.32−7 9.07−7 8.68−7 9.17−7 9.34−7 9.04−7 8.90−7

t 2.31−1 2.24−1 2.20−1 2.25−1 2.23−1 2.19−1 2.24−1 2.33−1 2.36−1 2.29−1 2.34−1 2.36−1 2.79−1 3.55−1

in Table 4.9, LRDavidon remains competitive with LRBFGS for L = 4, 8. These observations align

with the experimental findings in Euclidean space when employing a low value of L.

In Table 4.8 and 4.10, LRDavidon is competitive to LRBFGS when L is maintained at a low

value. It is worth noting that the computational time for LRDavidon increases at a faster rate

than LRBFGS when L = 64, 128, consistent with observations made for the Euclidean quadratic

problems. The limited-memory characteristics of these methods are recommended for enhancing

robustness in dealing with large-scale problems. Choosing L as small as possible for LRBroyden

should always be kept in mind. The choices of L = 32, 64, 128 tested in this section primarily serve

to observe the behavior of each algorithm. However, it is worth noting that such large memory size

selections are seldom employed or taken into consideration in practical applications.

56

Table 4.9: Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with

n = 1000, p = 5, D is diagonal with one element equal to 100 and others from the uniform

distribution on the interval (0, 1]. The 3 largest and smallest eigenvalues of Hessian at the solution

are 1000, 800, 600 and 8.9× 10−4, 7.9× 10−4, 1.4× 10−5. The subscript −k indicates a scale of

10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 10896 9121 7777 6345 4225 2827 1787 9523 8985 8138 4904 1903 1213 1006
nf 11949 9740 8260 6784 4573 3084 1937 10442 9216 8334 5012 2059 1269 1026
ng 10897 9122 7778 6346 4226 2828 1788 9524 8986 8139 4905 1904 1214 1007
nV 11948 9739 8259 6783 4572 3083 1936 10441 9215 8333 5011 2058 1268 1025
nR 21792 18243 15553 12689 8451 5655 3574 19045 16970 16277 9807 3807 2426 2013
gff 1.61−4 4.31−5 4.19−5 4.41−5 4.25−5 4.23−5 4.32−5 4.87−5 4.76−5 4.14−5 4.36−5 4.23−5 4.35−5 4.37−5

gff/gf0 7.45−6 9.77−7 9.08−7 9.60−7 9.16−7 9.16−7 9.22−7 1.13−6 9.91−7 9.01−7 9.29−7 9.18−7 9.38−7 9.48−7

t 1.591 1.421 1.341 1.361 1.221 1.241 1.321 1.411 1.451 1.431 1.081 6.24 7.15 1.471

Table 4.10: Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem with n =

1000, p = 5, D is diagonal with all elements from the uniform distribution on the interval (0, 1].

The 3 largest and smallest eigenvalues of Hessian at the solution are 9.965, 9.953, 9.951 and

9.2× 10−4, 8.3× 10−4, 4.5× 10−4. The subscript −k indicates a scale of 10−k.

method LRBFGS LRDavidon

L 1 4 8 16 32 64 128 1 4 8 16 32 64 128

iter 1596 1304 1155 1200 1080 1044 934 1631 1446 1190 1230 1193 1143 974
nf 1714 1360 1180 1225 1104 1064 951 1748 1455 1192 1231 1194 1145 976
ng 1598 1305 1156 1201 1081 1045 935 1632 1447 1191 1231 1194 1144 975
nV 1713 1359 1179 1224 1103 1063 950 1747 1454 1191 1230 1193 1144 975
nR 3193 2609 2310 2400 2161 2087 1869 3262 2893 2380 2459 2385 2286 1948
gff 3.64−6 3.87−6 3.96−6 4.00−6 3.76−6 4.03−6 3.98−6 3.90−6 2.71−3 3.98−6 4.05−6 4.06−6 4.03−6 4.09−6

gff/gf0 8.61−7 9.15−7 9.35−7 9.45−7 8.89−7 9.53−7 9.41−7 9.21−7 6.20−4 9.42−7 9.57−7 9.60−7 9.53−7 9.67−7

t 4.30−1 4.24−1 4.32−1 4.27−1 4.32−1 4.45−1 4.50−1 4.39−1 4.35−1 4.36−1 4.54−1 4.59−1 4.85−1 7.65−1

57

4.4.4 Experiments on φ
(k)
i Distribution

This section leverages the self-correcting property to offer an interpretation of the preceding

observations. Distributions of Davidon’s φ
(k)
i , denoted as φ

(k)D
i , are illustrated in Figures 4.3, 4.4

and 4.5 in one typical run for each problem. The first two figures depict scenarios where LRDavidon

demonstrates significant superiority, while the third figure showcases the scenario where LRDavidon

exhibits similar performance to LRBFGS. While the mean of the distribution of φ
(k)D
i is close to 0,

the actual distribution deviates from 0. The existence of a range of φ
(k)D
i values, some significantly

different from 0, and the observed performance in the experiments indicate that the LRDavidon

update does indeed differ from the LRBFGS update.

For the Euclidean quadratic problem depicted in Figure 4.3, where LRDavidon demonstrates

significant superiority, the distribution of φ
(k)D
i is centered at 0 with a negativity bias. The mean

value of γk is approximately 0.6191, signifying the scaling of the initial inverse Hessian approxima-

tion, given that H0
k = γkid. In other words, B0

k is scaled by approximately 1/γk ≈ 1.6152, a value

that greater than all eigenvalues except the largest one (see the caption in Table 4.5). Figure 4.4

demonstrates similar outcomes. In another Riemmanian case that LRDavidon exhibits similar per-

formance to LRBFGS, illustrated in Figure 4.5, the distribution of φ
(k)D
i noticeably shifts towards

the right, with a greater concentration of positive values compared to negative ones.

Roughly speaking, when an extremely large eigenvalue exists in the Hessian matrix approaching

the solution, 1/γk that scales the initial Hessian approximation of LRBroyden tends to be larger

compared to the remaining eigenvalues. By introducing negative φ
(k)D
i , LRDaviden enhances its

capacity to effectively address the impact of these dominant eigenvalues more than LRBFGS does.

As a result, this enhancement contributes to the overall improvement in the performance of LR-

Broyden. The degree of superiority weakens as the skewness diminishes, but LRDavidon remains

competitive when the memory size L is maintained at a relatively small value. This is particularly

relevant for problems featuring a high-dimensional feasible set, where maintaining a small memory

size is necessary.

The last experiment in this chapter aims to illustrate the outstanding quality of φ
(k)
i values for

the BFGS and the Davidon updates. A perturbation is added to the value of φ
(k)
i for LRBFGS and

LRDavidon methods, adding or subtracting a random number in the range of (0, 0.01]. The meth-

ods with the randomness in the φ
(k)
i are denoted as “Perturbation LRBFGS” and “Perturbation

LRDavidon” in Figure 4.6. The settings of the test problem are the same as the synthetic Stiefel

58

Figure 4.3: φ
(k)D
i distribution for the Euclidean quadratic problem (Table 4.5) with L = 32.

Figure 4.4: φ
(k)D
i distribution for the Stiefel Brockett problem (Table 4.7) with L = 4.

59

Figure 4.5: φ
(k)D
i distribution for the Stiefel Brockett problem (Table 4.8) with L = 4.

Brockett problem in Table 4.9. The choices of BFGS and Davidon for φ
(k)
i in the LRBroyden fam-

ily of methods have clearly shown their good performance. However, their performance degrades

noticeably when φ
(k)
i is perturbed. The use of a perturbation in these experiments indicates that

this degradation occurs even when φ
(k)
i is in a neighborhood of 0 or φ

(k)D
i . Therefore, we conclude

that a variable φ
(k)
i is crucial to the robust performance of the limited-memory RBroyden family,

especially when L is kept relatively small for high-dimensional problems.

60

Figure 4.6: Comparison of LRBFGS and LRDavidon with perturbation in φ
(k)
i for the

Stiefel Brockett problem case in Table 4.7.

61

CHAPTER 5

RIEMANNIAN HYBRID LRDAVIDON-BFGS

METHOD

This chapter delves further into the study of the LRBroyden family of methods. Motivated by

the robustness exhibited by LRBFGS and LRDavidon within the entire family, we explore a hybrid

strategy for choosing φ
(k)
i between the options of Davidon and BFGS in Section 5.1. The synthetic

Euclidean quadratic problem tested in Table 4.5 is used to illustrate the advantage of the hybrid

method. Then in Section 5.2, more general matrix problems are tested for comparison of LRDavidon

and LRBFGS. The results demonstrate that LRDavidon is generally competitive for a wide range

of problems. Section 5.3 focuses on determining the parameter that controls the balance between

the choices in the hybrid strategy for each problem. Simultaneously, empirical investigation is used

to determine the initial stepsize for the optimal performance of the hybrid method. In Section

5.4, the hybrid strategy with heuristically selected parameters is shown empirically to achieve more

robust performance than LRBFGS and LRDavidon for general matrix problems.

5.1 Hybrid LRDavidon-BFGS Strategy for φ
(k)
i

LRBFGS with φ = 0 outperforms other members of LRBroyden family that use a constant φ.

Previous findings have demonstrated that the dynamic choice, LRDavidon with φ
(k)D
i , surpasses

LRBFGS in synthetic problems. For enhanced robustness, it makes sense to introduce a hybrid

method that can inherit the advantages from both choices. This section introduces a strategy by

adapting φ
(k)
i between the choices of Davidon and BFGS.

As shown in Section 4.4, Davidon’s φDk is determined by minimizing the condition number

of B−1
k Bk+1. However, the condition number of Davidon’s update may be very close to that of

BFGS. Therefore, it is natural to propose an algorithm that selects the Davidon’s update only

on the iterations that the optimal condition number is significantly smaller than the BFGS, and

selects the BFGS otherwise. Based on the discussion in [53], the formula for the hybrid strategy in

LRBroyden, denoted as φHk , has the following expression :

φHk =

{
φDk , if κ(BFGS) > δ κ(Davidon)
0, otherwise,

62

where κ represents the condition number of B−1
k Bk+1 at each update and δ ≥ 1 is a constant. Denote

a :≡ g(yk, H̃kyk), b :≡ g(yk, sk) and c :≡ g(sk, B̃ksk), the formula for κ(BFGS) and κ(Davidon) are

generalized to Rimannian manifold (see [53] for the expression in Euclidean space):

κ(BFGS) = [(a+ b)2c− 2b3 + (a+ b)
√

(a+ b)2c2 − 4b3c]/2b3,

κ(Davidon) =


[2ac− b2 + 2

√
a2c2 − ab2c]/b2, if 2ac > b(a+ c)

(a− b)/(b− c), if 2ac ≤ b(a+ c), a > b
(c− b)/(b− a), if 2ac ≤ b(a+ c), b > a,

where a, b, c can be obtained directly during the updates in Algorithm 3. The hybrid method uses

the BFGS update when κ(Davidon) is not obviously smaller than κ(BFGS). With a relatively

large value of the constant δ, the hybrid method uses the BFGS update most of the time and the

Davidon’s update the rest.

By adopting the the hybrid strategy into the LRBroyden family, denoted as Hybrid LRDavidon-

BFGS, we conduct an initial experiment on the synthetic Euclidean quadratic problem (refer to

Table 4.5), where LRDavidon is observed to significantly outperform LRBFGS. The experiment

is conducted to illustrate the effectiveness of the hybrid method in comparison to using only the

BFGS or Davidon update individually.

Results for different values of δ are presented in Figure 5.1, with the memory size L fixed at

32. The red crosses represent the average number of function evaluations (nf) obtained from 10

runs using specific values of δ and different initial conditions. Notably, the number of function

evaluations of LRBFGS is 379 and the number of function evaluations of LRDavidon is 142 as

specified in Table 4.5. In the larger broader of δ depicted in graph (a), there is a clear trend that

larger δ values lead to higher values of nf . This observation is reasonable since the hybrid method

selects more BFGS update (use notation φ
(k)BFGS
i for φ

(k)
i = 0) as δ increases. Despite the superior

performance of φ
(k)D
i in the certain case, the results shown in graph (b) confirm that occasionally

choosing φ
(k)BFGS
i is indeed beneficial and plays a helpful role in the hybrid method. The use of the

hybrid strategy with δ selected from a range between 1 and 2 results in fewer function evaluations

compared to using δ = 0, i.e., LRDavidon. This conclusion suggests that, at the very least, the

hybrid strategy does not degrade performance. With a well-suited choice of δ, the hybrid strategy

can actually enhance the performance.

63

(a) Euclidean Quadratic: δ in range (0, 100)

(b) Euclidean Quadratic: δ in range (0, 2)

Figure 5.1: Performance of Hybrid LRDavidon-BFGS: averaging nf versus δ.

64

5.2 LRDavidon on General Problems

Before delving further into the exploration of the hybrid strategy, we concentrate on general

problems on a Riemannian manifold, generated using the procedure outlined in Section 4.1. The

memory size is selected from the set {1, 2, 4, 8, 16} and the initial stepsize is set to α0 = 1. Subse-

quent sections will consider different initial stepsizes for LRDavidon.

The results are presented in Table 5.1-5.4. For both LRBFGS and LRDavidon, it appears that

the best-performing memory size is either L = 4 or 8 for the first three problems, and L = 1

for the weighted low-rank approximation problem. The observations, which demonstrate better

performance with a relatively small memory size, are consistent with the discussions and insights

provided in Section 4.4.

LRBFGS requires fewer iterations and less computational time in some cases, in line with

the conclusions drawn in [8] and [27], which suggest that Davidon’s update does not consistently

outperform BFGS update in general. Nevertheless, LRDavidon remains competitive and does not

significantly hinder the overall performance of the method. This motivates us to apply the hybrid

strategy to these general problems.

Another noteworthy observation is that LRDavidon requires fewer function evaluations even

when it demands more iterations than LRBFGS, as observed in cases such as L = 8 in Table

5.2 and L = 8 in Table 5.3. The reason behind this is that LRDavidon directly accepts more unit

stepsizes, while these unit stepsizes are often too large for LRBFGS, resulting in additional function

evaluations during the line search process. The results and discussions in Section 4.3 suggest that

a larger stepsize may be more suitable for LRDavidon, which explains its better performance in

terms of function evaluations.

65

Table 5.1: Comparison of LRBFGS and LRDavidon for the Stiefel Brockett problem. The subscript

−k indicates a scale of 10−k.

(n, p) (1000,5)

method LRBFGS LRDavidon

L 1 2 4 8 16 1 2 4 8 16

iter 629 589 529 488 469 683 693 609 523 525
nf 681 630 564 514 493 738 740 623 538 541
ng 631 590 530 489 470 684 694 610 524 526
nV 680 629 563 513 493 737 739 622 537 540
nR 1259 1177 1059 976 939 1365 1386 1218 1045 1050
gff 5.86−4 6.14−4 6.06−4 6.07−4 6.17−4 6.17−4 6.04−4 6.05−4 6.14−4 6.25−4

gff/gf0 8.80−7 9.23−7 9.09−7 9.11−7 9.27−7 9.27−7 9.07−7 9.09−7 9.22−7 9.39−7

t 9.98−1 9.79−1 9.09−1 9.42−1 1.10 1.08 1.15 1.06 1.02 1.29

Table 5.2: Comparison of LRBFGS and LRDavidon for the low-rank matrix completion problem.

The subscript −k indicates a scale of 10−k.

(m,n, r,OS) (1000,1000,5,2.5)

method LRBFGS LRDavidon

L 1 2 4 8 16 1 2 4 8 16

iter 84 81 75 71 72 84 85 81 72 72
nf 93 91 83 80 80 93 97 87 78 78
ng 89 86 80 76 77 89 90 86 77 77
nV 92 90 82 79 79 92 96 86 77 77
nR 172 166 153 147 148 172 174 166 147 149
gff 5.63−5 4.96−5 4.89−5 5.62−5 4.51−5 5.63−5 5.57−5 5.05−5 5.66−5 5.58−5

gff/gf0 8.89−7 7.85−7 7.73−7 8.88−7 7.12−7 8.89−7 8.80−7 7.96−7 8.95−7 8.82−7

t 3.97−1 3.93−1 3.55−1 3.86−1 4.15−1 3.98−1 4.02−1 3.92−1 3.87−1 4.23−1

Table 5.3: Comparison of LRBFGS and LRDavidon for the Steel Rail cooling problem. The

subscript −k indicates a scale of 10−k.

(n, r) (3113,5)

method LRBFGS LRDavidon

L 1 2 4 8 16 1 2 4 8 16

iter 373 344 325 358 381 374 385 367 363 361
nf 397 373 345 389 421 397 413 374 373 372
ng 376 347 328 361 385 377 388 369 365 363
nV 396 372 344 388 420 396 412 373 372 371
nR 748 690 652 718 766 750 772 735 727 723
gff 1.38−6 1.38−6 1.35−6 1.39−6 1.38−6 1.37−6 1.41−6 1.39−6 1.43−6 1.29−6

gff/gf0 9.15−7 9.19−7 8.97−7 9.20−7 9.17−7 9.11−7 9.36−7 9.21−7 9.50−7 8.58−7

t 1.45 1.31 1.14 1.43 1.64 1.48 1.58 1.32 1.60 1.71

66

Table 5.4: Comparison of LRBFGS and LRDavidon for the weighted low-rank approximation

problem. The subscript −k indicates a scale of 10−k.

(m,n, r) (100,20,5)

method LRBFGS LRDavidon

L 1 2 4 8 16 1 2 4 8 16

iter 45 46 45 44 44 45 48 42 42 41
nf 47 50 50 49 49 47 52 44 45 44
ng 46 48 48 48 47 46 50 44 44 44
nV 46 49 49 48 48 46 51 43 44 43
nR 90 94 92 91 90 90 97 85 85 84
gff 2.67−4 2.45−4 2.00−4 2.41−4 2.32−4 2.67−4 2.83−4 2.79−4 2.98−4 2.74−4

gff/gf0 7.24−7 6.59−7 5.39−7 6.50−7 6.25−7 7.24−7 7.72−7 7.58−7 8.11−7 7.41−7

t 1.90−1 2.01−1 2.31−1 2.89−1 3.68−1 1.90−1 2.09−1 2.07−1 2.70−1 3.69−1

5.3 Parameter Selection of Hybrid LRDavidon-BFGS

This section is dedicated to the exploration and determination of the parameters for Hybrid

LRDavidon-BFGS. Two key parameters that require pre-determination are α0, other than the unit

length, and δ, which governs the balance of the hybrid strategy. Subsequently, the performance of

the hybrid method, considering various choices of these parameters, is compared to LRBFGS and

LRDavidon for further investigation.

The parameters δ is selected from the range {1, 1.05, 1.1, · · · , 1.95, 2} and α0 is chosen from

{0.5, 0.6, · · · , 1.4, 1.5}. Other problem settings remain consistent with those in the tests conducted

in Section 5.2. In line with the findings in Tables 5.1-5.4, the memory size is fixed at 4. The

weighted low-rank approximation problem is excluded from this testing, as the hybrid strategy

does not yield differences when L = 1 (the best-tuned memory size in Table 5.4).

The results comparing the performances of LRBFGS, LRDavidon and Hybrid LRDavidon-

BFGS are presented In Figure 5.2. In these graphs, the blue dots represent the best-tuned α0

for different values of δ within the hybrid strategy. The values of α0 are calculated by averaging

results from 10 runs with identical parameters but different initial conditions. The red Plus signs

represent the average number of function evaluations from 10 runs with different initial conditions

when the specific δ and the best-tuned α0 are selected. Additionally, the magenta, cyan, and green

vertical dashed lines indicate the number of function evaluations for LRBFGS, LRDavidon with

α0 = 1, and LRDavidon with the appropriate α0 values (the selected α0 values are determined in

tests similar to those in Section 4.3), respectively.

67

From the left-hand side α0 v.s. δ graphs, it is evident that α0 decreases and approaches 1 as δ

increases. The trend is reasonable since a larger δ means the method is closer to LRBFGS, making

the best-tuned initial stepsize closer to unit length. From the right-hand side nf v.s. δ graphs, it

is clear that using an adaptive α0 can enhance the performance of LRDavidon and make it more

competitive with LRBFGS. The hybrid strategy is observed to require fewer function evaluations

than LRBFGS for δ within the range [1, 2]. This demonstrates that the hybrid strategy is a suitable

choice within the LRBroyden family of methods.

Denote φ
(k)H
i as φ

(k)
i chosen in hybrid strategy, we present the histogram of φ

(k)D
i and φ

(k)H
i

distribution in Figure 5.3, 5.4, 5.5 for the three problems. These figures display the distribution as

well as the mean values of all used φ
(k)D
i and φ

(k)H
i in one typical run for each problem. There is

a noticeable trend that φ
(k)H
i shifts to the left compared to φ

(k)D
i , and the mean value of φ

(k)H
i is

smaller than the mean value of φ
(k)D
i . Furthermore, the proportions of how many φ

(k)D
i and φ

(k)H
i

values are equal to zero clearly indicate that there are significantly more φ
(k)H
i values equal to zero

compared to φ
(k)D
i , which aligns with the desired balance in the hybrid strategy.

By combining the results in Figure 5.2 with the observations in Figure 5.3, 5.4 and 5.5, it

is evident that the hybrid strategy enhances performance, particularly for the Stiefel Brockett

problem. Notably, more than 1/3 of φ
(k)H
i values are equal to zero as shown in Figure 5.3 and the

distribution of φ
(k)H
i is more concentrated around 0.

In the case of the low-rank matrix completion problem, the superiority of the hybrid strategy

appears to be less pronounced compared to the other two problems. The observation is supported

by Figure 5.4, which shows that the proportion of φ
(k)H
i = 0 is not significantly different from

φ
(k)D
i = 0. Additionally, the superiority of φ

(k)H
i diminishes as δ increases, with the larger δ making

the algorithm closer to LRBFGS. These observations suggest that φ
(k)BFGS
i does not provide much

assistance in the hybrid strategy for the low-rank matrix completion problem.

For the Steel Rail problem, over half of φ
(k)H
i values are equal to zero as indicated in Figure

5.5. There is a slight trend indicating that the superiority of φ
(k)H
i becomes more pronounced as δ

increases from 1 to 2. This is in line with the observation that LRDavidon, even with an appropriate

α0, cannot reach the same level of performance as LRBFGS as shown in Table 5.3. The mean value

of φ
(k)H
i is close to zero given a large number of φ

(k)H
i = 0. These findings collectively suggest that

the hybrid strategy plays a beneficial role for the Steel Rail problem compared to LRDavidon or

LRBFGS alone.

68

It is worth noting that the appropriate values of α0 greater than 1 in Figure 5.3 and 5.4

correspond to cases where the mean value of φ
(k)H
i is greater than 0. Conversely, the α0 values

less than 1 in Figure 5.5 are associated with the mean value of φ
(k)H
i less than 0. This observation

aligns with the conclusion drawn in Section 4.3, which suggests that negative φ
(k)
i values tend to

perform better with α0 < 1 while positive φ
(k)
i values prefer α0 > 1.

In the context of Hybrid LRDavidon-BFGS, φ
(k)D
i provides flexibility, while incorporating

φ
(k)BFGS
i can be viewed as a safeguard. The best-performing δ values and the empirically de-

termined α0 values are employed in the experiments conducted in Section 5.4, which offer a more

detailed assessment of performance.

5.4 Comparison of LRBFGS, LRDavidon and Hybrid
LRDavidon-BFGS

The following experiments compare the performances between LRBFGS, LRDavidon and Hy-

brid LRDavidon-BFGS. For Hybrid LRDavidon-BFGS, δ = 1.4 with α0 = 1.13, δ = 1.05 with

α0 = 1.35, δ = 1.6 with α0 = 0.94 are chosen respectively for the Stiefel Brockett problem, the low-

rank matrix completion problem and the Steel Rail Cooling problem. The memory size is fixed as

L = 4. Figure 5.6 provides performance comparison between time and |gradf |. Hybrid LRDavidon-

BFGS, denoted as “Hybrid” with green circle, demonstrates faster convergence compared to the

other methods. This highlights the robustness and efficiency of Hybrid LRDavidon-BFGS.

In summary, Hybrid LRDavidon-BFGS has demonstrated its robustness compared to LRBFGS

and LRDavidon. It offers a more resilient choice within the LRBroyden family of methods. The

numerical results emphasize the importance of both the φ
(k)
i strategy and the α0 selection in

enhancing the performance of LRBroyden. This suggests that there is still substantial potential for

exploring the capabilities of the Broyden family of quasi-Newton methods by optimizing various

parameter settings.

In the subsequent chapters, the LRBroyden family of methods are integrated with stochastic

approximation techniques. The resulting quasi-Newton algorithm, which leverages the update of

the Hybrid LRDavidon-BFGS, has achieved significant success in various applications.

69

(a) Stiefel Brockett: n = 1000, p = 5, L = 4

(b) Low-rank matrix completion: m = 1000, n = 1000, r = 5, OS = 2.5, L = 4

(c) Steel Rail Cooling problem: n = 3113, r = 5, L = 4

Figure 5.2: Performance of Hybrid LRDavidon-BFGS with different δ: Left: the best-
tuned α0 versus δ; Right: averaging nf versus δ, the average values of nf for LRBFGS,
LRDavidon, LRDavidon(adaptive intial stepsize) are highlighted as the vertical line.

70

(a) LRDavidon α0 = 1, L = 4

(b) Hybrid LRDavidon-BFGS δ = 1.4, α0 = 1.13, L = 4

Figure 5.3: Comparison of φ
(k)D
i and φ

(k)H
i distribution for the Stiefel Brockett problem.

71

(a) LRDavidon α0 = 1, L = 4

(b) Hybrid LRDavidon-BFGS δ = 1.05, α0 = 1.35, L = 4

Figure 5.4: Comparison of φ
(k)D
i and φ

(k)H
i distribution for the low-rank matrix completion

problem. 72

(a) LRDavidon α0 = 1, L = 4

(b) Hybrid LRDavidon-BFGS δ = 1.6, α0 = 0.94, L = 4

Figure 5.5: Comparison of φ
(k)D
i and φ

(k)H
i distribution for the Steel Rail cooling problem.

73

(a) Stiefel Brockett: n = 1000, p = 5, L = 4

(b) Low-rank matrix completion: m = 1000, n = 1000, r = 5, OS = 2.5, L = 4

(c) Steel Rail Cooling problem: n = 3113, r = 5, L = 4

Figure 5.6: Comparison of LRBFGS, LRDavidon and Hybrid LRDavidon-BFGS: time(s)
versus |grad|.

74

CHAPTER 6

RIEMANNIAN STOCHASTIC BROYDEN FAMILY

OF QUASI-NEWTON METHODS

We continue our study on the Riemannian Broyden family of quasi-Newton methods but shift

our focus to its application in conjunction with stochastic approximation methods. The limited-

memory LRBroyden family of methods, including LRBFGS, has demonstrated excellent perfor-

mance in large-scale optimization with respect to the dimension ofM. In the context of the recent

advancements in statistical estimation and machine learning, the dimensions and complexities of

objective functions in target optimization problems have surged significantly. Many intriguing

large-scale problems in this domain can be formulated as minimizing the average value of a large

but finite number of loss functions, expressed as follows:

min
ω∈M
{f(ω) :=

1

n

n∑
i=1

fi(ω)}. (6.1)

Here, f is a smooth real-valued function defined on a Riemannian manifold M. This type of

problem finds applications in various fields such as machine learning, statistical inference, and

image processing. When n is large, computing the gradient of the full objective at every iteration

faces slowdowns due to the necessity of processing every data point before updating. Therefore, it

is imperative to employ stochastic approximation algorithms that update based on a small subset

of gradient terms.

Intuitively, when both n and the dimension of M are large, a quasi-Newton method that

operates in the stochastic approximation regime is promising. While applying the stochastic method

to quasi-Newton methods is not a novel concept, the majority of approaches have primarily focused

on adapting LRBFGS. In this chapter, we propose, implement and analyze the limited-memory

variant of Riemannian stochastic quasi-Newton algorithms within the full Broyden family.

In Section 6.1, we provide a review of commonly used stochastic algorithms designed to address

the large-scale finite-sum problems (6.1). Subsequently, in Section 6.2, we introduce the limited-

memory variant of Riemannian stochastic Broyden with variance reduction (LR-SBroyden-VR).

The convergence analysis for the proposed LR-SBroyden-VR method is presented in Section 6.3.

75

6.1 Stochastic Methods for Large-scale Optimization

6.1.1 Euclidean Stochastic Methods

Stochastic gradient descent (SGD) is a simple iterative approach for optimizing an object func-

tion that is a linear combination of differentiable functions (see (6.1)). SGD replaces the actual full

gradient by an estimate from a randomly selected subset of the functions. Define the sub-sampled

function fS as

fS(ω) =
1

|S|
∑
i∈S

fi(ω).

The batch size is defined as the size of sub-sample, denoted as b := |S|. The SGD uses the update:

ωk+1 = ωk − αk∇fS(ωk),

where αk is a positive stepsize. Both stochastic and full-gradient approaches offer different trade-

offs in terms of per-iteration costs and expected per-iteration improvement in minimizing the cost

function. In a full-gradient approach, a line search condition is employed to select a stepsize that

ensures a sufficient decrease in the objective function. In SGD, the direction of the update is

based on an estimation of the gradient computed from a subset. Due to this nature, the estimated

gradient may not accurately represent the true gradient hence the direction is not guaranteed to be

a descent direction. Instead of relying on a line search, SGD commonly uses a fixed or diminishing

stepsize.

Some adaptive stochastic gradient algorithms have been proposed to accelerate SGD. These

algorithms mainly adjust stepsizes per coordinate and use a momentum term [43] that includes

previous gradients in calculating the current update. Let gk denote the stochastic gradient vector,

and the upper index j represents the j-th coordinate element.

AdaGrad [17] uses the update:

ωjk+1 = ωjk − αkg
j
k/

√
vjk,

where vjk =
∑k

t=1(gjt)
2 is the sum of the j-th squared stochastic gradient coordinates over the past

iterates. The key motivation of AdaGrad is to have different stepsizes for different coordinates.

Adam [31] additionally employs a momentum term to modify the search direction with the

following update:

ωjk+1 = ωjk − αkm
j
k/

√
vjk,

76

where mj
k = β1m

j
k−1 + (1− β1)gjk with mj

0 = 0 and vjk = β2v
j
k−1 + (1− β2)(gjk)

2 with vj0 = 0. Adam

method updates the exponential moving averages of the gradient (mk) and the squared gradient

(vk) where β1, β2 ∈ [0, 1) control the exponential decay rates of these moving averages.

AMSGrad [45] guarantees convergence while preserving the practical benefits of Adam. AMS-

Grad has the update:

ωjk+1 = ωjk − αkm
j
k/

√
v̂jk,

where v̂jk = max{v̂jk−1, v
j
k} maintains a non-increasing stepsize. mk and vjk have the same definition

as in Adam.

In the realm of stochastic approximation, a quasi-Newton method can be applied. However, the

direct application of classical quasi-Newton updating techniques leads to noisy curvature estimates,

which can degrade the robustness of the updates. To address this challenge, Byrd, Hansen, No-

cedal, and Singer [7] propose a transformation of the classical BFGS update, in its limited-memory

form, into a stochastic method by averaging curvature estimates using sub-sampled Hessian-vector

products. Building upon this foundation, Moritz et al. [36] enhance the approach by incorporating

a variance-reduced strategy. More details of the variance reduction approach are elucidated in

Section 6.1.3.

6.1.2 Riemannian Stochastic Methods

The first Riemannian SGD (RSGD) algorithm was proposed in 2013 by Bonnabel [4]. This algo-

rithm extends the conventional Euclidean SGD approach to the domain of Riemannian manifolds,

which has the update form:

ωk+1 = Expωk(−αk gradfS(ωk)),

where gradfS(ωk) ∈ TωkM denotes the Riemannian stochastic gradient of fS(ω) at ωk. The

Riemannian stochastic gradient lies in the tangent space TωkM of the Riemannian manifoldM. In

practical scenarios, when the exponential map is either unknown in closed-form or computationally

expensive, a retraction Rωk(−αk gradfS(ωk)) is often employed as an alternative. The retraction

allows for a more feasible computation of the updated parameter, making the algorithm applicable

in situations where the direct use of the exponential map is challenging.

Adaptive stochastic gradient algorithms, such as RAdaGrad, RAdam, RAMSGrad, have been

investigated and assessed in the context of Riemannain manifolds, as documented in the works

of Becigneul et al. [3] and Kasai et al. [29]. While these algorithms often demonstrate superior

77

empirical performance compared to RSGD, they do face certain challenges due to their reliance

solely on first-order information. The challenges include several issues such as relatively slow

convergence, difficulty in escaping saddle points and poor performance for problems with mild

to severe ill-conditioning. Depending on the specific characteristics of the optimization problem,

a careful choice of algorithms, possibly combining first and second-order information, may be

necessary for achieving efficient and robust optimization outcomes.

Beyond relying solely on Riemannian gradient-based methods, researchers delved into leveraging

second-order information to mitigate the challenges posed by high nonlinearity and ill-conditioning

in objective functions. A notable advancement in this direction is the introduction of Riemannian

quasi-Newton methods. Among these, the variance-reduced stochastic LRBFGS method emerged

as particularly successful, demonstrating scalability with the number of variables and effectiveness

across a diverse range of applications, as detailed in works [49] and [30]. It was found that the

method does more than rescaling the gradient, i.e., the improved performance is the result of

incorporating curvature information.

In essence, the variance-reduced stochastic LRBFGS method showcases the advantages of con-

sidering not only the gradient but also the curvature of the objective function on a Riemannian

manifold. By doing so, it addresses challenges associated with nonlinearity and ill-conditioning,

making it a valuable tool for optimization tasks in various application domains.

6.1.3 Accelerating Stochastic Methods with Variance Reduction

Stochastic gradient-based optimization methods provide computational advantages through the

utilization the stochastic estimates of gradient. However, both Riemannian and Euclidean methods,

including (R)SGD, (R)AdaGrad, (R)Adam and (R)AMSGrad, suffer from the adverse effect of

the noisy gradient estimates. Suppose ∇f(ωk) is the full gradient of f(ω) at ωk. While the

expectation (with respect to S) of the stochastic gradient satisfies E[∇fS(ωk)|ωk] = ∇f(ωk), the

inherent randomness introduces variance. The variance, in turn, results in a slow convergence rate,

imposing constraints on the stepsize [5]. Typically, a diminishing stepsize αk must be chosen to

ensure convergence and to avoid oscillation.

To address this limitation, methods that aim to reduce variance have been developed in Eu-

clidean space. Examples include the stochastic average gradient (SAG) method [52], and the

stochastic dual coordinate ascent (SDCA) method [54]. A more popular approach, stochastic vari-

ance reduction gradient (SVRG) [28], was proposed. SVRG is known for its broader applicability

78

across a range of problems and its reduced storage requirements, making it a widely adopted method

in the optimization community.

SVRG is outlined in Algorithm 5. The key point of SVRG is to use the full gradient ∇f(ωk)

that is occasionally computed (during each iteration of the outer k-loop in Algorithm 5) to correct

the current stochastic gradient ∇fS(xt) (computed and used during each iteration of the inner

t-loop in Algorithm 5). It is important to note that both ωk and xt converge to the same minimizer

ω∗, implying that ∇f(ωk)→ 0 and ∇fS(ωk)→ ∇fS(ω∗). As a result,

∇fS(xt)−∇fS(ωk) +∇f(ωk)→ ∇fS(xt)−∇fS(ω∗)→ 0.

This reduction in the variance of the update, as rigorously analyzed in [28], contributes to improved

convergence rate. In practical implementations, it is common to opt for option I-A due to its lower

storage requirements. However, option I-B, despite necessitating more storage, theoretically offers

a superior convergence rate, as indicated in [28, 59].

Algorithm 5 SVRG in Euclidean space

Require: Choose an initial iterate ω0, Update frequency mk and stepsize αkt ;

1: for k = 0, 1, · · · ,K − 1 do

2: Compute the full gradient ∇f(ωk);

3: Set x0 = ωk;

4: for t = 0, 1, · · · ,mk − 1 do

5: Choose the sub-sample S uniformly at random from {1, 2, · · · , n};
6: Compute the modified stochastic gradient gkt = ∇fS(xt)−∇fS(ωk) +∇f(ωk);

7: xt+1 = xt − αkt gkt ;

8: end for

9: Option I-A: ωk+1 = xmk ;

10: Option I-B: ωk+1 = xt for randomly chosen t ∈ {0, 1, · · · ,mk − 1};
11: end for

The first Riemannian variance-reduced SGD (R-SVRG) is documented in [60]. This Riemannian

variant deviates in two crucial aspects when compared to the Euclidean SVRG: the first is the

computation of the modified stochastic gradient (Step 6 in Algorithm 5) uses parallel transport to

combine gradients from different tangent spaces:

gkt = gradfS(xk)− P 1←0
γk

(gradfS(ωk)− gradf(ωk)),

79

where P is the parallel transport and γk is the unique minimizing geodesic satisfying γk(0) =

ωk, γk(1) = xt. The second is the exponential map is used for the update (Step 7 in Algorithm 5):

xt+1 = Expxt(−α
k
t g
k
t).

R-SVRG inherits the advantages of the Euclidean SVRG method, while introducing factors

dependent on the curvature of the manifold, influencing its convergence properties [60]. Compu-

tationally efficient retraction and vector transport were considered instead of the exponential map

and parallel transport in [51]. Empirical evidence from (R)-SVRG papers suggests that (R)-SVRG

is considerably faster than (R)SGD for solving certain finite-sum optimization problems (6.1), pri-

marily because the stepsize does not need to diminish. This method is also extendable to stochastic

quasi-Newton algorithms.

Moreover, the stochastic variant of the entire LRBroyden family is proposed with the variance

reduction method in the next section. This suggests that the benefits of variance reduction are not

limited to a specific optimization method but can be integrated into a broader family of optimiza-

tion algorithms. The combination of stochastic optimization, Riemannian geometry, and variance

reduction method enhances the efficiency and effectiveness of the optimization process, especially

for problems defined on Riemannian manifolds.

6.2 LR-SBroyden-VR Methods

In this section, we introduce the LR-SBroyden-VR family of methods, building upon the con-

cepts used to develop the variance-reduced stochastic LRBFGS outlined in [30]. This new algorithm

is a natural extension, involving the update of the modified stochastic gradient through the pre-

multiplication of a linear inverse Hessian approximation operator. LR-SBroyden-VR provides users

with the flexibility to choose from the complete LRBroyden family and integrates the stochastic

variance reduction method into the optimization process. This extension allows for a versatile op-

timization approach, leveraging both the benefits of Riemannian geometry and the efficiency gains

offered by variance reduction in stochastic optimization scenarios.

The primary challenge in developing a Riemannian stochastic quasi-Newton method lies in

the generalization of the Hessian approximation. This challenge arises from the recognition that

obtaining a precise curvature information y from randomly selected stochastic gradient estimations

is not feasible. In Euclidean space, a common solution to this challenge is to compute average

80

curvature estimates using sub-sampled Hessian-vector products, as discussed in [7, 36]. However,

extending this average estimates to Riemannian manifolds introduces additional complexities due

to the non-Euclidean geometry, requiring careful consideration of the manifold structure in the

development of effective stochastic quasi-Newton methods.

To overcome this challenge, Kasai et. al [30] introduced a novel stochastic LRBFGS incorpo-

rating variance reduction (VR) method. Algorithm 6 proposed in this section extends the idea

to the entire LRBroyden family. The key point is to generate the curvature pair {s, y} using the

full Riemannian gradient which is calculated only occasionally when employing the VR method

(Step 15 in Algorithm 6). There are mk inner iterations (t-loop in Algorithm 6) between each full

Riemannian gradient and curvature computation in a VR method. This tactic collects the precise

curvature information and keeps using the generated inverse Hessian approximation during the mk

iterations of the t-loops.

In the t-loop, the first step is to uniformly select the sub-sample it (Step 4 in Algorithm 6),

which has the size of b. The modified stochastic gradient is computed as ζt = (T xtωk)−1gradfit(xt)−

(gradfit(ωk)−gradf(ωk)) (Step 6 in Algorithm 6), where the stochastic gradient gradfit(xt) at xt is

transported to TωkM by the inverse vector transport (T xtωk)−1. By doing so, the main calculations

can be completed on TωkM. xt is updated with a search direction generated by the inverse Hessian

approximation operator Hk. More specifically, the application of the inverse Hessian approximation

Hkζt is calculated at ωk (Step 7 in Algorithm 6). The search direction is transported back to xt by

T xtωkHkζt (Step 8 in Algorithm 6), then xt is updated by the retraction (Step 9 in Algorithm 6).

After the mk iterations from x0 to xt, ωk is updated in the k-loop (Step 11,12 in Algorithm 6).

Option I-A is natural of practical use because no additional computation and storage is needed,

whereas option I-B provides a better theoretical convergence rate (see [30]). In this dissertation,

only I-A is considered in the analysis and the experiments. The full gradient is calculated only once

per iteration of the k-loop (Step 13 in Algorithm 6). The tangent vector pointing from ωk to ωk+1

is represented as ηk = R−1
ωk

(ωk+1), which is calculated by the inverse of the retraction (Step 14 in

Algorithm 6). ηk is used in updating the curvature pairs (Step 15 in Algorithm 6). The stored

curvature pairs need to be transported from ωk to ωk+1 (Step 16 in Algorithm 6). In the Step 17,

we can compute and store the required information for the Hessian approximation Hk+1. The key

part M̃k can be determined and stored as shown in Algorithm 3. Then it can be used repeatedly

when the application of the inverse Hessian approximation Hkζt is calculated at Step 7.

81

This strategy provides precise and comprehensive curvature information for the quasi-Newton

updates. This avoids the need for the sub-sample of the Hessian [7, 36]. There is no need to

transport the inverse Hessian approximation operator since the inverse Hessian approximation

preparation and calculations of curvature information are performed only on the tangent space of

the outer k-loop. This is very important since the extra cost per step for LRBroyden plays a pivotal

role in achieving superior or competitive performance compared to LRBFGS. In LR-SBroyden-VR,

this extra cost is diminished with the double loop structure. The drawback is that {sk, yk} may

be out-of-date since the update is not timely if mk is large. How to choose an appropriate mk is

explored in the experiments.

Algorithm 6 LR-SBroyden-VR

Require: Riemannian manifold M with Riemannian metric g; a retraction R; isometric vector

transport TS , with R as associated retraction that satisfies the locking condition; continuously

differentiable real-valued finite-sum function f on M; initial iterate ω0 ∈ M; batch size b;

update frequency mk; stepsize αkt ; memory size L; number of epochs K; convergence tolerance

ε;

1: for k = 0, 1, · · · ,K − 1 do

2: Set x0 = ωk;

3: for t = 0, 1, · · · ,mk − 1 do

4: Choose the sub-sample it ⊂ {1, 2, · · · , n} uniformly at random, where |it| = b;

5: Transport the k-th step sto-gradient back to TωkM by (T xtωk)−1gradfit(xt);

6: Calculate ζt = (T xtωk)−1gradfit(xt)− (gradfit(ωk)− gradf(ωk)) at ωk;

7: Calculate the search direction Hkζt by Step 6 in Algorithm 4;

8: Transport the search direction to TxtM by T xtωkHkζt;
9: Update xt+1 = Rxt(−αkt T xtωkHkζt);

10: end for

11: Option I-A: ωk+1 = xmk ;

12: Option I-B: ωk+1 = gmk(x1, · · · , xmk) (gmk is the Riemannian centroid on the manifold) or

ωk+1 = xt for randomly chosen t ∈ {0, 1, · · · ,mk − 1};
13: Calculate the full gradient gradf(ωk+1);

14: Calculate the tangent vector ηk = R−1
ωk

(ωk+1);

15: Calculate s
(k+1)
k = T ωk+1

ωk ηk and y
(k+1)
k = gradf(ωk+1)/βk − T

ωk+1
ωk gradf(ωk), where βk =

‖ηk‖/‖TRηkηk‖;
16: Update curvature pairs as Step 28 in Algorithm 2;

17: Prepare for the Hessian approximation as Step 5 in Algorithm 4;

18: end for

19: Output ωk if satisfies stopping criteria.

82

6.3 Convergence Analysis

In the context of the LR-SBroyden-VR method proposed in this chapter, the global convergence

analysis and the convergence rate analysis on a strongly retraction-convex function are presented

in the following context. The presentation follows a known procedure, and modifications to certain

lemmas in the convergence proof system are elucidated. The modifications to the existing proof

system indicate the adjustments made to accommodate the specific characteristics and features of

the LR-SBroyden-VR compared to the LR-SBFGS-VR method.

6.3.1 Assumptions and Preliminary Lemmas

For the sake of clarity in the proofs, several notations are introduced to facilitate the analysis

of the LR-SBroyden-VR method: Use ωkt to represent xt in the k-th epoch in Algorithm 6. Use

subscript ikt to represent sub-sample chosen for stochastic gradient at ωkt (Step 4 in Algorithm 6).

Use ηkt to represent the search direction from ωkt to ωkt+1, i.e., R−1
ωkt

(ωkt+1). Ignoring the superscripts

of Step 15-16 in Algorithm 6, use sk−1, sk−2, · · · , sk−L and yk−1, yk−2, · · · , yk−L to represent the

stored curvature pairs for updating ωk → ωk+1 using Hk. Use Eikt [·] to denote the expectation taken

with respect to the distribution of the random variable ikt . Use E[·] to denote the total expectation

with respect to the joint distribution of all random variables, e.g., E[f(ωkt)] = Eik1Eik2 · · ·Eikt [f(ωkt)].

The following assumptions are made:

Assumption 6.1. The objective function f and its components are twice continuously differen-

tiable.

Assumption 6.2. For a sequence {ωkt } generated by Algorithm 6, there exists a compact and

connected set Ω ∈ M such that ωkt ∈ Ω for all k, t > 0. For each k ≥ 1, t ≥ 0, there exists a

%-totally retractive neighborhood Ω̃k of ωk such that ωkt stays in Ω̃k, where a %-totally retractive

neighborhood Ω̃k is a set that for all y ∈ Ω̃k, Ω̃k ⊂ Ry(B(0y, %)) and Ry(·) is a diffeomorphism on

B(0y, %). Furthermore, the iterates ωkt stay continuously in a %-totally retractive neighborhood Ω̃ of

ω∗.

Assumption 6.3. f and its components are strongly retraction-convex with respect to the retraction

R in Ω̃.

Assumption 6.4. The vector transport is isometric, the conditions in (3.2),(3.3) and the locking

condition (3.4) are satisfied.

83

Assumption 6.5. f is bounded below, and a decaying stepsize sequence {αkt } satisfies
∑
αkt =∞

and
∑

(αkt)
2 < ∞. If the Assumption 6.3 is satisfied, αkt can be relaxed to a fixed stepsize.There

exists A > 0 such that for all ω ∈ Ω̃ and i ∈ N, we have ‖gradf(ω)‖ ≤ A and ‖gradfi(ω)‖ ≤ A.

Assumption 6.6. Riemannian stochastic gradient is bounded as Eikt [‖gradfikt
(ωkt)‖2] < C2.

With these assumptions, the following lemmas are stated for the final theorem proof:

Lemma 6.1. (see [27, Lemma 3.1]) Define mω,η(τ) = f(Rω(τη)). If Assumptions 6.1, 6.2 and 6.3

hold then there exists constants a1 > a0 > 0 such that

a0 ≤
d2mω,η

dτ2
≤ a1,

for all ω ∈ Ω̃, η ∈ TωM, ‖η‖ = 1 and all τ such that Rω(tη) ∈ Ω̃ for all t ∈ [0, τ].

Lemma 6.2. If Assumptions 6.1, 6.2 and 6.3 hold, then there exists constants a1 > a0 > 0 such

that

g(gradf(ωkt), αkt η
k
t) +

1

2
a0(αkt ‖ηkt ‖)2 ≤ f(ωkt+1)− f(ωkt) ≤ g(gradf(ωkt), αkt η

k
t) +

1

2
a1(αkt ‖ηkt ‖)2,

where constants a0, a1 can be chosen as in Lemma 6.1.

Proof. Define mk
t (τ) = f(Rωkt

(τηkt /‖ηkt ‖)), By Taylor’s Theorem,

f(ωkt+1)− f(ωkt) = f(Rωkt
(αkt η

k
t))− f(Rωkt

(0))

= mk
t (α

k
t ‖ηkt ‖)−mk

t (0)

=
dmk

t (0)

dτ
αkt ‖ηkt ‖+

1

2

d2mk
t (p)

dτ2
(αkt ‖ηkt ‖)2

= g(gradf(ωkt), αkt η
k
t) +

1

2

d2mk
t (p)

dτ2
(αkt ‖ηkt ‖)2, (6.2)

where 0 ≤ p ≤ αkt ‖ηkt ‖. Then the inequality is easily derived from Lemma 6.1.

Lemma 6.3. If Assumptions 6.1-6.4 hold, then there exists constants a1 > a0 > 0 such that

a0g(sk, sk) ≤ g(sk, yk) ≤ a1g(sk, sk),

where constants a0 and a1 can be chosen as in Lemma 6.1.

Proof. sk, yk are generated between ωk0 (dnoted as ωk in Algorithm 6) and ωkmk (dnoted as ωk+1 in

Algorithm 6), where mk is the frequency value. ηk = R−1
ωk

(ωk+1) is calculated. The lemma can be

proved under the locking condition and Taylor’s Theorem (see LEMMA 3.3 in [27]).

84

Lemma 6.4. (see [27, Lemma 3.5]) Let M be a Riemannian manifold endowed with two vector

transports T1 ∈ C0 and T2 ∈ C∞, where both transports are associated with the same retraction R.

Under Assumption 6.4, for any ω̄ ∈ M, there exists a neighborhood U of ω̄ and a constant such

that for all ω, y ∈ U ,

‖T1ηξ − T2ηξ‖ ≤ c1‖ξ‖‖η‖,

where ξ, η ∈ TωM and η = R−1
ω (y).

Lemma 6.5. If Assumptions 6.1-6.4 hold, then there exists a constant a2 > 0 such that

g(yk, yk) ≤ a2g(sk, yk).

Proof. Define yPk = gradf(ωk+1) − P 1←0
γk

gradf(ωk), where γk(τ) = Rωk(τηk), i.e., the retraction

line from ωk to ωk+1 and P is the parallel transport along γk(τ). Then ‖P 0←1
γk

yPk = H̄kηk‖ ≤

b0‖ηk‖2 = b0‖sk‖2, where H̄k =
∫ 1

0 P
0←τ
γk

Hessf(γk(τ))P τ←0
γk

dτ with b0 > 0. Then

‖yk‖ ≤ ‖yk − yPk ‖+ ‖yPk ‖ = ‖yk − yPk ‖+ ‖P 0←1
γk

yPk ‖

≤ ‖yk − yPk ‖+ ‖P 0←1
γk

yPk − H̄kηk‖+ ‖H̄kηk‖

≤ ‖gradf(ωk+1)/βk − Tηkgradf(ωk)− gradf(ωk+1) + P 1←0
γk

gradf(ωk)‖+ b0‖sk‖2 + ‖H̄kηk‖

≤ ‖gradf(ωk+1)/βk − gradf(ωk+1)‖+ ‖P 1←0
γk

gradf(ωk)− Tηkgradf(ωk)‖+ b0‖sk‖2 + ‖H̄kηk‖

≤ b1‖gradf(ωk+1)‖+ b2‖sk‖‖gradf(ωk)‖+ b0‖sk‖2 + b3‖sk‖

≤ b4‖sk‖, (6.3)

where b1, b2, b3 and b4 > 0. Therefore following Lemma 6.3,

g(yk, yk)

g(sk, yk)
≤ g(yk, yk)

a0g(sk, sk)
≤ b24
a0

as desired.

The next lemma is to bound the trace and determinant of Bk = (Hk)−1 at ωk. Denote the

updated Hessian and inverse Hessian approximation as Bjk and Hjk with j = 0, 1, · · · , L, where L is

the memory size. B0
k → B1

k → · · · → BLk ≡ Bk and H0
k → H1

k → · · · → HLk ≡ Hk. The hat notation

B̂k denotes the coordinate expression of the operator.

Lemma 6.6. If Assumptions 6.1-6.4 hold, then there exists constants M3,M4 such that

trace(B̂k) ≤M3,

85

det(B̂k) ≥M4,

for all k ≥ 1, under the convergence bounds (1−ν)φ
(k)c
i ≤ φ(k)

i ≤ 1−δ (3.14) for Broyden parameter

φ
(k)
i .

Proof. The proof is similar to the proof part in Theorem 3.2, where Lemma 6.3(corresponding to

Lemma 3.3) and Lemma 6.5(corresponding to Lemma 3.9) are needed. There is no requirement

for the stepsize αkt during the proof, which makes it no difference after equipping the stochastic

method. Suppose det(B̂jk) ≥M1 and trace(B̂jk) ≤M2, we have

det(B̂j+1
k) ≥ a0M1/νM2,

trace(B̂j+1
k) ≤ (1 + a2/a0 +

√
a2/a0)M2 + a2,

where ν is the constant defined in (3.14). With the fact that the initial guess B̂0
k =

g(yk−1,yk−1)
g(sk−1,yk−1) id,

det(B̂0
k) and trace(B̂0

k) are bounded and memory size L is a constant. Then constants M3,M4 can

be found to prove the lemma.

In Algorithm 6, ωk is the point calculating the whole gradient. Search direction by Hessian

approximation is computed at this point then transport back to the current iterate, hence do not

need to transport the Hessian operator. For proof convenience, consider the version that transports

Hessian operator to the current iterate ωkt : Hkt := T ω
k
t

ωk ◦ Hk ◦ (T ω
k
t

ωk)−1. Meanwhile consider

ζkt := T ω
k
t

ωk ζt so that the search direction at ωkt (xt in the algorithm) is −Hkt ζkt . Given A,B ∈ Rn×n,

A � B means that B−A is positive semi-definite. Lemma 6.7 bounds the eigenvalues of the inverse

Hessian approximation operator.

Lemma 6.7. If Assumption 6.1-6.4 hold, then there exists constants 0 < a3 < a4 <∞ such that

a3id � Ĥk � a4id,

a3id � Ĥkt � a4id,

for all k ≥ 1.

Proof. The first inequality regarding to Ĥk = B̂−1
k is easily proved from Lemma 6.6, with the help

that the determinant of a matrix is the product of its eigenvalues and the trace corresponds to

the sum. Since the vector transport is isometric, the trace and determinant are identical after the

transport Hkt := T ω
k
t

ωk ◦ Hk ◦ (T ω
k
t

ωk)−1. This completes the proof of the second inequality.

86

Lemma 6.8. The iterates of Algorithm 6 satisfy the following inequality for all k:

(i) Eikt [f(ωkt+1)]− f(ωkt) ≤ −αkt g(gradf(ωkt),Eikt [Hkt ζkt]) + 1
2(αkt)

2a1Eikt [‖Hkt ζkt ‖2].

(ii) Let ω ∈M and ω′ be in a %-totally retractive neighborhood of ω. It holds that

2a0(f(ω)− f(ω′)) ≤ ‖gradf(ω)‖2.

Proof. (i)Substitute ηkt by −Hkt ζkt in Lemma 6.2 on the right inequality part:

f(ωkt+1)− f(ωkt) ≤ g(gradf(ωkt),−αktHkt ζkt) +
1

2
a1(αkt ‖ −Hkt ζkt ‖)2.

Then taking the expectations with respect to ikt brings us the desired inequality, since only ωkt doe

not depend on the ikt .

(ii)The second inequality can be proved by the other side in Lemma 6.2 by substitute ωkt into

ω, ωkt+1 into ω′ and αkt η
k
t into ζ:

f(ω′)− f(ω) ≥ g(gradf(ω), ζ) +
1

2
a0‖ζ‖2 ≥ min

ξ∈TωM
(g(gradf(ω), ξ) +

1

2
a0‖ξ‖2),

where the minimum equals − 1
2a0
‖gradf(ω)‖2 when ξ = −gradf(ω)/a0.

Lemma 6.9. If Assumption 6.1-6.6 hold, then

(i) E[f(ωkt+1)] ≤ f(ωkt)− αkt a3‖gradf(ωkt)‖2 + 9
2a1(αkt a4A)2.

(ii) E
[∑K

k=1

∑mk
t=1 α

k
t ‖gradf(ωkt)‖2

]
<∞.

(iii) lim infk→∞ E[‖gradf(ωkt)‖2] = 0.

Proof. (i)Note that Eikt [ζkt] = gradf(ωkt) since ζkt is an unbiased estimate of gradf(ωkt) [28]. Taking

expectation with respect to ωkt in Lemma 6.8 (i) yields:

E[f(ωkt+1)]− f(ωkt) ≤ −αkt g(gradf(ωkt),HktEikt [ζkt]) +
1

2
(αkt)

2a1Eikt [‖Hkt ζkt ‖2]

≤ −αkt a3‖gradf(ωkt)‖2 +
1

2
(αkt)

2a1Eikt [a2
4‖ζkt ‖2], (6.4)

87

where the second inequality comes from Lemma 6.7. Finally, the proof is completed with the As-

sumption 6.6: ‖ζkt ‖ = ‖gradfikt
(ωkt)−T ω

k
t

ωk [gradfikt
(ωk)− gradf(ωk)]‖ ≤ 3A by the reduced variance

strategy.

(ii)Taking the total expectation of (i):

E[f(ωkt+1)]− E[f(ωkt)] ≤ −αkt a3E[‖gradf(ωkt)‖2] +
9

2
a1(αkt a4A)2.

Then sum for all the iterates from ω0
0 to ωKmk :

E[f(ωKmk)]− E[f(ω0
0)] ≤ −a3

K∑
k=1

mk∑
t=1

αktE[‖gradf(ωkt)‖2] +
9

2
a1a

2
4A

2
K∑
k=1

mk∑
t=1

(αkt)
2.

Assumption 6.5 gives the lower bound of f and the limit sum of (αkt)
2, which completes proof after

rearranging the inequality.

(iii)This is easily proved by contradiction based on (ii).

6.3.2 Global Convergence Theorem

Theorem 6.1. Let ω∗ ∈ M be a non-degenerate local minimizer of f . Suppose Assumptions 6.1-

6.6 hold for Algorithm 6 and the Broyden parameter satisfies (1 − ν)φ
(k)c
i ≤ φ

(k)
i ≤ 1 − δ (3.14).

Then

lim
k→∞

E[‖gradf(ωkt)‖2] = 0.

Proof. The proof starts with defining h(ω) := ‖gradf(ω)‖2 and from the Taylor’s Theorem,

h(ωkt+1)− h(ωkt) ≤ −2αkt g(gradh(ωkt),Hessf(ωkt)[ηkt]) +
1

2
(αkt)

2a5‖ηkt ‖2.

The derivative is similar with Lemma 6.2, while the first term on the right side is different because

of the derivative of h(ω). Then taking the expectation with respect to ikt like Lemma 6.8 (i) yields:

Eikt [h(ωkt+1)]− h(ωkt) ≤ −2αkt g(gradf(ωkt),Hessf(ωkt)[HktEikt [ζkt]]) +
1

2
(αkt)

2a5Eikt [‖Hkt ζkt ‖2]

≤ 2αkt ‖gradf(ωkt)‖ ‖Hessf(ωkt)[Hkt gradf(ωkt)]‖+
1

2
(αkt)

2a5a
2
4Eikt [‖ζkt ‖2]

≤ 2αkt a1a4‖gradf(ωkt)‖2 +
9

2
(αkt)

2a5a
2
4A

2. (6.5)

Taking the total expectation, we have

E[h(ωkt+1)]− E[h(ωkt)] ≤ 2αkt a1a4E[‖gradf(ωkt)‖2] +
9

2
(αkt)

2a5a
2
4A

2.

88

The first term on the right side has a convergent sum from Lemma 6.9 (ii) so that E[h(ωkt+1)] −

E[h(ωkt)] is the term of a convergent sum. We can define Z+
K :=

∑K
k=1

∑mk
t=1 max(0,E[h(ωkt+1)] −

E[h(ωkt)]) and Z−K :=
∑K

k=1

∑mk
t=1 max(0,E[h(ωkt)] − E[h(ωkt+1)]). S+

K is non-decreasing and upper

bounded, E[h(ωKmk)] = h(ω0
0)+S+

K−S
−
K ≥ 0 indicates that non-decreasing S−K is also upper bounded.

Both two converges therefore E[h(ωKmk)] converges. Then the limit of E[‖gradf(ωkt)‖]2 must go to

zero from Lemma 6.9 (iii).

Lemma 6.10. (Lemma 3.4 in [23]). For any ω̄ ∈ M, there exists τ1 > 0, τ2 > 0 and δτ1,τ2 such

that for all ω in a sufficiently small neighborhood of ω̄ and all ξ ∈ TωM with ‖ξ‖ ≤ δτ1,τ2, it holds

that

τ1dist(ω,Rω(ξ)) ≤ ‖ξ‖ ≤ τ2dist(ω,Rω(ξ)),

where dist(·, ·) is the shortest distance between two points on M.

Lemma 6.11. Suppose Assumptions 6.1, 6.2, 6.4 and 6.6 hold. Let c2 > 0 be a constant such that

‖Pω←yγ (gradfi(y))− gradfi(ω)‖ ≤ c2dist(ω, y),

where ω, y ∈ Ω̃, i = 1, 2, · · · , n, γ(t) := Ry(tη) is a curve defined by a retraction and Pω←yγ is

a parallel translation operator along γ from y to ω. Then, the upper bound of the variance of

Eikt [‖ζkt ‖2] is given by

Eikt [‖ζkt ‖2] ≤ 4(c2
2 + τ2

2C
2c2

1)(7(dist(ωkt , ω
∗))2 + 4(dist(ωk, ω

∗))2).

Proof. The first inequality is guaranteed by the fact that ‖Pω←yγ (gradf(y))−gradf(ω)‖ is bounded

above by a constant times ‖sk‖ in the proof of Lemma 6.5.

89

For the second part, consider ζkt = gradfikt
(ωkt)− T ω

k
t

ωk [gradfikt
(ωk)− gradf(ωk)]:

Eikt [‖ζkt ‖2]

= Eikt [‖
(

gradfikt
(ωkt)− T ω

k
t

ω∗ gradfikt
(ω∗)

)
+
(
T ω

k
t

ω∗ gradfikt
(ω∗)− T ω

k
t

ωk gradfikt
(ωk)

)
+ T ω

k
t

ωk gradf(ωk)‖2]

≤ 2Eikt
[
‖gradfikt

(ωkt)− T ω
k
t

ω∗ gradfikt
(ω∗)‖2

]
+2Eikt

[
‖T ω

k
t

ωk gradfikt
(ωk)− T

ωkt
ω∗ gradfikt

(ω∗)− T ω
k
t

ωk gradf(ωk)‖2
]

= 2Eikt
[
‖gradfikt

(ωkt)− T ω
k
t

ω∗ gradfikt
(ω∗)‖2

]
+2Eikt

[
‖T ω

k
t

ωk gradfikt
(ωk)− T

ωkt
ω∗ gradfikt

(ω∗)‖2
]

+ 2‖gradf(ωk)‖2

−4g(T ω
k
t

ωk gradf(ωk), T
ωkt
ωk gradf(ωk)− T

ωkt
ω∗ gradfikt

(ω∗))

= 2Eikt
[
‖gradfikt

(ωkt)− Pωkt←ω∗gradfikt
(ω∗) + Pω

k
t←ω∗gradfikt

(ω∗)− T ω
k
t

ω∗ gradfikt
(ω∗)‖2

]
+2Eikt

[
‖T ω

k
t

ωk gradfikt
(ωk)− gradfikt

(ωkt) + gradfikt
(ωkt)− T ω

k
t

ω∗ gradfikt
(ω∗)‖2

]
−2‖gradf(ωk)‖2

≤ 4Eikt
[
‖gradfikt

(ωkt)− Pωkt←ω∗gradfikt
(ω∗)‖2

]
+4Eikt

[
‖Pωkt←ω∗gradfikt

(ω∗)− T ω
k
t

ω∗ gradfikt
(ω∗)‖2

]
+4Eikt

[
‖T ω

k
t

ωk gradfikt
(ωk)− gradfikt

(ωkt)‖2
]

+4Eikt
[
‖gradfikt

(ωkt)− T ω
k
t

ω∗ gradfikt
(ω∗)‖2

]
≤ 4c2

2(dist(ωkt , ω
∗)) + 4τ2

2C
2c2

1(dist(ωk, ω
∗))

+4Eikt
[
‖T ω

k
t

ωk gradfikt
(ωk)− Pω

k
t←ωkgradfikt

(ωk) + Pω
k
t←ωkgradfikt

(ωk)− gradfikt
(ωkt)‖2

]
+2[4c2

2(dist(ωkt , ω
∗)) + 4τ2

2C
2c2

1(dist(ωk, ω
∗))](evaluated from the second equality)

≤ 12[c2
2(dist(ωkt , ω

∗)) + τ2
2C

2c2
1(dist(ωk, ω

∗))]

+2[4τ2
2C

2c2
1(dist(ωk, ω

k
t)) + 4c2

2(dist(ωk, ω
k
t)]

≤ 4(c2
2 + τ2

2C
2c2

1)(3(dist(ωkt , ω
∗))2 + 2(dist(ωk, ω

k
t))2)

≤ 4(c2
2 + τ2

2C
2c2

1)(7(dist(ωkt , ω
∗))2 + 4(dist(ωk, ω

∗))2), (6.6)

where the last inequality comes from

(dist(ωk, ω
k
t))2 ≤ (dist(ωk, ω

∗) + dist(ωkt , ω
∗))2 ≤ 2(dist(ωk, ω

∗))2 + 2(dist(ωkt , ω
∗))2.

90

6.3.3 Local Convergence Rate Theorem

Theorem 6.2. Let ω∗ ∈ M be a non-degenerate local minimizer of f . Suppose Assumptions

6.1, 6.2, 6.3, 6.4 and 6.6 hold for Algorithm 6. Let α be a positive number satisfying a3a
2
0τ

2
1 >

14αa1a
2
4(c2

2 + τ2
2C

2c2
1). For any sequence {ωk} generated by the algorithm converging to ω∗ with

Option I-A under a fixed step-size αkt = α, there exists 0 < K∗ < K such that for all k > K∗,

E[f(ωk+1)− f(ω∗)] ≤ [1− 2αa0a3 +
4α2a1a

2
4

a0τ2
1

(4mk + 7)(c2
2 + τ2

2C
2c2

1)]E[f(ωk)− f(ω∗)],

where a0, a1 from Lemma 6.1, a3, a4 from Lemma 6.6, τ1, τ2 from Lemma 6.10, c1, c2, C from

Lemma 6.11.

Proof. From Lemma 6.8,

Eikt [f(ωkt+1)]− f(ωkt) ≤ −2αa3a0(f(ωkt)− f(ω∗)) +
1

2
α2a1a

2
4Eikt [‖ζkt ‖2].

Noting that ‖gradf(ω∗)‖ = 0, from the left side of Lemma 6.2 and Lemma 6.10,

f(ωkt)− f(ω∗) ≥ a0

2
‖R−1

ω∗ (ωkt)‖2 ≥ a0τ
2
1

2
(dist(ωkt , ω

∗))2.

With these two inequalities and Lemma 6.11, we have

Eikt [f(ωkt+1)]− f(ωkt) ≤
[
−αa3a

2
0τ

2
1 + 14α2a1a

2
4(c2

2 + τ2
2C

2c2
1)
]

(dist(ωkt , ω
∗))2

+8α2a1a
2
4(c2

2 + τ2
2C

2c2
1)(dist(ωk, ω

∗))2. (6.7)

Sum the inequalities over t = 0, · · · ,mk − 1 and take the total expectation:

E[f(ωkmk)− f(ωk0)] ≤
[
−αa3a

2
0τ

2
1 + 14α2a1a

2
4(c2

2 + τ2
2C

2c2
1)
]mk−1∑
t=0

E[(dist(ωkt , ω
∗))2]

+8mkα
2a1a

2
4(c2

2 + τ2
2C

2c2
1)E[(dist(ωk, ω

∗))2]

≤
[
−αa3a

2
0τ

2
1 + 14α2a1a

2
4(c2

2 + τ2
2C

2c2
1)
]mk−1∑
t=0

2

a0τ2
1

E[f(ωkt)− f(ω∗)]

+8mkα
2a1a

2
4(c2

2 + τ2
2C

2c2
1)

2

a0τ2
1

E[f(ωk)− f(ω∗)]. (6.8)

Note that ωkmk = ωk+1 and ωk0 = ωk, we have

E[f(ωkmk)− f(ωk0)] = E[f(ωk+1)− f(ω∗) + f(ω∗)− f(ωk)] = E[f(ωk+1)− f(ω∗)]−E[f(ωk)− f(ω∗)].

Also note that −a3a
2
0τ

2
1 + 14αa1a

2
4(c2

2 + τ2
2C

2c2
1) < 0, the desired inequality follows by rearranging

the above inequality.

91

6.3.4 Remark

The convergence rate and the required α are related to the inverse Hessian approximation

bounds a3 and a4 that are in turn related to the bounds on det(B̂k) and trace(B̂k). Given a

strategy to choose φ
(k)
i in the full Broyden family, theoretically it would be possible to change the

value of these bounds so that the α or the rate can be changed for better performance.

Consider the bound for stepsize α:

α <
a3a

2
0τ

2
1

14a1a2
4(c2

2 + τ2
2C

2c2
1)

:= Γ
a3

a2
4

,

where Γ is a constant, a3, a4 bound the Hessian approximation operator Hk and Hkt as shown in

Lemma 6.7. Given the bounds M3,M4 in Lemma 6.6 that satisfy trace(B̂k) ≤ M3, det(B̂k) ≥ M4,

it follows that:

a3 = 1/M3,

a4 = (M3)L−1/M4,

where m is the dimension of M. This results are based on the sum and the product of the

eigenvalues equal the trace and the determinant of a matrix respectively. We can have a wider

range of stepsize if det(B̂k) has a larger lower bound and trace(B̂k) has a smaller upper bound.

Observing the update expression for det(B̂k) that Bk ≡ BLk :

det(B̂Lk) ≥ det(B̂L−1
k)

g(yk−1, sk−1)

g(sk−1,BL−1
k sk−1)

ν ≥ · · · ,

where BFGS has ν = 1 while Broyden has ν ∈ (0, 1] so that BFGS gives the largest lower bound

for the determinant. Meanwhile, the trace expression is a monotone function of φ
(k)
i based on (3.1),

which means the upper bound for the trace becomes smaller with a negative φ
(k)
i than the bound

for BFGS. Note that the trace upper bound M3 has power term in the expression, its impact may

be more weighted in the bound of α. Although the proof is not rigorous, it suggests that LR-

SBroyden-VR may accept a wider range of stepsize in the performance evaluation experiments.

92

CHAPTER 7

EXPERIMENTS OF RIEMANNIAN STOCHASTIC

BROYDEN FAMILY OF QUASI-NEWTON

METHODS

In this chapter, we conduct a comprehensive comparative analysis between LR-SBroyden-VR

and the existing limited-memory Riemannian stochastic BFGS in the work of Kasai et al. [30],

denoted as LR-SBFGS-VR. The Broyden parameter selection adheres to the principles established

by Davidon, where φ
(k)
i represents the selected parameter value. Additionally, a hybrid selection

strategy, as expounded in Chapter 5, is incorporated into LR-SBroyden-VR. All quasi-Newton

methods are employed in mini-batched stochastic iterations, sharing a unified approach to the

generation of curvature pairs. This generation process occurs exclusively at the outer k-loop, as

outlined in Algorithm 6. The comparative analysis aims to provide insights into the performance

and efficiency of LR-SBroyden-VR in comparison to LR-SBFGS-VR under various optimization

scenarios.

An important observation highlighted in Chapter 5 of LRBroyden is its capacity to accommo-

date larger stepsizes than LRBFGS during the line search procedure. This characteristic proves

to be particularly significant in the context of stochastic variance-reduced algorithms, where a

fixed stepsize is employed. The ability to accept larger steps while maintaining stability is crucial,

potentially leading to faster convergence rates in scenarios where a fixed stepsize might be exces-

sively conservative. In the stochastic variance-reduced algorithm, where a fixed stepsize is essential,

LR-SBroyden-VR’s adaptability to larger steps emerges as a pivotal factor, enhancing its overall

performance in stochastic optimization problems.

In stochastic variance-reduced algorithms, the determination of certain parameters often in-

volves empirical experimentation. In addition to the stepsize and memory size, the selection of

batch size and frequency value (referred to as stochastic parameters) introduce various trade-offs

between per-iteration costs and per-iteration improvement. The numerical results presented in this

chapter provide compelling evidence that the choice of these stochastic parameters significantly

impacts the performance of stochastic quasi-Newton methods. We provide heuristic suggestions for

93

selecting these parameters for the proposed algorithm, helping guide the effective implementation

of the algorithm in practical stochastic optimization scenarios.

In Section 7.2, a comprehensive metric is introduced to assess the computational costs associ-

ated with Riemannian stochastic methods. Section 7.3 provides details on a series of meticulously

designed experiments. These experiments are carefully crafted to isolate and address various pa-

rameters influencing the performance of Riemannian stochastic quasi-Newton algorithms. Finally,

Section 7.4 presents a collection of experiments of three distinct algorithms: R-SVRG, LR-SBFGS-

VR, and LR-SBroyden-VR. These experiments aim to provide a thorough understanding of the

algorithms’ behavior under different scenarios and illustrate their comparative strengths and weak-

nesses.

7.1 Test Problems

We consider three problems in the experiments: principal component analysis (PCA) on the

Grassmann manifold, the joint diagonalization problem on the Stiefel manifold and the low-rank

matrix completion problem on the Grassmann manifold. These problems are rewritten into the

form of a finite-sum cost function, as defined in Equation 6.1.

7.1.1 PCA Problem

The PCA problem is to minimize the sum of squared residual error between projected data

points and the original data as follows:

min
U∈St(r,m)

1

n

n∑
i=1

‖zi − UUT zi‖22, (7.1)

where zi is a data vector of size m× 1 and U is an orthonormal matrix projector. The problem is

equivalent to

min
U∈St(r,m)

− 1

n

n∑
i=1

zTi UU
T zi. (7.2)

Meanwhile, U 7→ UO for all orthogonal matrices O ∈ O(r) have the same cost function value. This

makes the problem an optimization problem on the Grassmann manifold Gr(r,m) (see [51]).

The synthetic matrix Z ∈ Rm×n(m � n) storing zi is generated by the following procedure.

First, we generate a m×n matrix A with elements independently drawn from the standard normal

distribution. The data is then centered by subtracting the mean of each row from the matrix

A. Then a Singular Value Decomposition (SVD) is performed on the centralized matrix, resulting

94

in two orthogonal matrices U∗ ∈ Rm×m containing left singular vectors, V∗ ∈ Rn×n containing

right singular vectors and a rectangular diagonal matrix S ∈ Rm×n. We construct the rectangular

diagonal matrix Ssyn and generate the synthetic matrix by Z := U∗SsynV
T
∗ . The initial point is set

as ORTH(U∗(:, 1 : r) + randn(m, r)) in Matlab, where U∗(:, 1 : r) stores the r leading eigenvectors

of Z, representing the true solution.

7.1.2 ICA Problem

The second test problem is the joint diagonalization on the Stiefel manifold. This is a prepro-

cessing step widely used in Independent Component Analysis (ICA) or the blind source separation

problem. The optimization problem defined on the Stiefel manifold is

min
U∈St(r,m)

− 1

n

n∑
i=1

‖diag(UTCiU)‖2F , (7.3)

where ‖diag(A)‖2F returns the sum of the squared diagonal elements of A, and Ci are known

symmetric matrices (see [56, 50]).

The matrices Ci are selected as Ci = diag(m,m− 1, · · · , 1) + εC(Ri +RTi), where the elements

of Ri ∈ Rm×m are independently drawn from the standard normal distribution. The initial point

is randomly generated as an m× r matrix with orthonormal column.

7.1.3 Low-rank Matrix Completion Problem

The low-rank matrix completion problem is considered on the Grassmann manifold. Partitioning

A = [a1, · · · , an] so that the problem is well-defined for using a stochastic method. The problem is

defined as follows:
min

X∈Rm×nr

‖PΩX − PΩA‖2F

= min
U∈Rm×r,W∈Rr×n

‖PΩ(UW)− PΩA‖2F

= min
U∈Rm×r,wi∈Rr

1

n

n∑
i=1

‖PΩi(Uwi)− PΩi(ai)‖22,

(7.4)

where PΩi is the sampling operator for the i-th column. Given U , wi admits a closed-form solution

[6]. As a consequence, the problem depends only on the column space of U , and is on the Grassmann

manifold (see [29]).

We generate AL ∈ Rm×r and AR ∈ Rr×n with i.i.d. standard normal entries and then compute

the thin SVD of the product ALAR = U∗SV
T
∗ where U∗ ∈ Rm×r, S ∈ Rr×r and V∗ ∈ Rr×n. The

elements in the diagonal matrix S are then replaced with values that satisfy the condition number,

95

denoted as CN–the ratio of the maximal to the minimal singular values of the matrix. The known

index set Ω is uniformly sampled at random among all sets of |Ω|, which yields the oversampling

ratio OS. The initial point is randomly generated as an m× r matrix with orthonormal columns.

7.2 Algorithm Parameters and Evaluation Criteria

In the experiments, three different algorithms are employed: R-SVRG, LR-SBFGS-VR and

LR-SBroyden-VR (Broyden parameters chosen as Davidon’s choice and the hybrid strategy). All

these stochastic optimization methods incorporate the variance reduction method proposed in [60].

The experimentation involves a fixed stepsize α, with the batch size b determining the number of

gradient components calculated at each iteration. Additionally, the frequency value mk is employed

to specify how often the entire gradient and curvature information are calculated and updated.

The choice of these two stochastic parameters, b and mk, is determined empirically, following a

methodology similar to existing stochastic optimization algorithms. The performance evaluation is

conducted as a function of α and L, with these values chosen from the predefined sets as outlined

below.

• Batch size: b is chosen from {1, 10, 20};

• Frequency value: mk is chosen from {n/20, n/10, n/5, n, 5n};

• Stepsize: α is tuned from {10−1, 5× 10−2, 10−2, 5× 10−3, 10−3} as a fixed number;

• Memory size: L is chosen from {1, 2, 4, 8}.

In a single iteration, which comprises one k-loop iteration and mk t-loop iterations, both LR-

SBroyden-VR and LR-SBFGS-VR involve the following computational steps: 1 evaluation of a full

gradient, mk evaluations of a stochastic Euclidean gradient with batch size b, mk + 1 projections

of these gradients onto the manifold, mk evaluations of a retraction, 1 evaluation of an inverse

retraction, mk+2L evaluations of a vector transport, mk evaluations of an inverse vector transport,

mk applications of the inverse Hessian approximation Hkζt, 1 computation of Hk preparation.

Notice that the total sum index n is usually much larger than the manifold dimension, and the

parameter mk is related to the value of n.

Suppose the algorithm operates on St(r,m) and Gr(r,m) with qf retraction, parallelization

transport and the intrinsic representation. Let J denote the dominant computation for each com-

ponent’s Euclidean gradient, as indicated in Table 7.1. Consequently, a full Euclidean gradient

96

Table 7.1: Dominant computations of Euclidean gradient for each test problem.

Problem low-rank matrix completion PCA joint diagonalization

J OS · nr + 2m2r 4mr 2m2r

Table 7.2: Dominant computations of the updates in LR-SBroyden-VR.

gradf gradfit R T &T −1 Hkζt
operation nJ + 8mr2 − 2r3 bJ + 8mr2 − 2r3 10mr2 − 14r3/3 - 8Ld

multiplicity 1 mk mk 2mk + 2L mk

and a stochastic Euclidean gradient require nJ and bJ computations, respectively. Table 7.2

presents the dominant computations and their multiplicities in LR-SBroyden-VR, where all the

terms shown are related to n. Notice that d represents the intrinsic dimension of the manifold,

where d = mr − r(r + 1)/2 for Stiefel manifold and d = r(m− r) for Grassmann manifold.

In the experiments, the computational cost is measured by aggregating the major operations

performed during the iterates and then dividing this sum by nJ . This measurement is denoted as

the number of equivalent Euclidean gradient computations, represented as #nJ in the following

numerical results. It serves as an indicator of the amount of work required by each method in

comparison to the Euclidean non-stochastic gradient-based optimization algorithms. In Euclidean

space, #grad/n is a useful metric as it signifies the number of passes needed to traverse the entire

dataset. However, #nJ provides more accurate reflection of the total work performed on a Rie-

mannian manifold. Finally, the stopping criteria are set as ‖gff‖/‖gf0‖ < 10−6 or the maximum

value of #nJ is reached. The maximum #nJ threshold, is dependent on the choices of problem

and parameter settings.

7.3 Parameter Selection

The experiments in this section are designed to determine the appropriate stochastic parameters

batch size b and frequency value mk for each algorithm and problem. The problems are set with

a fixed size of n = 1000. The hypothesis is batch size b = 10 would yield the most stable and

robust performance when compared to alternatives like b = 1, 20. Frequency value mk plays a

crucial role in the quality of the curvature information within stochastic quasi-Newton methods.

The hypothesis is that choosing a smaller mk than the typical choices for R-SVRG (2n for convex

and 5n for nonconvex as indicated in [28]) may lead to improved performance in stochastic quasi-

97

Newton methods. For the LR-SBroyden-VR algorithm, we opt for the Broyden parameter choice of

Davidon’s φ
(k)
i , denoted as LR-SDavidon-VR. This choice of Broyden parameter is observed to be

robust and effective in the non-stochastic LRBroyden family of methods. To test our hypotheses,

we proceed to compare the performance of R-SVRG, LR-SBFGS-VR and LR-SDavidon-VR across

different problems.

7.3.1 Knowledge of Stochastic Parameters

The practical success of stochastic gradient-based methods has been demonstrated in many

domains in recent years. However, theoretical foundations supporting the idea that different choices

of stepsize, batch size, and frequency size can result in significantly different behaviors are not

extensively established. This consideration has received substantial attention in the context of

the Stochastic Gradient Descent (SGD) method, as evident in work [19]. These papers primarily

focused on the phenomenon of heavy-tail behavior caused by the noise in SGD gradients, which

leads to slow convergence as the iterates approach a minimizer. The ratio of stepsize to batch size

controls the magnitude of scaling the stochastic noise, specifically, a higher ratio leads to a higher

probability to escape from the basin near the minimum.

As discussed in Section 6.1, the gradient variance of SGD imposes a limitation on the stepsize,

which must be a decaying sequence. This constraint leads to a reduction in the convergence

rate. It is noteworthy that this restriction also applies to some widely used adaptive stochastic

gradient methods, such as AdaGrad, Adam, AMSGrad both in Euclidean space and on Riemannian

manifold. In the pursuit of faster convergence, the SVRG method introduced in Section 6.1.3 has

emerged as an empirically successful approach, allowing for a constant stepsize. This method

effectively accelerates the convergence rate compared to the methods with decaying stepsize and

also is suitable for serving as the basis for proposing stochastic quasi-Newton methods. The fixed

value of stepsize, however, is typically chosen empirically.

In the first SVRG paper by Johnson and Zhang [28], it was recommended to set the frequency

value mk to 2n for convex problems and 5n for nonconvex problems. However, the authors did not

provide explicit reasons for these choices. Subsequent papers, including LR-SBFGS-VR [30], simply

adopted these recommendations without conducting further exploration. One possible reason for

this could be the desire to set it to a safe value, given that there exists a theoretical lower bound for

mk in the nonconvex problems. This bound was established by Reddi et. al [44] in the relationships

98

between the stepsize, batch size and frequency size as follows:

b < n2/3, α = µb/(L∗n2/3), mk = bn/(3bµ)c, (7.5)

where α, b,mk represent the stepsize, batch size and frequency size, respectively. µ ∈ (0, 1) is a

constant, and L∗ is Lipschitz constant for continuous gradients. It is important to note that the

stepsize and frequency size of SVRG depend on n. In the experiments conducted in [44], the choices

were b = 10,mk = n/b and a best-tuned α.

Despite the progress in understanding the relationships between batch size b, frequency value

mk and stepsize α for stochastic quasi-Newton methods both in Euclidean space and on Rieman-

nian manifold, the optimal choices for these parameters remain open questions. Most findings in

the stochastic quasi-Newton literature are based on heuristic evidence derived from empirical ex-

perimentation. In the following experiments, we present the empirical evidence that help us assess

our hypotheses regarding the selection of these parameters. The preferred parameter settings are

used in the subsequent comparison of LR-SBroyden-VR, LR-SBFGS-VR and R-SVRG.

7.3.2 Experiments to Determine b and mk

In this section, we present the results of our investigation into the appropriate batch size b and

frequency value mk for LR-SDavidon-VR, LR-SBFGS-VR and R-SVRG in the three test problems.

The stochastic quasi-Newton algorithms are tested with memory sizes L = 2 and L = 4, as these

two choices demonstrated good performances. It is important to note that the algorithm cannot

not always find sufficiently accurate solution within the prescribed amount of work. The results are

obtained from 10 runs, each with 5 different random initial points, resulting in a total of 50 runs.

The values presented in the following tables represent the average #nJ calculated from the

successful runs that reached |gff |/|gf0| < 10−6 within the prescribed amount of work, where #nJ

is defined in Section 7.2. The values in the parentheses indicate the count of successful runs out

of total 50. For example, “- (0)” means all 50 runs do not find the sufficiently accurate solution.

The entries highlighted in blue in each table represent the minimum #nJ values that achieved a

100% success rate and are considered the best performances. Note that the metric #nJ , which

measures operation counts and computational costs, is machine independent. Therefore, it provides

a more reliable measure than computational time, as it is not affected by variations in machine

performance. This makes #nJ a valuable metric for assessing algorithm efficiency and comparing

performance in this dissertation.

99

PCA

The synthetic PCA problem is generated with m = 50, n = 1000, r = 5 following instructions

in Section 7.1, and Ssyn has the diagonal elements {100, 80, 60, 40, 5, 1 · · · 1}. Tables 7.3, 7.4 and

7.5 show the results for stochastic quasi-Newton algorithms with L = 2, L = 4 and R-SVRG

respectively. These tables provide insights into the performance of these algorithms on the synthetic

PCA problem under different memory and parameter settings.

The best batch size b for both LR-SBFGS-VR and LR-SDavidon-VR is found to be b = 10, while

a batch size of b = 1 performs poorly due to the lack of information from each stochastic gradient.

A larger batch size b = 20 does not lead to a decrease in the #nJ value as each evaluation of the

stochastic gradient becomes more expensive. For the frequency value, a smaller mk generally leads

to higher success rates overall, with LR-SDavidon-VR achieving its best performance at b = 10,

mk = n/10. LR-SBFGS-VR performs best at b = 10, mk = n/10 with L = 2 and at b = 10,

mk = n/20 with L = 4. Interestingly, increasing the memory size from L = 2 to L = 4 has a

negative impact on LR-SBFGS-VR’s performance.

For R-SVRG, the best performances were observed at b = 1 and mk = n in the PCA problem.

Larger step sizes, such as α = 0.5, were also tested but cannot find sufficiently accurate solution

in most cases. Generally, smaller frequency values appear to be more appropriate for the two

stochastic quasi-Newton algorithms compared to R-SVRG. This is mainly due to the requirement

of updating curvature pairs in the stochastic quasi-Newton algorithms.

Fixing the dimension of the manifold as m = 50 and r = 5, the second experiment presented

in Table 7.6 is conducted with n = 10000. The batch size b = 10 remains a suitable choice, but

increasing it to b = 20 tends to produce better performance. This is reasonable because with

a larger problem size, a larger batch size provides more information for each stochastic gradient.

Even though the batch size increases, the proportion of stochastic components to the total decreases

from 10/1000 to 20/10000. The best performing frequency value mk increases from 1000/10 = 100

to 10000/50 = 200, compensating for the fact that each stochastic gradient accounts for fewer

components in total. These findings indicate that the choice of parameters batch size and frequency

value should be adapted to the specific problem size to achieve optimal performance.

ICA

The synthetic ICA problem is generated with m = 10, n = 1000, r = 9 following instructions in

Section 7.1, and εC = 0.1. Tables 7.7, 7.8 and 7.9 show the results for the stochastic quasi-newton

100

Table 7.3: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with n =

1000 and different b,mk. The reported numbers are #nJ that measure the computational cost

(with the number of successful runs out of 50 in the parentheses).

L = 2 mk = n mk = n/5

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 859 (2) 743 (12) - (0) 502 (44) 490 (49)

LR-SDavidon-VR - (0) 754 (6) 737 (24) - (0) 464 (50) 559 (50)

b = 10
LR-SBFGS-VR - (0) 630 (16) 681 (31) - (0) 387 (50) 740 (50)

LR-SDavidon-VR - (0) 598 (31) 670 (34) 647 (22) 320 (50) 442 (50)

b = 20
LR-SBFGS-VR - (0) 665 (16) 764 (33) 671 (4) 427 (50) 897 (50)

LR-SDavidon-VR - (0) 658 (23) 789 (35) 620 (9) 350 (50) 478 (50)

L = 2 mk = n/10 mk = n/20

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR 301 (1) 399 (50) 563 (49) 619 (8) 443 (50) 599 (50)

LR-SDavidon-VR 482 (6) 421 (50) 561 (50) 434 (39) 426 (49) 633 (50)

b = 10
LR-SBFGS-VR 512 (15) 335 (50) 559 (50) 426 (35) 352 (50) 578 (50)

LR-SDavidon-VR 471 (39) 277 (50) 460 (50) 265 (50) 299 (50) 670 (50)

b = 20
LR-SBFGS-VR 551 (10) 540 (50) 613 (50) 486 (38) 411 (50) 637 (50)

LR-SDavidon-VR 470 (36) 312 (50) 519 (50) 357 (50) 340 (50) 763 (50)

Table 7.4: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with n =

1000 and different b,mk. The reported numbers are #nJ that measure the computational cost

(with the number of successful runs out of 50 in the parentheses).

L = 4 mk = n mk = n/5

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 679 (1) 791 (11) - (0) 388 (9) 520 (27)

LR-SDavidon-VR - (0) 772 (2) 827 (9) - (0) 507 (48) 547 (50)

b = 10
LR-SBFGS-VR - (0) 618 (10) 783 (35) - (0) 340 (32) 774 (49)

LR-SDavidon-VR - (0) 602 (31) 906 (50) 463 (8) 410 (50) 503 (50)

b = 20
LR-SBFGS-VR - (0) 652 (15) 773 (30) - (0) 319 (42) 891 (49)

LR-SDavidon-VR - (0) 689 (21) 781 (26) 718 (10) 393 (50) 581 (50)

L = 4 mk = n/10 mk = n/20

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 322 (14) 706 (50) - (0) 419 (37) 603 (50)

LR-SDavidon-VR 239 (1) 385 (50) 607 (50) 534 (11) 429 (50) 758 (50)

b = 10
LR-SBFGS-VR - (0) 386 (39) 633 (50) 108 (5) 388 (46) 541 (50)

LR-SDavidon-VR 452 (18) 307 (50) 741 (50) 371 (50) 418 (50) 801 (50)

b = 20
LR-SBFGS-VR 389 (1) 406 (33) 750 (50) 523 (1) 454 (45) 585 (50)

LR-SDavidon-VR 480 (23) 332 (50) 861 (50) 393 (46) 522 (50) 906 (50)

101

Table 7.5: Comparison of R-SVRG for the PCA problem with n = 1000 and different b,mk. The

reported numbers are #nJ that measure the computational cost (with the number of successful

runs out of 50 in the parentheses).

R-SVRG mk = 5n mk = n

stepsize 1−1 5−2 1−2 1−1 5−2 1−2

b=1 2590 (40) 2063 (49) 2414 (26) 1024 (50) 1624 (43) 2353 (16)

b=10 1724 (50) 1711 (46) 1977 (22) 1141 (47) 1251 (45) 2007 (29)

b=20 2089 (46) 1966 (28) 2148 (23) 1317 (43) 1475 (39) 2062 (25)

R-SVRG mk = n/5 mk = n/10

stepsize 1−1 5−2 1−2 1−1 5−2 1−2

b=1 1424 (38) 1848 (11) 2145 (3) 1853 (17) 2279 (2) 2512 (2)

b=10 1823 (17) 1722 (13) 1796 (37) - (0) 2825 (1) 2189 (27)

b=20 2056 (3) 1685 (2) 2325 (25) - (0) - (0) 2161 (24)

Table 7.6: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the PCA problem with n =

10000 and different b,mk. The reported numbers are #nJ that measure the computational cost

(with the number of successful runs out of 50 in the parentheses).

L = 2 mk = n/10 mk = n/50 mk = n/100

stepsize 1−2 5−3 1−2 5−3 1−2 5−3

b = 1
LR-SBFGS-VR 389 (22) 197 (50) 156 (50) 121 (50) 134 (50) 208 (50)

LR-SDavidon-VR 371 (47) 178 (50) 110 (50) 143 (50) 159 (50) 196 (50)

b = 10
LR-SBFGS-VR 231 (50) 123 (50) 76 (50) 173 (50) 134 (50) 174 (50)

LR-SBroyden-VR 145 (50) 110 (50) 69 (50) 106 (50) 95 (50) 144 (50)

b = 20
LR-SBFGS-VR 237 (50) 141 (50) 88 (50) 194 (50) 137 (50) 175 (50)

LR-SDavidon-VR 176 (50) 137 (50) 61 (50) 106 (50) 91 (50) 147 (50)

b = 50
LR-SBFGS-VR 296 (47) 180 (50) 91 (50) 264 (50) 186 (50) 195 (50)

LR-SDavidon-VR 222 (50) 160 (50) 83 (50) 126 (50) 102 (50) 161 (50)

L = 4 mk = n/10 mk = n/50 mk = n/100

stepsize 1−2 5−3 1−2 5−3 1−2 5−3

b = 1
LR-SBFGS-VR 133 (9) 201 (25) 296 (16) 270 (40) 327 (34) 259 (50)

LR-SDavidon-VR 469 (34) 207 (50) 119 (50) 141 (50) 117 (50) 212 (50)

b = 10
LR-SBFGS-VR 117 (24) 145 (44) 213 (45) 175 (50) 254 (50) 203 (50)

LR-SBroyden-VR 162 (50) 119 (50) 81 (50) 107 (50) 95 (50) 222 (50)

b = 20
LR-SBFGS-VR 172 (32) 188 (48) 242 (49) 195 (50) 175 (49) 203 (50)

LR-SDavidon-VR 168 (50) 128 (50) 72 (50) 118 (50) 91 (50) 238 (50)

b = 50
LR-SBFGS-VR 220 (31) 194 (46) 123 (48) 209 (50) 186 (49) 225 (50)

LR-SDavidon-VR 202 (50) 170 (50) 84 (50) 138 (50) 101 (50) 283 (50)

102

Table 7.7: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the ICA problem with different

b,mk. The reported numbers are #nJ that measure the computational cost (with the number of

successful runs out of 50 in the parentheses).

L = 2 mk = n mk = n/5

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 187 (1) 774 (24) - (0) 187 (1) 774 (24)

LR-SDavidon-VR - (0) 644 (5) 553 (47) - (0) 305 (48) 217 (50)

b = 10
LR-SBFGS-VR - (0) 310 (23) 567 (48) 499 (1) 286 (47) 284 (50)

LR-SDavidon-VR - (0) 407 (45) 399 (50) 209 (3) 192 (49) 222 (50)

b = 20
LR-SBFGS-VR - (0) 387 (30) 599 (46) 102 (2) 249 (48) 347 (50)

LR-SDavidon-VR - (0) 447 (39) 487 (50) 325 (9) 235 (49) 291 (50)

L = 2 mk = n/10 mk = n/20

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 395 (39) 299 (50) - (0) 319 (46) 326 (50)

LR-SDavidon-VR - (0) 215 (50) 268 (50) - (0) 223 (49) 305 (50)

b = 10
LR-SBFGS-VR 70 (1) 192 (50) 244 (50) 309 (10) 214 (50) 350 (50)

LR-SDavidon-VR 522 (24) 159 (50) 254 (50) 330 (49) 206 (50) 372 (50)

b = 20
LR-SBFGS-VR 87 (3) 248 (49) 352 (49) 187 (14) 249 (48) 410 (50)

LR-SDavidon-VR 435 (34) 198 (50) 353 (50) 239 (49) 229 (49) 438 (50)

algorithms with L = 2, L = 4 and R-SVRG respectively. It can be observed that the stochastic

quasi-Newton algorithms perform the best with b = 10, mk = n/10. A smaller batch size lowers

the success rate while a larger batch size increases the value of #nJ , i.e., the total computational

cost. The frequency value is chosen as the best-tuned value to utilize the curvature information

effectively. These findings are consistent with the observations in the PCA problem, where a batch

size of 10 and a frequency value of n/10 are the best choices for the stochastic quasi-Newton

algorithms. It appears that these parameter settings are effective across different problem types,

at least for the synthetic problems tested in Section 7.4.

Low-rank Matrix Completion

The synthetic low-rank matrix completion problem is generated with m = 50, n = 1000, r =

5, OS = 5 and CN = 10 following instructions in Section 7.1. To avoid redundancy, only b = 10 are

listed in Table 7.10 and only mk = n, n/10 are listed in Table 7.11. The frequency value mk = n/10

consistently performs well for the stochastic quasi-Newton methods. An obvious decrease in the

success rate is observed for LR-SBFGS-VR from L = 2 to L = 4, while LR-SDavidon-VR remains

more robust to a larger memory size. The rationale behind this can be explained as the self-

correcting property provided by the more flexible Broyden parameter. For R-SVRG, b = 1,mk = n

is the best stochastic parameter pair as highlighted in blue.

103

Table 7.8: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the ICA problem with different

b,mk. The reported numbers are #nJ that measure the computational cost (with the number of

successful runs out of 50 in the parentheses).

L = 4 mk = n mk = n/5

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 197 (1) 187 (7) - (0) 111 (6) 122 (14)

LR-SDavidon-VR - (0) 279 (2) 690 (19) - (0) 210 (17) 314 (50)

b = 10
LR-SBFGS-VR - (0) 254 (17) 244 (21) - (0) 93 (24) 208 (37)

LR-SDavidon-VR 241 (1) 602 (38) 407 (47) - (0) 226 (49) 210 (50)

b = 20
LR-SBFGS-VR - (0) 307 (22) 352 (30) 106 (3) 126 (24) 280 (36)

LR-SDavidon-VR - (0) 497 (35) 499 (50) 129 (5) 239 (48) 315 (50)

L = 4 mk = n/10 mk = n/20

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

b = 1
LR-SBFGS-VR - (0) 97 (6) 224 (19) - (0) 120 (8) 217 (30)

LR-SDavidon-VR - (0) 324 (34) 248 (50) - (0) 263 (50) 307 (50)

b = 10
LR-SBFGS-VR - (0) 100 (28) 399 (38) 60 (2) 167 (32) 377 (49)

LR-SDavidon-VR 169 (2) 163 (50) 246 (50) 187 (8) 178 (48) 325 (49)

b = 20
LR-SBFGS-VR 77 (3) 131 (29) 346 (48) 52 (4) 222 (36) 457 (50)

LR-SDavidon-VR 78 (4) 203 (50) 363 (50) 156 (16) 207 (50) 400 (49)

Table 7.9: Comparison of R-SVRG for the ICA problem with different b,mk. The reported numbers

are #nJ that measure the computational cost (with the number of successful runs out of 50 in the

parentheses).

R-SVRG mk = 5n mk = n

stepsize 1−1 5−2 1−2 1−1 5−2 1−2

b=1 1029 (45) 728 (49) 598 (48) 274 (48) 241 (47) 491 (47)

b=10 879 (49) 780 (48) 973 (48) 273 (47) 280 (46) 399 (48)

b=20 1261 (46) 1228 (47) 1389 (47) 397 (48) 435 (45) 516 (48)

R-SVRG mk = n/10 mk = n/20

stepsize 1−1 5−2 1−2 1−1 5−2 1−2

b=1 203 (47) 337 (45) 891 (44) 535 (46) 1298 (36) 1591 (12)

b=10 199 (47) 274 (48) 643 (46) 402 (48) 782 (34) 1042 (19)

b=20 422 (44) 422 (46) 621 (45) 581 (40) 777 (38) 1170 (21)

104

Table 7.10: Comparison of LR-SBFGS-VR and LR-SDavidon-VR for the low-rank matrix comple-

tion problem with different b,mk. The reported numbers are #nJ that measure the computational

cost (with the number of successful runs out of 50 in the parentheses).

b = 10 mk = n mk = n/5

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

L = 2
LR-SBFGS-VR 334 (2) 277 (25) 302 (40) 325 (7) 156 (50) 165 (50)

LR-SDavidon-VR 306 (5) 274 (47) 270 (49) 217 (37) 116 (50) 142 (50)

L = 4
LR-SBFGS-VR - (0) 184 (8) 234 (17) - (0) 193 (16) 171 (39)

LR-SDavidon-VR 162 (1) 289 (34) 293 (48) 276 (10) 135 (50) 147 (50)

b = 10 mk = n/10 mk = n/20

stepsize 5−2 1−2 5−3 5−2 1−2 5−3

L = 2
LR-SBFGS-VR 238 (26) 114 (50) 171 (50) 193 (44) 135 (50) 207 (50)

LR-SDavidon-VR 146 (48) 110 (50) 154 (50) 98 (50) 137 (50) 196 (50)

L = 4
LR-SBFGS-VR 212 (1) 136 (31) 175 (45) 61 (2) 171 (36) 221 (47)

LR-SDavidon-VR 229 (25) 109 (50) 177 (50) 172 (43) 142 (50) 207 (50)

Table 7.11: Comparison of R-SVRG for the low-rank matrix completion problem with different

b,mk. The reported numbers are #nJ that measure the computational cost (with the number of

successful runs out of 50 in the parentheses).

R-SVRG mk = n mk = n/10

stepsize 1−1 5−2 1−2 1−1 5−2 1−2

b=1 112 (35) 79 (50) 155 (50) 154 (38) 217 (45) 514 (50)

b=10 176 (50) 199 (50) 256 (50) 296 (37) 201 (48) 312 (50)

b=20 313 (50) 347 (50) 502 (50) 473 (36) 422 (50) 460 (50)

105

Conclusion. Based on the experiments conducted on in this section, here are some heuristic

suggestions for choosing stochastic parameters b and mk. A batch size of around 10 appears to

be a good starting point for problems with a size of n = 1000. Setting a batch size that is too

small may result in a failed run due to insufficient gradient information, while setting a batch size

that is too large can increase computational costs without significant improvements in convergence.

For the frequency value, the performance of LR-SBFGS-VR and LR-SDavidon-VR improves then

deteriorates as mk decreases. A frequency value of around n/10 is effective in the tested cases for

problems with a size of n = 1000. As the problem size n increases, both batch size and frequency

value should be scaled up to meet the increased demands for gradient information per iteration.

These heuristic suggestions can serve as a starting point for selecting stochastic parameters

in stochastic quasi-Newton algorithms. However, it is essential to keep in mind that the optimal

parameter choices may vary depending on the specific problem and algorithm, so experimentation

and tuning are often necessary for practical applications. In the next section, all problems with

n = 1000 are tested. Following the above consequences and considerations, b = 10 and mk = n/10

are selected for the stochastic quasi-Newton algorithms.

7.4 Comparison of Performances Between Stochastic Algorithms

In the previous section, we derived empirical stochastic parameter pairs for R-SVRG, LR-

SBFGS-VR and LR-SDavidon-VR methods across three test problems. In this section, we assess

the performance of these methods concerning stepsize α and memory size L. Drawing insights from

Chapter 5, we posit that the Broyden family algorithm with Davidon’s φ
(k)
i offer advantages in the

stepsize selection. Specifically, we hypothesize that a larger stepsize is more suitable when using

φ
(k)D
i than with φ = 0 during the updates, potentially influencing the convergence speed of the

stochastic quasi-Newton methods.

This section provides a comprehensive comparison of the proposed LR-SBroyden-VR with LR-

SBFGS-VR ([30]) and R-SVRG([60]) with BB scaling. The φ
(k)
i of LR-SBroyden-VR is chosen as

Davidon’s choice (4.4) and the hybrid strategy (5.1) in the experiments, denoted as LR-SDavidon-

VR and Hybrid respectively. The superority of LR-SDavidon-VR and Hybrid is mainly obeserved

in ill-conditioned problems. An ill-conditioned problem occurs when the curvature along some di-

rections is much higher than in others. In such cases, bouncing around is likely to occur during

gradient descent, as we may overstep along certain directions. The stochatic gradient descent meth-

ods are adversely affected by ill-conditioning (see, e.g., [7]), while stochastic quasi-Newton methods

106

are beneficial in collecting curvature information through Hessian-vector products. Compared to

using only the BFGS update, we demonstrate that an appropriate choice of Hessian approximation

in the full Broyden family can provide more significant improvements over the stochastic gradient

descent method.

7.4.1 Principal Components Analysis(PCA)

It is well-known that PCA boils down to computing the r eigenvectors of ZZT that have the

largest eigenvalues, or r dominant singular vectors of ZT . Z is defined as Z := U∗SsynV
T
∗ . The dif-

ficulty of the PCA problem can be modulated by altering the r largest elements in Ssyn. Presented

below are three scenarios that are investigated for PCA problem, differing only in the values of the

fifth-leading diagonal elements.

Scenario 1: m = 50, n = 1000, r = 5, diag(Ssyn) = {100, 80, 60, 40, 20, 1, · · · , 1}.

Scenario 2: m = 50, n = 1000, r = 5, diag(Ssyn) = {100, 80, 60, 40, 5, 1, · · · , 1}.

Scenario 3: m = 50, n = 1000, r = 5, diag(Ssyn) = {100, 80, 60, 40, 3, 1, · · · , 1}.

Set b = 10, mk = n/10 for LR-SBFGS-VR and LR-SDavidon-VR based on the observations from

the previous section. The numerical results, obtained by averaging over 50 runs, are presented in

Table 7.12, 7.13, 7.14. The row labeled “BFGS/both/Davi” represents the number of successful runs

out of 50 runs for LR-SBFGS-VR succeeding/ both succeeding/ only LR-SDavidon-VR succeeding.

The additional method in the comparison noted as “Hybrid” represents LR-SBroyden-VR with the

hybrid strategy of φ
(k)
i between Davidon and BFGS, as proposed in Chapter 5.

Scenario 1 involves distinctly larger leading singular values compared to the remaining values,

making it ideal for R-SVRG. In this scenario, both quasi-Newton algorithms perform similarly,

with two noteworthy observations: the first one is LR-SBFGS-VR tends to be faster than LR-

SDavidon-VR when α = 0.001; the second is LR-SDavidon-VR demonstrates relatively more stable

performance when α and L are large.

107

Table 7.12: Results for the PCA problem Scenario 1. The reported numbers are #nJ that measure

the computational cost (with the number of successful runs out of 50 in the parentheses).

Scenario 1: diag(Ssyn) = {100, 80, 60, 40, 20, 1, · · · , 1}
stepsize 1−1 5−2 1−2 5−3 1−3

b = 10,mk = n/10 R-SVRG 58 (50) 58 (50) 259 (48) 390 (45) 817 (4)

L = 1
LR-SBFGS-VR 151 (50) 89 (50) 113 (50) 243 (50) 521 (50)

LR-SDavidon-VR 133 (50) 87 (50) 113 (50) 243 (50) 521 (50)

L = 2
LR-SBFGS-VR 1009 (29) 321 (49) 102 (50) 175 (50) 563 (50)

LR-SDavidon-VR 275 (50) 97 (50) 100 (50) 165 (50) 610 (50)

L = 4
LR-SBFGS-VR 57 (4) 331 (14) 160 (49) 228 (50) 612 (50)

LR-SDavidon-VR 749 (29) 231 (50) 114 (50) 197 (50) 694 (50)
BFGS/both/Davi 0/4/25

L = 8
LR-SBFGS-VR 67 (4) 68 (12) 117 (46) 201 (46) 735 (50)

LR-SDavidon-VR 67 (5) 616 (43) 142 (50) 250 (50) 854 (50)
BFGS/both/Davi 0/4/1 0/12/31

The other two Scenarios involve cases that are inherently difficult to solve, and it is evident

that stochastic quasi-Newton algorithms are more effective in handling them than R-SVRG. The

robustness and effectiveness of LR-SDavidon-VR and Hybrid are clearly demonstrated in these

two scenarios. Results from 7.13 indicate that the stochastic quasi-Newton algorithms perform

similarly when L = 1, but LR-SDavidon-VR exhibits its advantage as L increases. The success

rate of LR-SDavidon-VR significantly improves with a relatively large α, especially when L = 4, 8.

LR-SBFGS-VR shows a slight advantage when α is set to be the smallest value 0.001. However, LR-

SDavidon-VR performs better in other situations, including its best performance at L = 2, α = 0.01.

An even more difficult Scenario 3 in 7.14 further highlights this phenomenon. R-SVRG does

not find sufficiently accurate solution with all different stepsizes. In case of “BFGS/both/Davi”,

especially with α = 5−2, it is observed that there is no situation where LR-SDavidon-VR fails but

LR-SBFGS-VR succeeds when L > 2.

For PCA problem, Hybrid slightly amplifies the advantage and disadvantage of LR-SDavidon-

VR. The parameter δ is determined by testing only at the best-tuned memory and stepsize. Table

7.15 shows us the results for different δ values in Hybrid, where δ = 0 corresponds to LR-SDavidon-

VR and an increasing δ indicates that the algorithm is approaching LR-SBFGS-VR. In this case,

δ = 1 is selected for the Hybrid. One typical example from Scenario 2 is shown in Figure 7.1, which

compares #nJ versus the norm of gradient and the optimality gap.

108

Table 7.13: Results for the PCA problem Scenario 2. The reported numbers are #nJ that measure

the computational cost (with the number of successful runs out of 50 in the parentheses).

Scenario 2: diag(Ssyn) = {100, 80, 60, 40, 5, 1, · · · , 1}
stepsize 1−1 5−2 1−2 5−3 1−3

b = 1,mk = n R-SVRG 1025 (50) 1772 (50) 4452 (45) 5036 (44) 8950 (13)

L = 1
LR-SBFGS-VR 730 (3) 746 (45) 448 (50) 2349 (50) 1165 (50)

LR-SDavidon-VR 920 (4) 688 (44) 439 (50) 2374 (50) 1198 (50)
BFGS/both/Davi 2/1/3 4/40/5

Hybrid δ = 1 920 (4) 688 (44) 439 (50) 2374 (50) 1156 (50)

L = 2
LR-SBFGS-VR - (0) 896 (25) 411 (50) 562 (50) 1085 (50)

LR-SDavidon-VR 738 (7) 668 (49) 295 (50) 468 (50) 1293 (50)
BFGS/both/Davi 0/25/24

Hybrid δ = 1 1066 (7) 653 (48) 289 (50) 468 (50) 1395 (50)

L = 4
LR-SBFGS-VR - (0) 502 (3) 769 (50) 693 (50) 1309 (50)

LR-SDavidon-VR - (0) 892 (46) 305 (50) 723 (50) 1456 (50)
BFGS/both/Davi 0/3/43

Hybrid δ = 1 - (0) 873 (46) 304 (50) 714 (50) 1574 (50)

L = 8
LR-SBFGS-VR - (0) 557 (2) 287 (22) 606 (41) 1565 (50)

LR-SDavidon-VR - (0) 911 (14) 352 (50) 683 (50) 1782 (50)
BFGS/both/Davi 0/2/12

Hybrid δ = 1 - (0) 1214 (16) 356 (50) 674 (50) 1931 (50)

Table 7.14: Results for the PCA problem Scenario 3. The reported numbers are #nJ that measure

the computational cost (with the number of successful runs out of 50 in the parentheses).

Scenario 3: diag(Ssyn) = {100, 80, 60, 40, 3, 1, · · · , 1}
stepsize 1−1 5−2 1−2 5−3 1−3

b = 10,mk = n/10 R-SVRG - (0) - (0) - (0) - (0) - (0)

L = 1
LR-SBFGS-VR - (0) 1042 (17) 824 (50) 5544 (50) 1641 (50)

LR-SDavidon-VR 400 (1) 1327 (18) 824 (50) 5523 (50) 1672 (50)
BFGS/both/Davi 13/4/14

Hybrid δ = 1 400 (1) 1327 (18) 824 (50) 5523 (50) 1672 (50)

L = 2
LR-SBFGS-VR - (0) 1369 (13) 803 (50) 906 (50) 1547 (50)

LR-SDavidon-VR 1054 (5) 967 (37) 460 (50) 779 (50) 2008 (50)
BFGS/both/Davi 2/11/26

Hybrid δ = 1 1349 (3) 1114 (38) 466 (50) 789 (50) 2200 (50)

L = 4
LR-SBFGS-VR - (0) 193 (2) 1003 (42) 1289 (48) 1871 (50)

LR-SDavidon-VR - (0) 1030 (15) 474 (50) 1255 (50) 2335 (50)
BFGS/both/Davi 0/2/13

Hybrid δ = 1 - (0) 893 (18) 446 (50) 1265 (50) 2762 (50)

L = 8
LR-SBFGS-VR - (0) 0 (0) 476 (18) 731 (33) 2031 (50)

LR-SDavidon-VR - (0) 1828 (4) 487 (50) 910 (50) 3024 (50)
Hybrid δ = 1 - (0) 905 (2) 476 (50) 903 (50) 3535 (50)

109

Table 7.15: Comparison of different δ in Hybrid for the PCA problem. The reported numbers are

#nJ that measure the computational cost.

Scenario 2

δ 0 1 2 3 BFGS

L = 2, α = 0.01 295 289 303 393 411
L = 4, α = 0.01 305 304 346 359 769

Scenario 3

δ 0 1 2 3 LR-SBFGS-VR

L = 2, α = 0.01 460 466 510 681 803
L = 4, α = 0.01 474 446 613 558 1003

Figure 7.1: Comparison of stochastic algorithms for the PCA problem: Top: #nJ versus
‖gf‖; Bottom: #nJ versus |f − f ∗ |.

110

7.4.2 Joint Diagonalization in ICA

Two scenarios with different rank are tested for the ICA problem on the Stiefel manifold, where

higher rank makes the problem harder to solve.

Scenario 1: m = 10, n = 1000, r = 5.

Scenario 2: m = 10, n = 1000, r = 9.

Results are shown in Table 7.16: In scenario 1, R-SVRG performs the best with a large stepsize,

while quasi-Newton algorithms have the best performance at L = 1. In scenario 2, however, LR-

SDavidon and Hybrid outperform LR-SBFGS-VR and R-SVRG. In both scenarios, LR-SDavidon-

VR and Hybrid work much better with a relatively large memory size since they do not suffer

as much from the obsolescence of the curvature information. Additionally and significantly, they

remain competitive to LR-SBFGS-VR in most other situations.

The selected δ for Hybrid is 2 based on the results in Table 7.17. Unlike PCA problem where

δ = 1 yields a similar performance compared to LR-SDavidon-VR, Hybrid shows a more pronounced

improvement in ICA problem . This is reasonable since the superiority of LR-SDavidon-VR com-

pared to LR-SBFGS-VR in ICA problem is not as significant as in PCA problem. A larger δ means

the algorithm selects φ
(k)
i = 0 more frequently during the updates.

Figure 7.4.3 reports the results tested in Scenario 2. It can be observed that R-SVRG has an

obvious lower decaying rate. The diversity between the quasi-Newton algorithms take place after

the iterate is approaching to the solution. Hybrid with δ = 2 keeps its superiority until reaching

the high precision.

7.4.3 Low-rank Matrix Completion Problem

The following three scenarios are synthetic low-rank matrix completion problems with different

condition number.

Scenario 1: m = 50, n = 1000, r = 5, OS = 5, CN = 10.

Scenario 2: m = 50, n = 1000, r = 5, OS = 5, CN = 20.

Scenario 3: m = 50, n = 1000, r = 5, OS = 5, CN = 50.

Table 7.18 shows the results for all three scenarios, notice that only α = 0.05, 0.01 are included

to avoid redundancy. We know from previous experiments that a too large stepsize may result in a

failed run and a much too small one may slower the speed. With the value of CN increasing, the

111

Table 7.16: Results for the ICA problem. The reported numbers are #nJ that measure the

computational cost (with the number of successful runs out of 50 in the parentheses).

Scenario 1: r = 5

stepsize 1−1 5−2 1−2 5−3 1−3

b = 10,mk = n/10 R-SVRG 24 (50) 25 (50) 41 (50) 72 (50) 355 (28)

L = 1
LR-SBFGS-VR 277 (49) 64 (50) 39 (50) 57 (50) 254 (50)

LR-SDavidon-VR 291 (46) 68 (50) 38 (50) 57 (50) 254 (50)

L = 2
LR-SBFGS-VR - (0) 494 (7) 54 (50) 63 (50) 301 (50)

LR-SBroyden-VR 375 (5) 253 (47) 43 (50) 64 (50) 313 (50)

L = 4
LR-SBFGS-VR - (0) 30 (1) 37 (34) 117 (47) 306 (50)

LR-SDavidon-VR - (0) 381 (7) 53 (50) 67 (50) 327 (50)

L = 8
LR-SBFGS-VR - (0) 31 (1) 39 (34) 63 (42) 325 (50)

LR-SDavidon-VR - (0) 36 (4) 74 (50) 72 (50) 354 (50)

Scenario 2: r = 9

stepsize 1−1 5−2 1−2 5−3 1−3

b = 10,mk = n/10 R-SVRG 208 (39) 307 (50) 476 (43) 698 (39) 1217 (1)

L = 1
LR-SBFGS-VR 482 (7) 251 (50) 193 (50) 550 (50) 569 (50)

LR-SDavidon-VR 539 (6) 270 (50) 188 (50) 546 (50) 593 (50)
Hybrid δ = 2 497 (11) 234 (50) 190 (50) 540 (50) 583 (50)

L = 2
LR-SBFGS-VR - (0) - (0) 196 (50) 225 (50) 598 (50)

LR-SDavidon-VR - (0) 454 (25) 153 (50) 227 (50) 672 (50)
Hybrid δ = 2 - (0) 575 (29) 133 (50) 224 (50) 805 (50)

L = 4
LR-SBFGS-VR - (0) - (0) 166 (27) 392 (45) 625 (50)

LR-SDavidon-VR - (0) 99 (3) 154 (50) 213 (50) 768 (50)
Hybrid δ = 2 - (0) 225 (3) 137 (50) 183 (50) 678 (50)

L = 8
LR-SBFGS-VR - (0) - (0) 80 (24) 153 (39) 537 (44)

LR-SDavidon-VR - (0) 81 (1) 172 (50) 248 (50) 787 (50)
Hybrid δ = 2 - (0) 74 (2) 172 (50) 183 (50) 616 (50)

Table 7.17: Comparison of different δ in Hybrid for the ICA problem. The reported numbers are

#nJ that measure the computational cost.

Scenario 2

δ 0 1 2 3 LR-SBFGS-VR

L = 2, α = 0.01 153 150 133 142 196
L = 4, α = 0.01 154 140 137 135 166

112

Figure 7.2: Comparison of stochastic algorithms for the ICA problem: Top: #nJ versus
‖gf‖; Bottom: #nJ versus |f − f∗|.

113

Table 7.18: Results for the low-rank matrix completion problem. The reported numbers are #nJ

that measure the computational cost (with the number of successful runs out of 50 in the paren-

theses).

Scenario 1: CN = 10 Scenario 2: CN = 20 Scenario 3: CN = 50

stepsize 5−2 1−2 5−2 1−2 5−2 1−2

L = 1
LR-SBFGS-VR 148 (44) 160 (50) 224 (24) 303 (50) 456 (12) 944 (50)

LR-SDavidon-VR 135 (44) 162 (50) 235 (25) 294 (49) 597 (15) 980 (49)

L = 2
LR-SBFGS-VR 186 (4) 136 (50) 306 (5) 284 (45) - (0) 803 (31)

LR-SBroyden-VR 166 (34) 114 (50) 220 (24) 198 (50) 474 (13) 545 (50)

L = 4
LR-SBFGS-VR - (0) 128 (17) - (0) 244 (22) - (0) 621 (8)

LR-SDavidon-VR 156 (3) 117 (50) 178 (7) 183 (50) 142 (2) 441 (50)

L = 8
LR-SBFGS-VR - (0) 91 (12) - (0) 157 (12) - (0) 285 (6)

LR-SDavidon-VR 68 (1) 126 (50) 77 (1) 179 (50) - (0) 295 (50)

problem becomes harder to solve and both methods require more computations to converge. The

accepted memory sizes for LR-SBFGS-VR are still restricted and this restriction is more severe

with higher CN values. On the other hand, the memory size can provide more useful information

for LR-SDavidon-VR where the best performance occurs at L = 8 when CN = 20, 50.

There are some modifications to the Low-rank matrix completion problem. Firstly, the initial

point is changed from a randomly generated orthonormal-column m× r matrix to r dominant left

singular vector U0, where [U0, S0, V0] = svds(PΩA, r) in Matlab. This is similar what was done

in the non-stochastic experiments (see Section 4.1.3), where the initial guess is prevented from

being far away from the minimizer. Doing so can be used to show the robustness of the proposed

algorithm on the choice of initial condition. Secondly, the stopping criterion is set as ‖f‖ < 10−4

since the optimal function value of the low-rank matrix completion problem is 0. This stopping

criteria is equivalent to the optimality gap between the current objective value and the optimal

objective value, which is more accurate to measure the performance of a non-convex optimization

problem. The following results are run with 50 different seeds in generating the sparse matrix A

and the known index Ω.

Table 7.19 shows the #nJ values and success rates for algorithms reaching to the new criterion

‖f‖ < 10−4. The results are consistent with the observations in Table 7.18 and an obvious advantage

of LR-SDavidon-VR can be observed, especially when L = 4, 8. Table 7.20 shows the δ selection

in Hybrid, where δ = 1.5 provides a better performance at L = 8. Hybrid also makes up for the

deficiency of LR-SDavidon-VR when α is small, making it competitive with LR-SBFGS-VR. One

typical example for Scenario 3 is shown in Figure 7.4.3, note that the Function Value in the second

graph is equivalent to the optimality gap in the previous problem results. The blue curve is the best

114

Table 7.19: Results for the low-rank matrix completion problem Scenario 3 with modified stopping

criteria and initial condition. The reported numbers are #nJ that measure the computational cost

(with the number of successful runs out of 50 in the parentheses).

Scenario 3: CN = 50

stepsize 5−2 1−2 5−3

b = 1,mk = n R-SVRG - (0) - (0) - (0)

L = 1
LR-SBFGS-VR 219 (18) 477 (50) 2966 (49)

LR-SDavidon-VR 237 (15) 501 (50) 2991 (50)
Hybrid δ = 1.5 234 (20) 500 (50) 2960 (50)

L = 2
LR-SBFGS-VR 217 (1) 283 (49) 409 (50)

LR-SDavidon-VR 181 (19) 267 (50) 548 (50)
Hybrid δ = 1.5 183 (18) 274 (50) 501 (50)

L = 4
LR-SBFGS-VR - (0) 356 (41) 388 (50)

LR-SDavidon-VR 163 (1) 198 (50) 456 (50)
Hybrid δ = 1.5 148 (1) 195 (50) 295 (50)

L = 8
LR-SBFGS-VR - (0) 159 (20) 293 (37)

LR-SDavidon-VR - (0) 189 (50) 326 (50)
Hybrid δ = 1.5 66 (1) 169 (50) 310 (50)

Table 7.20: Comparison of different δ in Hybrid for the low-rank matrix completion problem. The

reported numbers are #nJ that measure the computational cost.

Scenario 3

δ 0 1 1.5 2 3

L = 4, α = 0.01 198 189 195 229 246
L = 8, α = 0.01 189 189 169 174 189

we can obtain with R-SVRG for this difficult case, where the function value is slightly descending

but the norm of gradient is slightly rising. Hybrid is the winner from very beginning of the iterates.

Conclusion. This section yields several noteworthy insights. In comparison to the existing

LR-SBFGS-VR algorithm, LR-SDavidon-VR, and Hybrid exhibit similar convergence speeds in

well-conditioned cases. However, their superiority becomes particularly pronounced when tack-

ling ill-conditioned problems, where these algorithms outperform the first-order R-SVRG com-

monly used in such scenarios. Another noteworthy observation is the enhanced robustness of LR-

SDavidon-VR and Hybrid when employed with larger memory sizes and stepsizes. The increased

memory size lends support to the hypothesis that certain members within the full Broyden family

offer superior estimates in approximating curvature.

While the method of generating curvature pairs imposes limitations on the behavior of LR-

SBFGS-VR when L > 2, these constraints are less conspicuous in the case of LR-SDavidon-VR and

Hybrid. Furthermore, the compatibility of LR-SDavidon-VR and Hybrid with larger stepsizes aligns

115

Figure 7.3: Comparison of stochastic algorithms for the low-rank matrix completion prob-
lem: Top: #nJ versus ‖gf‖; Bottom: #nJ versus |f |.

116

with the findings from Section 4.3. This advantage not only underscores the practical convenience of

LR-SDavidon-VR and Hybrid, but also addresses the challenge of stepsize selection. Overall, these

findings underscore the effectiveness of LR-SDavidon-VR and Hybrid, especially in challenging and

ill-conditioned optimization scenarios, making them valuable tools for practical applications.

To illustrate implicit common factors in the experiments, a comparison is established between

Euclidean quadratic problem, Brockett problem on the Stiefel manifold and the three problems

tested in this chapter. Table 7.21 provides insights into different scenarios, the second and third

columns are cases where LR-SDavidon-VR(LRDavidon) and LR-SBFGS-VR(LRSBFGS) exhibit

competitive performance. In contrast, the fourth and fifth columns highlight instances where LR-

SDavidon-VR(LRDavidon) significantly outperforms LR-SBFGS-VR(LRSBFGS). The “max,min

eig” denotes the maximum and minimum eigenvalues of the Hessian from the initial point to the

solution point. A larger difference between the maximum and minimum eigenvalues at the solution

point signifies that the “Davidon better cases” correspond to ill-conditioned problems as desired. It

was established in Section 4.4 that mere ill-conditioning is insufficient for LRDavidon to outperform

LRBFGS. However, for LR-SDavidon-VR, ill-conditioning alone proves sufficient for outperforming

LR-SBFGS-VR. This sheds light on the nuanced interplay of problem characteristics and algorithm

performance, showcasing the unique strengths of LR-SDavidon-VR in addressing ill-conditioned

problems.

The comparison involves two key variables: the mean value of γk and the mean value of φ
(k)
i ,

where γ represents the initial scaling of inverse Hessian approximation, such that H0
k = γk · id.

Observing the mean value of γ, LR-SDavidon-VR(LRDavidon) exhibits a significantly larger mean

value of γk than LR-SBFGS-VR(LRSBFGS) in the “Davidon better cases”. This indicates that

the initial scaling of H0
k is larger for LR-SDavidon-VR(LRDavidon), resulting in a smaller scaling

of B0
k.

Notably, the mean value of φ
(k)
i tends to be positive for most LR-SDavidon-VR(LRDavidon)

cases. The positive values of φ
(k)
i enhance the self-correcting property of the Broyden family, par-

ticularly in correcting small eigenvalues. Examing the mean value of φ
(k)
i further reveals that in

the “Davidon better cases”, the mean value of φ
(k)
i for LR-SDavidon-VR(LRDavidon) is smaller

compared to the “Competitive cases”. This suggests that the updates prioritize correcting the large

eigenvalues, which is reasonable since the minimum eigenvalue at the solution point is smaller in

the “Davidon better cases”. These findings provide compelling evidence that the self-correcting

property of the Broyden family plays a pivotal role in algorithm performance. LR-SDavidon-

117

Table 7.21: Comparison of mean(γk) and mean(φ
(k)
i) between LR-SBFGS-VR and LR-SBroyden-

VR. Row “max,min eig” represents the maximum and minimum eigenvalues of the Hessian from

initial point to solution.

Davidon Competitive to BFGS Davidon better than BFGS

max,min eig 1000, 0.00026 1000, 0.00026

EucQuadratic mean(γk) mean(φ
(k)
i) mean(γk) mean(φ

(k)
i)

LRBFGS 0.0029 0 0.2289 0

LRDavidon 0.0028 2.2838 0.6191 -0.0694

max,min eig 846,−933→ 1781, 0.2935 1000,−6→ 1000, 0.00014

StieBrockett mean(γk) mean(φ
(k)
i) mean(γk) mean(φ

(k)
i)

LRBFGS 0.0062 0 0.0143 0

LRDavidon 0.0042 0.2941 0.0833 0.1048

max,min eig 2.9,−17→ 20, 0.8 2.9,−17→ 20, 0.048

PCA mean(γk) mean(φ
(k)
i) mean(γk) mean(φ

(k)
i)

LR-SBFGS-VR 0.2886 0 0.3025 0

LR-SDavidon-VR 0.4232 0.6096 1.0454 0.3077

max,min eig 152,−46→ 288, 103 140,−37→ 320, 26

ICA mean(γk) mean(φ
(k)
i) mean(γk) mean(φ

(k)
i)

LR-SBFGS-VR 0.0032 0 0.0045 0

LR-SDavidon-VR 0.0036 0.7107 0.0072 0.4039

max,min eig 122,−19→ 92, 9 129,−30→ 97, 0.5

matrix completion mean(γk) mean(φ
(k)
i) mean(γk) mean(φ

(k)
i)

LR-SBFGS-VR 0.0057 0 0.0056 0

LR-SDavidon-VR 0.0065 0.4919 0.0103 0.3953

VR(LRDavidon) demonstrates a more balanced approach in addressing both large and small eigen-

values, contributing to its effectiveness in optimization scenarios with varying eigenvalue magni-

tudes.

118

CHAPTER 8

CONCLUSION AND FURTHER RESEARCH

The dissertation focuses on the development, investigation, and application of efficient and robust

limited-memory Broyden quasi-Newton methods specifically tailored for optimization problems on

a Riemannian manifold. The employment of limited-memory variants and the incorporation of

a stochastic method within LR-SBroyden-VR underscore important considerations pertaining to

computational efficiency and convergence properties within the domain of Riemannian optimization.

The major contributions of this dissertation are:

1. Developing limited-memory family, LRBroyden, derived from the full Broyden family and

completing its convergence theory. The efficiency of the state-of-the-art algorithm is achieved

through the utilization of a compact representation and an intrinsic representation, enabling

users to set the Broyden parameters at all steps.

2. Empirically evaluating the LRBroyden family through systematic experiments in both Eu-

clidean and Riemannian settings. Previous research on limited-memory extensions of the

Broyden family primarily concentrated on Euclidean space, lacking persuasive experimen-

tal results to demonstrate the robustness advantages of limited-memory extensions across

the entire Broyden family. The primary emphasis of the empirical results presented in this

dissertation lies in the comparison between LRBFGS, LRDavidon and a hybrid strategy by:

(a) Exploring the empirical relationship between a fixed φ and the initial stepsize. The

heuristic consequence is shown to be consistent with the theoretical analysis.

(b) Providing a particular case where LRDavidon outperforms the state-of-the-art LRBFGS

in both Euclidean and Riemannian settings. The good performance is explained by the

self-correcting property with the distribution of the φ
(k)
i in sequence of iterates.

(c) Exploiting a hybrid strategy of generating φ
(k)
i between the parameter choices of Davidon

and BFGS. The algorithm with an appropriate initial stepsize is observed to be more

efficient and robust than LRBFGS in a general large-scale problem.

3. Developing LR-SBroyden-VR and completing its convergence theory, expanding the scope of

stochastic quasi-Newton methods to full Broyden family.

4. Empirically evaluating the LR-SBroyden-VR in comparison with LR-SBFGS-VR and R-

SVRG on three problems: principal component analysis on the Grassmann manifold, joint

119

diagonalization problem on the Stiefel manifold and low-rank matrix completion problem on

the Grassmann manifold. The evaluation concentrates on:

(a) Providing an appropriate measurement on the computational costs for the stochastic

algorithms.

(b) Providing heuristics to choose between various stochastic parameters in different cases.

Previous research did not pay much attention to these parameters. However, they sig-

nificantly influence the behavior of the stochastic optimization methods on large-scale

problems.

(c) Comparing and evaluating the performances of various stochastic algorithms by sys-

tematic numerical experiments. Stochastic quasi-Newton algorithms are observed to be

more efficient than R-SVRG on the ill-conditioned problems as desired. Meanwhile, LR-

SBroyden-VR with Davidon and Hybrid Broyden parameters outperform LR-SBFGS-

VR on these problems. Davidon’s φ
(k)D
i provides us a wider acceptance of algorithm

parameters and the hybrid strategy strengthens the superiority of the robustness of

LR-SBroyden-VR.

5. Contributing a C++ toolbox for the above mentioned algorithms and stochastic problems to

ROPTLIB. Providing comprehensive toolbox for LRBroyden and its stochastic form.

There are several avenues for future research. First of all, a strategy to select φ
(k)
i in the limited-

memory variant of Broyden family is still an open question in both Euclidean and Riemannian

settings. Results in this dissertation are limited to the family members between Davidon’s φ
(k)D
i

and BFGS’s φ
(k)BFGS
i . For a specific problem, it will always be interesting and worthwhile to

consider a particular way of choosing φ
(k)
i in LRBroyden.

Researchers paid much attention on SGD and its related methods. However, there are many op-

portunities in the area of Riemannian stochastic quasi-Newton methods. The batch size, frequency

value and stepsize play significant roles in affecting the performance of LR-SBroyden-VR and are

determined by experiments in our results. Further study is needed in the consideration of these

stochastic parameter settings and in determining them in a manner infromed by a more complete

theoretical understanding. This effort must be supported by additional systematic comparisons

with existing methods on real-world applications.

Finally, this dissertation does not include a comparison with adaptive stochastic gradient meth-

ods since their convergecne speed is limited due to the decaying stepsize. Very recently, researchers

started to combine the variance reduction with some adaptive gradient-based methods, e.g., with

AdaGrad [16] in Euclidean space. Further study is needed on generalization to the Riemannian

settings and compare them with LR-SBroyden-VR.

120

REFERENCES

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, Princeton, NJ, 2008.

[2] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8(1):141–148, 1988.

[3] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019.

[4] Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. SIAM Review, 60(2):223–311, 2018.

[6] Nicolas Boumal and P-A Absil. Low-rank matrix completion via preconditioned optimization
on the Grassmann manifold. Linear Algebra and its Applications, 475:200–239, 2015.

[7] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
Newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

[8] Richard H Byrd, Dong C Liu, and Jorge Nocedal. On the behavior of Broyden’s class of
quasi-Newton methods. SIAM Journal on Optimization, 2(4):533–557, 1992.

[9] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. Representations of quasi-Newton
matrices and their use in limited memory methods. Mathematical Programming, 63(1):129–156,
1994.

[10] Richard H Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a cass of quasi-
Newton methods on convex problems. SIAM Journal on Numerical Analysis, 24(5):1171–1190,
1987.

[11] William C Davidon. Optimally conditioned optimization algorithms without line searches.
Mathematical Programming, 9(1):1–30, 1975.

[12] Omar DeGuchy, Jennifer B Erway, and Roummel F Marcia. Compact representation of the
full Broyden class of quasi-Newton updates. Numerical Linear Algebra with Applications,
25(5):e2186, 2018.

[13] John E Dennis and Jorge J Moré. A characterization of superlinear convergence and its
application to quasi-Newton methods. Mathematics of Computation, 28(126):549–560, 1974.

121

[14] John E Dennis, Jr and Jorge J Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19(1):46–89, 1977.

[15] Shuyu Dong, Bin Gao, Wen Huang, and Kyle A Gallivan. On the analysis of optimization
with fixed-rank matrices: a quotient geometric view. arXiv preprint arXiv:2203.06765, 2022.

[16] Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Simon
Lacoste-Julien. SVRG meets AdaGrad: painless variance reduction. Machine Learning, pages
1–51, 2022.

[17] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[18] Jennifer B Erway and Roummel F Marcia. On efficiently computing the eigenvalues of
limited-memory quasi-Newton matrices. SIAM Journal on Matrix Analysis and Applications,
36(3):1338–1359, 2015.

[19] Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in SGD.
In International Conference on Machine Learning, pages 3964–3975. PMLR, 2021.

[20] Roger A Horn and Charles R Johnson. Norms for vectors and matrices. Matrix Analysis,
pages 313–386, 1990.

[21] S Hoshino. A formulation of variable metric methods. IMA Journal of Applied Mathematics,
10(3):394–403, 1972.

[22] Wen Huang. Optimization algorithms on Riemannian manifolds with applications. PhD thesis,
The Florida State University, 2013.

[23] Wen Huang, P-A Absil, and Kyle A Gallivan. A Riemannian symmetric rank-one trust-region
method. Mathematical Programming, 150(2):179–216, 2015.

[24] Wen Huang, P-A Absil, and Kyle A Gallivan. Intrinsic representation of tangent vectors and
vector transports on matrix manifolds. Numerische Mathematik, 136(2):523–543, 2017.

[25] Wen Huang, P-A Absil, and Kyle A Gallivan. A Riemannian BFGS method without dif-
ferentiated retraction for nonconvex optimization problems. SIAM Journal on Optimization,
28(1):470–495, 2018.

[26] Wen Huang, P-A Absil, Kyle A Gallivan, and Paul Hand. ROPTLIB: an object-oriented
C++ library for optimization on Riemannian manifolds. ACM Transactions on Mathematical
Software (TOMS), 44(4):1–21, 2018.

[27] Wen Huang, Kyle A Gallivan, and P-A Absil. A Broyden class of quasi-Newton methods for
Riemannian optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

122

[28] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. Advances in Neural Information Processing Systems, 26:315–323, 2013.

[29] Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic
gradient algorithms on matrix manifolds. In International Conference on Machine Learning,
2019.

[30] Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic quasi-Newton
algorithm with variance reduction and its convergence analysis. In International Conference
on Artificial Intelligence and Statistics, pages 269–278. PMLR, 2018.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Computing
Research Repository, abs/1412.6980, 2014.

[32] Chuanhai Liu and Scott A Vander Wiel. Statistical quasi-Newton: A new look at least change.
SIAM Journal on Optimization, 18(4):1266–1285, 2008.

[33] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming, 45(1-3):503–528, 1989.

[34] Jonathan H Manton, Robert Mahony, and Yingbo Hua. The geometry of weighted low-rank
approximations. IEEE Transactions on Signal Processing, 51(2):500–514, 2003.

[35] Bamdev Mishra, Gilles Meyer, Silvere Bonnabel, and Rodolphe Sepulchre. Fixed-rank matrix
factorizations and Riemannian low-rank optimization. Computational Statistics, 29:591–621,
2014.

[36] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic L-
BFGS algorithm. In Artificial Intelligence and Statistics, pages 249–258. PMLR, 2016.

[37] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Com-
putation, 35(151):773–782, 1980.

[38] Jorge Nocedal and Stephen J Wright. Numerical Optimization, 2nd edition. Springer, 2006.

[39] Thilo Penzl. A cyclic low-rank smith method for large sparse Lyapunov equations. SIAM
Journal on Scientific Computing, 21(4):1401–1418, 1999.

[40] Chunhong Qi. Numerical optimization methods on Riemannian manifolds. PhD thesis, The
Florida State University, 2011.

[41] Chunhong Qi, Kyle A Gallivan, and P-A Absil. Riemannian BFGS algorithm with applications.
In Recent Advances in Optimization and its Applications in Engineering: The 14th Belgian-
French-German Conference on Optimization, pages 183–192. Springer, 2010.

123

[42] Chunhong Qi, Kyle A Gallivan, and Pierre-Antoine Absil. An efficient BFGS algorithm for
riemannian optimization. In Proceedings of the 19th International Symposium on Mathematical
Theory of Network and Systems (MTNS 2010), volume 1, pages 2221–2227. Citeseer, 2010.

[43] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks,
12(1):145–151, 1999.

[44] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochas-
tic variance reduction for nonconvex optimization. In International Conference on Machine
Learning, pages 314–323. PMLR, 2016.

[45] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond.
In International Conference on Learning Representations, 2018.

[46] Martin B Reed. L-Broyden methods: a generalization of the L-BFGS method to the limited-
memory Broyden family. International Journal of Computer Mathematics, 86(4):606–615,
2009.

[47] Wolfgang Ring and Benedikt Wirth. Optimization methods on Riemannian manifolds and
their application to shape space. SIAM Journal on Optimization, 22(2):596–627, 2012.

[48] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[49] Anirban Roychowdhury and Srinivasan Parthasarathy. Accelerated stochastic quasi-Newton
optimization on Riemann manifolds. arXiv, abs/1704.01700, 2017.

[50] Hiroyuki Sato. Riemannian Newton-type methods for joint diagonalization on the Stiefel
manifold with application to independent component analysis. Optimization, 66(12):2211–
2231, 2017.

[51] Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced
gradient algorithm with retraction and vector transport. SIAM Journal on Optimization,
29(2):1444–1472, 2019.

[52] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

[53] Robert B Schnabel. Analyzing and improving quasi-Newton methods for unconstrained opti-
mization. Technical report, Cornell University, 1977.

[54] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14(1), 2013.

[55] David F Shanno and Kang Hoh Phua. Matrix conditioning and nonlinear optimization. Math-
ematical Programming, 14:149–160, 1978.

124

[56] Fabian J Theis, Thomas P Cason, and P A Absil. Soft dimension reduction for ICA by joint
diagonalization on the stiefel manifold. In Independent Component Analysis and Signal Separa-
tion: 8th International Conference, ICA 2009, Paraty, Brazil, March 15-18, 2009. Proceedings
8, pages 354–361. Springer, 2009.

[57] Bart Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal
on Optimization, 23(2):1214–1236, 2013.

[58] Bart Vandereycken and Stefan Vandewalle. A Riemannian optimization approach for com-
puting low-rank solutions of Lyapunov equations. SIAM Journal on Matrix Analysis and
Applications, 31(5):2553–2579, 2010.

[59] Jinshan Zeng, Yixuan Zha, Ke Ma, and Yuan Yao. On stochastic variance reduced gradient
method for semidefinite optimization. arXiv preprint arXiv:2101.00236, 2021.

[60] Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian SVRG: Fast stochastic opti-
mization on Riemannian manifolds. In Neural Information Processing Systems, 2016.

[61] Yin Zhang and RP Tewarson. Quasi-Newton algorithms with updates from the preconvex part
of Broyden’s family. IMA Journal of Numerical Analysis, 8(4):487–509, 1988.

[62] Guifang Zhou. Rank-constrained optimization: A Riemannian manifold approach. PhD thesis,
The Florida State University, 2015.

125

BIOGRAPHICAL SKETCH

Shuguang Zhang, son of Ming Zhang and Haixia Shu, was born on September 8th, 1993 in

Hefei, Anhui province of P.R. China. He completed his bachelor degree in Mathematics in 2014 at

Nankai University in China. He enrolled in the Master degree of Mathematics in 2015 and started

his Doctoral program in 2017 at Florida State University, worked with Prof. Kyle A. Gallivan and

Prof. Wen Huang.

Shuguang’s research interests include Riemannian Broyden family of limited-memory quasi-

Newton methods.

126

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract

	1 INTRODUCTION
	1.1 Motivation and Problem
	1.2 Research Overview and Dissertation Statement
	1.3 Dissertation Outline

	2 PRELIMINARIES
	2.1 Riemannian Geometry
	2.1.1 Tangent Space
	2.1.2 Riemannian Metric
	2.1.3 Affine Connections, Geodesics, Exponential Mapping and Parallel Translation
	2.1.4 Riemannian Gradient and Hessian
	2.1.5 Retraction and Vector Transport
	2.1.6 Coordinate Expressions

	2.2 Broyden Family of Quasi-Newton Methods in Euclidean Space
	2.3 Broyden Family of Limited-memory Quasi-Newton Methods in Euclidean Space
	2.4 A Secant Condition on a Riemannian manifold

	3 RIEMANNIAN BROYDEN FAMILY OF LIMITED-MEMORY QUASI-NEWTON METHODS
	3.1 RBroyden Family of Methods
	3.2 Two-loop Recursive LRBroyden Family of Methods
	3.3 Implementation Techniques
	3.4 Full LRBroyden Family of Methods
	3.5 Methods of Choosing i(k)
	3.6 Convergence Analysis
	3.6.1 Basic Assumptions and Preliminary Lemmas
	3.6.2 Global Convergence Analysis
	3.6.3 R-Linear Convergence Analysis of the LRBroyden family

	4 EXPERIMENTS OF LRBROYDEN METHODS
	4.1 Test Problems and Test Data Parameters
	4.1.1 Euclidean Quadratic
	4.1.2 Brockett Cost Function on the Stiefel Manifold
	4.1.3 Low-rank Matrix Completion
	4.1.4 Computing Low-rank Solutions of Lyapunov Equations
	4.1.5 Weighted Low-rank Approximation

	4.2 Notation and Algorithm Parameters
	4.3 LRBroyden with Constant
	4.4 Davidon's Choice of i(k)
	4.4.1 Optimally Conditioned Method
	4.4.2 Experiments in Euclidean Space
	4.4.3 Experiments on Riemannian Manifold
	4.4.4 Experiments on i(k) Distribution

	5 RIEMANNIAN HYBRID LRDAVIDON-BFGS METHOD
	5.1 Hybrid LRDavidon-BFGS Strategy for i(k)
	5.2 LRDavidon on General Problems
	5.3 Parameter Selection of Hybrid LRDavidon-BFGS
	5.4 Comparison of LRBFGS, LRDavidon and Hybrid LRDavidon-BFGS

	6 RIEMANNIAN STOCHASTIC BROYDEN FAMILY OF QUASI-NEWTON METHODS
	6.1 Stochastic Methods for Large-scale Optimization
	6.1.1 Euclidean Stochastic Methods
	6.1.2 Riemannian Stochastic Methods
	6.1.3 Accelerating Stochastic Methods with Variance Reduction

	6.2 LR-SBroyden-VR Methods
	6.3 Convergence Analysis
	6.3.1 Assumptions and Preliminary Lemmas
	6.3.2 Global Convergence Theorem
	6.3.3 Local Convergence Rate Theorem
	6.3.4 Remark

	7 EXPERIMENTS OF RIEMANNIAN STOCHASTIC BROYDEN FAMILY OF QUASI-NEWTON METHODS
	7.1 Test Problems
	7.1.1 PCA Problem
	7.1.2 ICA Problem
	7.1.3 Low-rank Matrix Completion Problem

	7.2 Algorithm Parameters and Evaluation Criteria
	7.3 Parameter Selection
	7.3.1 Knowledge of Stochastic Parameters
	7.3.2 Experiments to Determine b and mk

	7.4 Comparison of Performances Between Stochastic Algorithms
	7.4.1 Principal Components Analysis(PCA)
	7.4.2 Joint Diagonalization in ICA
	7.4.3 Low-rank Matrix Completion Problem

	8 CONCLUSION AND FURTHER RESEARCH
	References
	Biographical Sketch

