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ABSTRACT

This dissertation solves the problem of characterizing and computing a set of smoothly evolving

geodesics emanating from the identity matrix that arrive at a smoothly varying endpoint on the

special orthogonal group, namely the smoothly evolving geodesic problem. Since a set of smoothly

evolving geodesics emanating from the identity matrix is equivalent to a set of smooth varying initial

velocities in the tangent space at the identity matrix, the smooth evolving geodesic problem seeks a

smooth curve of initial velocities S(t) at the identity matrix that arrives at the given smooth curve

Q(t) on the special orthogonal group, such that exp(S(t)) = Q(t). Although the well-known matrix

principal logarithm can find log(Q(t)) that maps to Q under the matrix exponential, the resulting

set of log(Q(t)) is not always continuous with respect to the smoothly varying Q(t). The smoothly

evolving geodesic problem is solved by identifying the conjugate locus on the special orthogonal

group and investigating features in the differential operator of the matrix exponential restricted

to the set of skew symmetric matrices. Efficient and robust algorithms are further designed to

compute such a smooth varying S(t).

The smoothly evolving geodesic problem is motivated by an issue in the Karcher mean problem

on a manifold that has a discontinuity in finding a shortest geodesic. This leads to the non-

smooth objective function in the Karcher mean formulation with possibly multiple local minima

and leads to the Karcher mean not being smoothly dependent on the given data set. Based on the

computation of feasible smoothly evolving geodesics developed in the special orthogonal group, a

novel Karcher mean generalization is proposed. The generalized Karcher mean considers the initial

velocities emanating from the data points and splits the non-smooth objective function of the

classic formulation into multiple smooth objective functions, which leads to a smooth optimization

problem of the generalized formulation.

Futhermore, the smoothly evolving geodesic is applied to the quotient structures in the special

orthogonal group. These quotient structures arise from the Riemannian submersion that defines a

Riemannian structure on manifolds with the special orthogonal constraint. A root-finding formu-

lation is then proposed to solve the endpoint geodesic problem in these manifolds. The endpoint

geodesic problem, that seeks any geodesic between the given points, is a weaker form of the smoothly

evolving geodesic problem. In the Stiefel manifold with the canonical metric, the proposed algo-

rithm obtains more robust and efficient performance than the state of the art algorithm, especially

x



when the endpoints are well-separated. The speed up compared to the state of the art algorithm

reaches to 10 in some cases. In the fixed rank positive semi-definite (FRPSD) matrix manifold,

the geometric insights developed on the special orthogonal group is utilized to propose a new Rie-

mannian metric on the FRPSD manifold which facilitates the development of novel and meaningful

Riemannian geodesic interpretations. Although some of the basic notion remains open questions

for this new metric, interesting features and propositions are discussed in this dissertation.
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CHAPTER 1

INTRODUCTION

This dissertation investigates the inverse action of the Riemannian exponential on the special or-

thogonal group and identifies a set of smoothly evolving geodesics that arrive at a varying endpoint.

The notion of smoothly evolving geodesics is crucial to many manifold applications as it maintains

the differentiability of the objects at the varying endpoint, even when the endpoint goes beyond the

cut locus of the emanating point. In particular, a smooth representation of the special orthogonal

group in terms of rotating parameters is needed in signal processing [30], computer vision [10], and

neural network [40]. In general, it is very hard to compute or identify such a set of geodesics on an

arbitrary manifold, especially when the geodesic is non-minimal. One major contribution in this

dissertation is to solve and compute such a set of geodesics in the special orthogonal group.

This dissertation also considers the geometric mean problem on a manifold as an important

application of the smoothly evolving geodesics obtained in the special orthogonal group. The

Karcher mean has been successfully applied in various researches, e.g., [5, 22, 10, 15]. However, the

classic Karcher mean formulation in a Riemannian manifold may suffer from the non-differentiable

distance function as pointed out in [20]. A novel generalization of the Karcher mean formulation is

designed to address the non-smooth objective function issue in the classic Karcher mean formulation

on a manifold. The solution to the new Karcher mean formulation is found and computed using the

smoothly evolving geodesics in the special orthogonal group. Furthermore, the solution is shown to

have smooth dependence with respect to the given data set. The tools are also used to solve geodesic

problems on the Stiefel manifold and the set of fixed rank positive semi-definite (FRPSD) matrices.

This work aims at solving the open question of the smoothly evolving geodesics on other important

manifolds in the future. Furthermore, the technique and insights of the generalized Karcher mean

on the special orthogonal group can be applied to the Stiefel manifold and the FRPSD manifold

with corresponding smoothly evolving geodesics.

This dissertation is organized as follows. In Chapter 1, some basic notions in a Riemannian

manifold are reviewed and they are followed by a brief history of the relevant topics and research.

The chapter ends with a dissertation statement. Then, the following two chapters investigate

two fundamental primitives to the smoothly evolving geodesics problem on the special orthogonal

1



group, namely the differential to matrix exponential studied in Chapter 2 and the diffeomorphism

studied in Chapter 3. With the necessary primitives developed, Chapter 4 gives the more specific

formulation of the smoothly evolving geodesic problem and presents a solution to it. Chapter 5

through 7 apply the results to various applications. Chapter 8 summarizes the major contributions

of this dissertation.

1.1 Smoothly Evolving Geodesics on a Manifold

The Riemannian geodesic is one of the most fundamental objects in a manifold M which is

generalized from the notion of straight lines in an Euclidean setting. For a given fixed point x ∈M

in a manifold, the Riemannian geodesic γ : [0, 1] → M emanating from x is characterized by the

Riemannian exponential, which maps the tangent space TxM of M at x to the manifold itself

Expx : TxM→M

v := γ̇(0) 7→ Expx(v) := γ(1)
(1.1)

where v is the velocity of γ at t = 0 and Expx(v) = γ(1) is the endpoint at which γ arrives at t = 1.

The entire geodesic is given by γ(t) = Expx(t · v), ∀t ∈ [0, 1]. The problem of smoothly evolving

geodesics on a manifold seeks a well-defined inverse (Expx)−1 to the Riemannian exponential, such

that for some smoothly evolving point y(s) : [0, 1] → M in the manifold with the given initial

v(0) = (Expx)−1 (y(0)), there is

(Expx)−1 :M→ TxM

y(s) 7→ v(s)
(1.2)

where {v(s), s ∈ [0, 1]} is smooth in TxM that satisfies Expx(v(s)) = y(s), ∀s ∈ [0, 1].

In the case where the differential of the Riemannian exponential at v ∈ TxM is invertible at

Expx(v) = y, the implicit function theorem on manifolds leads to the existence of two sufficiently

small neighborhoods Uv ⊂ TxM and Uy ⊂M around v ∈ TxM and y ∈ M respectively, on which

Expx : Uv → Uy is an invertible smooth bijection. In other words, it concludes that a unique

smooth v(s), s ∈ [0, 1] solution to the smoothly evolving geodesics problem exists for any smooth

{y(s), s ∈ [0, 1]} ⊂ Uy in the neighborhoods. However, this is usually not enough in practice. On

one hand, the neighborhoods Uv and Uy may not be available explicitly. On the other hand, they

may be too small for the varying y(s). These considerations are addressed in the formulation of y(s)

and v(s) as curves in (1.2). Rather than identifying an invertible smooth bijection Expx : Uv → Uy
on open neighborhoods, (1.2) takes a weaker form that only requires an invertible bijection on

curves.
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Solving the smoothly evolving geodesic problem (1.2) and developing the respective computa-

tional routines yields the following beneficial results:

1. A smooth parameterization, centered at y, of the manifold M that is realized in the tangent

space TxM where x 6= y. This is particularly useful for the special orthogonal group when x

is taken to be the identity matrix.

2. Realizing (part of) the submanifold structure in M including y ∈M with respect to x ∈M
by restricting y(s) in the submanifold. The submanifold identified in TxM benefits from the

ambient Euclidean setting in TxM.

3. The line search procedure along y(s) in solving an optimization problem on M can be con-

verted to a line search along v(s) in TxM.

1.2 Basic Notions

This section reviews some important results and propositions on a manifold that are closely

related to this dissertation. They can be found in the classic textbooks on manifolds, such as [4]

and [21].

1.2.1 Charts and Atlases

A local chart on an open subset U of a d-dimensional manifoldM is an invertible map ψ : U →

Rd. The invertible map builds a one-to-one identification between the points in manifold and the

points on the Rd. An atlas on this manifoldM is a collection of charts {ψα : Uα → Rd}α that cover

the M as ⋃
α

Uα =M.

The image ψα(x) of a point x ∈ Uα ⊂M in Rd is referred to as the coordinate of x under ψα.

The smoothness of a manifold is determined by the smoothness of the coordinate change map

ψβ ◦ψ−1
α in Uα∩Uβ 6= ∅, which converts the coordinates of the same point between different charts.

For any curve τ(t), t ∈ [0, 1] sitting in Uα ∩Uβ, it has two different coordinate forms under different

charts as τα(t) = (ψα ◦ τ) (t) and τβ(t) = (ψβ ◦ τ) (t). These two curves represent the same τ and

the smoothness in the conversion between them yields the smoothness of the τ they represent in

M. If the analysis on any curve τ can be carried from τα to τβ up to p-times differentiations, then

the manifold M is said to be Cp. The C∞ denotes the smooth manifold in which all analysis can

be carried from one coordinate form to another under up to infinitely many differentiations.

3



The manifolds discussed in this dissertation are all C∞. Furthermore, the notion of a smooth

object at a point x ∈ M means that the representation of the object composed with any chart

containing x is smooth. For example, a function f : M → R is smooth at x if for any chart

ψ : U → Rd containing x, there is a sufficiently small open neighborhood Uδ ⊂ U containing x, such

that f ◦ ψ−1 : {ψ(y) : y ∈ Uδ} → R, ψ(y) 7→ f(y) is smooth.

1.2.2 Tangent Space

In order to generalize the notion of straight lines to a manifold, one must define the velocity

of curves in a manifold first. Consider a smooth curve {τ(t) : t ∈ [−1, 1]} ⊂ Rn in the Euclidean

space that emanates from τ(0) := x ∈M, its velocity at t = 0 is given by

vx :=
d

dt
τ(t)

∣∣∣∣
t=0

= lim
h→0

τ(h)− τ(0)

h
.

In a manifold setting with {τ(t) : t ∈ [−1, 1]} ⊂ M, the subtraction that quantities difference

between points τ(h) and τ(0) is no longer available in general. Since the velocity of τ(t) at t = 0

characterizes the infinitesimal motion of the curve at t = 0, one may consider expressing such an

infinitesimal motion on a curve through the infinitesimal action it induces as an alternative. For

arbitrary smooth function f : M → R, the infinitesimal action at t = 0 the curve τ(t) induces is

quantified as
d

dt
f(τ(t))

∣∣∣∣
t=0

= lim
h→0

f(τ(h))− f(τ(0))

h
.

Following from this idea, the formal definition of the velocity of τ(t) at x = τ(0) is given by the

collection of infinitesimal actions τ(t) acting on arbitrary function f ∈ Fx(M) as

τ̇(0) : Fx(M)→ R

f 7→ τ̇(0)f := τ̇(0)(f)
(1.3)

where Fx(M) collects all function f : M → R that is smooth around x. In addition, when there

are multiple smooth curves that obtain the same velocity, e.g., the γ̇(0) = τ̇(0) at x = γ(0) = τ(0),

such a velocity is usually referred to as a tangent vector vx : Fx(M)→ R at x that is independent

with respect to the actual curves. The formal definition of tangent vectors follows.

Definition 1.2.1. A tangent vector vx to a manifold M at a point x is a mapping from Fx(M)

to R that is the velocity τ̇(0) of some curve {τ(t) : t ∈ [−1, 1]} satisfying the following conditionsτ(0) = x

vx(f) = τ̇(0)f,∀f ∈ Fx(M)
(1.4)

Such a curve τ(t) is said to realize the tangent vector vx.

4



Note that a tangent vector can have different realizations of curve. In some literature, the

notation for tangent vectors and curve velocities refers to the same notion. In this dissertation, the

term “velocity” and the notation τ̇(0) are used to emphasize some given realized curve τ(t) in the

context while the term “tangent vector” and the notation vx are used to emphasize the mapping

nature in Fx(M)→ R.

Finally, the collection of all tangent vectors vx at x ∈M forms the tangent space at x denoted

as TxM. It collect all possible infinitesimal actions at x and has the same dimension with the

manifold itself. More importantly, such a tangent space is a linear space that enjoys an ambient

Euclidean setting.

1.2.3 Riemannian Metric, Geodesic and Exponential

A Riemannian structure of a manifold M is built on an inner product operator gx that maps

from TxM×TxM to R. The collection of all of these operators, smooth w.r.t. x, is denoted as the

Riemannian metric g on M. The inner product of vx, wx ∈ TxM is given by

〈vx, wx〉 = gx(v, w).

The norm
√
〈vx, vx〉 induced by the inner product in TxM is denoted as the g-norm, ‖vx‖g.

Such a Riemannian metric fully characterizes a Riemannian manifold denoted as (M, g). It

introduces the notions of distance, shortest curve and straight line to the manifoldM by the special

curve known as the Riemannian geodesics. Recall that the length of a curve in an Euclidean setting

is given by the integral of its velocity norm along the path. This idea applies to the Riemannian

setting with the g-norm as

lτ :=

∫ 1

0
‖τ̇(t)‖gdt =

∫ 1

0

√
gτ(t)(τ̇(t), τ̇(t))dt. (1.5)

Taking the infimum among the lengths of all smooth curves connecting points x, y ∈ M yields

the distance d(x, y). Fortunately, the infimum can be obtained, i.e., a shortest curves connects

x, y ∈ M with its length equals to the distance d(x, y), if x and y are connected. Such a curve is

denoted as a Riemannian geodesic.

In an Euclidean setting, the shortest curve coincides with the straight line parameterized as a

curve {γ(t), t ∈ [0, 1]} ∈ Rn in constant velocity, i.e., γ̇(t) = v ∈ Rn, ∀t ∈ [0, 1]. Such a curve in an

Euclidean space takes the unique form γ(t) = γ(0)+ t ·v. In a manifold setting, one must define the

notion of constant speed before defining a straight line. However, such a notion is not unique and
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has to be path-dependent. In other words, depending on different curves τ(t) and γ(t) connecting

x = τ(0) = γ(0) and y = τ(1) = γ(1), a tangent vector vx ∈ TxM is considered “constant” with

two different sets of tangent vectors vγ,t ∈ Tγ(t)M and vτ,t ∈ Tτ(t)M along the curves satisfyinggτ(t)(τ̇(t), vτ,t) = gx(τ̇(0), vx)

gγ(t)(γ̇(t), vγ,t) = gx(γ̇(0), vx)
, ∀t ∈ [0, 1] (1.6)

where in general, vγ,1 6= vτ,1 ∈ TyM if τ 6= γ. The path-γ-dependent mapping between vx ∈ TxM

and vγ,t ∈ TyM is found to be a linear operator Pγ,0→t : TxM→ Tγ(t)M denoted as the parallel

translation along γ. A curve γ(t), t ∈ [0, 1] is said to be a zero-accelerated curve or an affine geodesic

to the parallel translation if it satisfies

Pγ,0→t(γ̇(0)) = γ̇(t), ∀t ∈ [0, 1],

i.e., its velocities remains constant along itself.

Although there are infinitely many ways to define a parallel translation onM, the fundamental

theorem of Riemannian manifold picks out the unique parallel translation inducing an Rieman-

nian geodesic as an affine geodesic, satisfying (1.6). This dissertation focuses on such a parallel

translation with Riemannian geodesic but the study and the discussion presented in this work can

certainly be generalized to arbitrary parallel translation in future work. Unless otherwise specified,

the term “geodesic” in the rest of this dissertation refers to both the Riemannian geodesic in the

context of “curve length” and the affine geodesic in the context of “constant speed” and “zero

acceleration”.

Benefits from the notion of a zero-accelerated curve, a geodesic γ in M that emanates from

γ(0) = x and arrives at γ(1) = y can be uniquely characterized by its initial velocity γ̇(0), as one

can integrate the ordinary differential equation Pγ,0→t(γ̇(0)) = γ̇(t) to find the unique solution

γ(t). The collection of such a map from the tangent vector v = γ̇(0) ∈ TxM to the arriving point

y = γ(1) ∈M, forms a smooth mapping denoted as the Riemannian exponential

Expx : TxM→M

v 7→ y

s.t.

v = γ̇(0)

y = γ(1)
for geodesic γ.

In addition, this dissertation only considers the complete Riemannian manifold scenario stated in

the Rinow-Hopf theorem, where the Riemannian exponential Expx : TxM→M is well-defined and

6



smooth on the entire tangent space TxM. In other words, the geodesic γ(t) = Expx(t · v), t ∈ [0, 1]

for any v ∈ TxM can be extended to γ(t) = Expx(t ·v), t ∈ [0,∞). Note that the extended geodesic

stays a zero accelerated curve but it is not necessary the shortest curve between the endpoints

anymore. The lost shortest constraint is characterized by the notion of cut locus discussed later.

1.2.4 Differentiation of Functions between Manifolds

The idea of differentiating a smooth function f :M→ R has been mentioned in the definition

of tangent vectors on a manifold. Consider a smooth function ϕ : N →M between the manifolds

N and M and let {x(t), t ∈ [0, 1]} ⊂ N be a smooth curve with vx = ẋ(0) ∈ TxN at x = x(0).

Let y(t) := ϕ(x(t)), t ∈ [0, 1] be the image in M, which is also a smooth curve with velocity

vy := ẏ(0) ∈ TyM at y = y(0). The tangent vector vy is then the infinitesimal action of ϕ along

vx. The relationship between vy and vx forms the linear operator

Dϕx : TxN → TyM

ẋ(0) 7→ ẏ(0) := Dϕx[ẋ(0)]
(1.7)

where x(t), y(t) = ϕ(x(t)),∀t ∈ [0, 1] are smooth curves on respective manifolds. This linear

operator is denoted as the differential or the directional derivative of y and the notation Dϕx[v]

reads as “the differential of the function ϕ at the point x along the vector v”.

Consider the Riemannian exponential Expx : N = TxM → M evaluated at v. Let v(t) be

a smooth curve emanating from v = v(0) ∈ TxM with velocity w ∈ Tv(TxM) = TxM, e.g., the

simple v(t) = v + t · w. Let y(t) = Expx(v(t)) be the image under the Riemannian exponential,

then the differential computes the infinitesimal motion ẏ(t) at t = 0 as

D (Expx)v [w] =
d

dt
Expx(v(t))

∣∣∣∣
t=0

=
d

dt
y(t)

∣∣∣∣
t=0

∈ TyM.

Note that this differential characterizes the perturbation to a set of geodesics parameterized

by t as {γs(t) := Expx(s · v(t)), s ∈ [0, 1]}t under the perturbation to the initial velocity v(t) at

t = 0. It is one of the main topics studied in this dissertation. Also note that this differential

D (Expx)v : TxM→ TyM is a linear operator between two linear spaces with the same dimension

d. If there are preferred bases on respective tangent spaces, the D (Expx)v can be expressed as a

d× d matrix.

1.2.5 Curve Length, Cut Locus and Conjugate Locus

Inner product invariance is the essential property in the parallel translation that induces a

Riemannian geodesic as an affine geodesic. It means that for any smooth curve {τ(t), t ∈ [0, 1]} ⊂
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M and any tangent vector vτ,0 ∈ Tτ(0)M with the parallel translated vτ,t := Pτ,0→t(vτ,0), the inner

product given by the Riemannian metric g stays the same:

gτ(0)(vτ,0, τ̇(0)) = gτ(t)(vτ,t, τ̇(t)), ∀t ∈ [0, 1].

Recall that an affine geodesic γ(t) has its velocity at any γ(t) parallel translated from its initial

velocity, i.e., γ̇(t) = Pγ,0→t(γ̇(0)). It follows that the curve length of a Riemannian geodesic

γ(t), t ∈ [0, 1] is the norm of its velocity ‖γ̇(s)‖g =
√
gγ(s)(γ̇(s), γ̇(s)) at any s ∈ [0, 1]

lγ =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt =

∫ 1

0

√
gγ(t) (Pγ,0→t(γ̇(0)), γ̇(t))dt

=

∫ 1

0

√
gγ(0) (γ̇(0), γ̇(0))dt =

√
gγ(0)(γ̇(0), γ̇(0)) =

√
gγ(s)(γ̇(s), γ̇(s)),∀s ∈ [0, 1]

It further yields that the extended Riemannian geodesic γ(t), t ∈ [0, T ] has its length scaled linearly

as T · ‖γ̇(t)‖g. For a complete Riemannian manifold (M, g), the Riemannian exponential can be

extended infinitely, indicating the length of a Riemannian geodesic can be extended to infinity as

well.

Such an infinitely extending length cannot always be the shortest length between two points on

a bounded manifold. In other words, the statement of a Riemannian geodesic being the shortest

curve must fail at some point. For example, the arcs of a great circle on a 2-sphere are geodesics

and the extending arc fails to be shortest if it passes the opposite polar point. After passing the

polar point, the shortest geodesic becomes the other arc that has not passed the polar point. This

observation about the loss of shortest condition on an extending geodesic holds in general and the

definition of the cut locus follows as the envelope of initial velocities in TxM that emanates a

shortest geodesic from x ∈M.

Cutx := {v ∈ TxM : ∀σ ∈ [0, 1), {Expx(tσv), t ∈ [0, 1]} is the unique shortest geodesic} . (1.8)

The v ∈ Cutx is denoted as a cut vector of x and the endpoint y = Expx(v) it arrives is denoted as

a cut point of x. In the arc example, the opposite polar point of x is a cut point, where there are

two different cut vectors arriving at it with the same length.

Another possible cut vector scenario at v is to have D (Expx)v [w] = 0 ∈ TyM for some w 6=

0 ∈ TxM. Recall that D (Expx)v [w] describes an infinitesimal motion on the Riemannian geodesics

emanating from x. Having a null direction w 6= 0 means one can produce infinitesimal change on
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the geodesic along w while it costs no infinitesimal change on the arriving endpoint y = Expx(v).

Such a tangent vector defines a conjugate locus as follows.

Conjx := {v ∈ TxM : ∃w 6= 0,D (Expx)v [w] = 0} . (1.9)

The v ∈ Conjx is referred to as a conjugate vector of x. Since D (Expx)v : TxM→ TyM is a linear

operator between two linear spaces with the same dimension, having a null direction in D (Expx)v

is equivalent to rank-deficiency in D (Expx)v, i.e., D (Expx)v is being non-invertible. Therefore,

a conjugate vector is a tangent vector at which the differential of the Riemannian exponential is

non-invertible.

The two scenarios cover all possibilities of a cut vector. In summary, v ∈ TxM is a cut vector

if any or both of the following conditions hold:

1. The tangent vector v is the first conjugate vector along {s · v : s ∈ [0,∞)} ⊂ TxM.

2. There exists w 6= v in TxM satisfying ‖w‖g = ‖v‖g and Expx(v) = Expx(w).

It is important to distinguish the cut locus and the conjugate locus in this dissertation. The cut

locus is considered a lot in the literature as it identifies a region where the Riemannian geodesics

are the shortest curves. It not only relates the manifold structure with the metric space structure,

but also provides a criterion of selecting a unique geodesic among the multiple geodesics between

the given points in some manifolds. The classic Karcher mean formulation on a manifold is one of

the many applications that is restricted within the cut locus. One of the major contributions in

this work is to relax the cut locus and the shortest geodesic constraints to the smoothly evolving

geodesic constraints, which is closely related to the conjugate locus.

1.2.6 Karcher Mean on a Manifold

The mean computation on a given data set has been an important analysis in various applica-

tions. The computed mean is usually considered the best representation in some measurements.

When the data set {x1, · · · , xn} ⊂M lives on a metric space (M,d), the Karcher mean formulation

utilizes the distance function d : M ×M → R to measure the objective as

1

n

n∑
i=1

d(xi, y)2,∀y ∈M

and defines the Karcher mean x as a global minimum to the objective function

x := arg min
y∈M

∑n
i=1 d(xi, y)2

n
. (1.10)
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It derives the arithmetic mean x =
∑n

i=1 xi/n of {x1, · · · , xn} ⊂ Rm,m ∈ Z with the Euclidean

space setting (Rm, (x, y) 7→ |x− y|) and the geometric mean x = (
∏n
i=1 xi)

1/n of positive numbers

{x1, · · · , xn} ⊂ R+ := {x > 0 : x ∈ R} with the logarithmic metric space setting (R+, (x, y) 7→

| log(x/y)|).

When it comes to a Riemannian manifold, it is natural to apply the classic Karcher mean

formulation (1.10) directly to the metric space (M, d) where d is the distance induced by the

Riemannian metric. Recall that the distance between x, y ∈ M is the curve length of a shortest

geodesic between them, the classic Karcher mean formulation on the manifold is then equivalent to

x = arg min
y∈M

∑n
i=1 gγi(0)(γ̇i(0), γ̇i(0))

n
(1.11)

= arg min
y∈M

∑n
i=1 gγi(1)(γ̇i(1), γ̇i(1))

n
(1.12)

where γi(t), t ∈ [0, 1] is a shortest geodesic between γi(0) = xi and γi(1) = y. Notice that the

(1.11) has the g-norms evaluated at the initial velocities γ̇i(0) ∈ TxiM, while the (1.12) has the

g-norms evaluated at the arriving velocities γ̇(1) ∈ TyM. By differentiating the objective (1.12)

as a function of y ∈ M, one obtains the set of critical points x∗ to (1.12) expressed in the set of

solutions to a constraint on TyM:

x∗ = arg
y∈M

{
n∑
i=1

γ̇i(1) = 0

}
(1.13)

where γi(t), t ∈ [0, 1] is a shortest geodesic between xi and y and there is x ∈ x∗.

Unfortunately, due to the possible multiple shortest geodesics and the non-smoothness in the

Riemannian distance function, x∗ contains multiple critical points in general. Furthermore, the

discontinuity of identifying a shortest geodesic around the cut locus yields that the set x∗ does

not smoothly depend on the data set {x1, · · · , xi} as they spread away. These features have been

theoretical and computational issues to the Karcher mean problem on a manifold and, in some

literature, the notion of the Karcher mean is relaxed to any critical point from the x∗. One of the

main contributions in this dissertation is to address these features on the special orthogonal group

and to present a more appropriate generalization to (1.11) and (1.12) that is specific to a manifold

setting.

1.3 Related Work

The concept of computing a set of smooth geodesics on a manifold is generalized from the idea

of computing an inversion of a surjective function as a smooth multi-valued function. The complex
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logarithm is one of the well-known examples that have the inversion of the complex exponential fully

characterized. The first attempt to compute the smooth inversion of the Riemannian exponential

on the special orthogonal group is given in [9]. Due to the lack of the inverse of the differential

of the Riemannian exponential on the special orthogonal group, the inversion proposed in [9] is

restricted within the cut locus of the identity matrix on the special orthogonal group.

The differential formula of an exponential map dates back to 1891, proven by Friedrich Schur,

and it is sometimes also known as Duhamel’s formula. Duhamel’s formula on the matrix exponential

of arbitrary square matrices yields the Baker–Campbell–Hausdorff formula and characterizes the

conjugate locus on the general linear group. In 1995, Najfeld and Havel [28] derive the Duhamel’s

formula on the matrix exponential of arbitrary diagonalized matrix that operates in complex arith-

metics. This more restricted differential action has a simple inverse formula. Al-Mohy and Higham

designs numerically stable and efficient algorithms to compute the Duhamel’s formula on the ma-

trix exponential of any square matrix in 2009, [26], and to compute the differential to the matrix

principal logarithm in 2013, [27]. However, the matrix principal logarithm has its range restricted

within the principal branch of the matrix logarithm.

As the area of optimization on a manifold has steadily increased in interest to the optimization

and application, more and more constrained optimizations and data sets are interpreted as uncon-

strained problems on a manifold. As one of the important milestones, Edelman et al. [11] identifies

and discusses the Stiefel manifold with the canonical metric on the set of orthonormal bases as a

Riemannian manifold inherited from the special orthogonal group as useful for computation and

analysis of certain well-known situations in linear algebra. Although the Riemannian exponential

map is given in that work, the inverse problem of finding a Riemannian geodesic between two given

point is not solved until the recent work, e.g., [42], [29] and [33]. Unfortunately, these algorithms are

only guaranteed for sufficiently close endpoints and degrade as the endpoints increase in separation.

The set of fixed rank positive semi-definite (FRPSD) matrices is a more complicated manifold

related to the special orthogonal constraint and it arises in important applications like computer

vision and statistical analysis. Vandereycken et al. propose a complete Riemannian structure in [36].

Although the Riemannian exponential on this manifold is derived, there is no way of computing

its inverse to find a Riemannian geodesic between given points. The geometric interpretations

of the resulting Riemannian geodesics are also not understood. These missing pieces limit its

applications. In the spirit of having a simple and computationally tractable Riemannian geodesics,

Massart and Absil propose a non-complete Riemannian structure in [23] that has been successfully
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applied to various problems with the FRPSD constraint. In hopes of generalizing meaningful

Riemannian geodesics on the FRPSD manifold, Bonnabel and Sepulchre [3] propose a Riemannian

structure that has its geodesic infinitesimally approximated by a set of curves with special geometric

interpretations.

The curves approximating the geodesic in [3] are then used to define a mean on the FRPSD

manifold in [2]. The concept of this mean is generalized from the Karcher mean formulation on a

metric space that is developed by Grove and Karcher [17] in 1970s. Unfortunately, the distance

function on a manifold is usually not smooth globally and it depends on a shortest geodesic realizing

the distance as its length, which may not be continuous globally as well. Both the mean proposed

in [2] and the Karcher mean in the special orthogonal group, as reported in [20], have discussed

the discontinuity in the distance function. As a result, the Karcher mean on a manifold is usually

restricted to a “denser” data distribution such that the data set lies within the cut locus of the

computed Karcher mean.

1.4 Research Overview and Dissertation Statement

As the Riemannian geometry becomes more and more developed, many classic Euclidean algo-

rithms for solving unconstrained problems that has been adapted to their Riemannian generaliza-

tions for the respective problems on a manifold-constrained set, [1]. These Riemannian algorithms

are built on the generalizations of geometric objects, e.g., the straight lines in the Euclidean set-

tings are generalized to the Riemannian geodesics in the manifold setting. Unfortunately, such a

generalization of straight lines is usually limited to a local scope bounded by the cut locus. It

not only restricts the efficiency of the Riemannian algorithms built on these local generalizations,

but may also introduce non-smoothness and discontinuity from the cut locus. Although there is no

universal solution to address this locality issue or even to identify cut locus in arbitrary Riemannian

manifolds, it is possible and worthwhile to develop a specialized solution for the special orthogonal

group. On one hand, the special orthogonal group is well structured with rich properties and for-

mulae explicitly available that helps the investigation. On the other hand, many other Riemannian

manifolds with special orthogonal constraints are determined by the Riemannian structure on the

special orthogonal group.

The first part of this dissertation investigates the behaviors of the Riemannian geodesics on

the special orthogonal group and presents a novel characterization of the special orthogonal group
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realized in the tangent space at the identity matrix, which is the set of skew symmetric matrices.

The characterization identifies rich geometries of the Riemannian geodesics, possibly non-minimal,

that emanate from the identity matrix in a smooth manner, i.e., the smooth geometry of the

special orthogonal group beyond the scope of the cut locus is realized. Two efficient and reliable

algorithms are designed to compute such a set of smoothly evolving (non-minimal) geodesics. These

new insights and primitives are applied to the Karcher mean problem on the special orthogonal

group and they overcome the issue of non-smooth objective function in the classic formulation.

The Stiefel manifold is a set of orthonormal bases and it is equipped with the Riemannian

structure inherited from the special orthogonal group, known as the canonical metric. A point

on the Stiefel manifold is a rectangular orthonormal matrix and it is identified with all of its

special orthogonal completion as a submanifold in the special orthogonal group. Although the

Riemannian exponential under the canonical metric is known, the endpoint geodesic problem that

seeks a geodesic connecting two given endpoints is not solved until recent works in [42], [33] and

etc. The second part of this dissertation investigates the recent algorithms on the endpoint geodesic

problem on the Stiefel manifold and addresses their limitations with far-separated endpoints. Then,

the insights and primitives developed on the special orthogonal group are applied to propose a novel

Newton solver on a manifold root-finding formulation. Systematic numerical experiments further

establish the dominant performance given by the proposed Newton solver.

The third part of this dissertation focuses on the manifold of fixed rank positive semi-definite

matrices, namely the FRPSD manifold. This manifold usually emerges from the computer vision

or the statistical analyses where the smooth varying geodesic with meaningful interpretations are

essential to their application background. The first half of this part applies the tools developed

on the special orthogonal group to solve the endpoint geodesic problem on the FRPSD manifold

with an existing Riemannian structure proposed in [36]. Since it is still not understood how the

Riemannian geodesic given in [36] is interpreted in practice, the second half of this part proposes a

new Riemannian structure that is inspired by the attempt made in [3]. The properties of the new

Riemannian structure are discussed and some interesting questions are left open.

Finally, the implementation of various algorithms and subroutines in the aforementioned topics

plays an essential role in efficiency. Compared to the computations in Euclidean settings, the

objects like the geodesic and the differential operator are a lot more expensive as they carry the

non-trivial manifold constraints. Therefore, it is important to optimize all implementations from

scratch and exploit the advantage in the manifold constraints as much as possible. For example, the
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matrix exponential on skew symmetric matrices can be 80% times faster compared to the matrix

exponential on real matrices. The last part of this dissertation collects these useful enhanced

subroutines and primitives.

The following list highlights some of the most important contributions made in this dissertation.

1. Identify the conjugate locus on the special orthogonal group and derive efficient routines to

compute the differential of the matrix exponential on the skew symmetric matrices and its

inverse action.

2. Develop the notion of nearby matrix logarithm on the special orthogonal group that computes

beyond the principal branch of the principal matrix logarithm. Reliable routines are designed

to find a smooth skew symmetric S(t), t ∈ [0, 1] for given Q(t) = Q exp(t · ∆) satisfying

exp(S(t)) = Q(t), t ∈ [0, 1].

3. Based on the smoothly evolving geodesics in the special orthogonal group, a generalized

Karcher mean is proposed, which is smoothly depending on the input data set.

4. Based on the quotient structure and the smoothly evolving geodesic in the special orthogonal

group, a root-finding formulation of connecting given points with a geodesic is proposed on the

Stiefel manifold with the canonical metric and the fixed rank positive semi-definite (FRPSD)

matrix manifold with Vandereycken’s metric.

5. A new Riemannian structure is proposed on the FRPSD manifold with meaningful Rieman-

nian geodesic interpretations. Some of the earlier results in this new structure are derived

and discussed.
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CHAPTER 2

DIFFERENTIATING MATRIX EXPONENTIAL AT

SKEW SYMMETRIC MATRICES

2.1 Introduction

The Riemannian structure on the special orthogonal group is closely related to the matrix

exponential that maps from a skew symmetric matrix to a special orthogonal matrix. The differ-

entiation of a matrix exponential has been studied in quantum theory, [37], and other literature,

e.g., in economics and statistics [8, 7]. Various efficient algorithms for differentiating the matrix

exponential have been proposed in [16, 28, 26]. While there have been much effort made on the

matrix exponential map on general matrices, there is surprisingly less work specific to the set of

skew symmetric matrices. This chapter investigates such a differential of the matrix exponential

restricted to the set of skew symmetric matrices, which is an essential primitive in this dissertation.

In particular, this chapter develops the explicit formulae in computing the restricted differential

and its inverse. The set of skew symmetric matrices that have rank deficient differential are fully

characterized and a pseudoinverse operator is designed in those rank deficient case.

This chapter is organized as follows. The introductory section briefly reviews the existing work

on differentiating matrix exponential. Then, it introduces some necessary matrix factorizations

and notations. The next section gives a detailed definition of the problem of interest, the formulae

associated with differentiating the matrix exponential. The main body of this chapter derives these

formulae for computing the restricted differential, its inverse and its pseudoinverse. Finally, this

chapter presents the complexity analysis of the derived formulae along with some numerical results.

2.2 Preliminaries

2.2.1 Matrix Logarithm

Recall that the matrix exponential on a diagonalizable matrix X, i.e., there exists invertible

complex matrix U and diagonal matrix Λ such that X = UΛU−1, is given by the entry-wise

exponential on the diagonals λ1, · · · , λn ∈ C of D as

exp(X) = P exp(Λ)P−1 = P diag(exp(λ1), · · · , exp(λn))P−1
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where diag(A,B, · · · ) denotes a (block) diagonal matrix with A,B, · · · on the diagonal. Notice

that the exponential on complex numbers is periodic in 2iπ where i is the imaginary unit from

i2 = −1. It follows that for any matrix X ∈ Cn×n and exp(X) = M , the preimage of the matrix

exponential at M , exp−1(M) = {exp(Y ) = M}, contains infinitely many solutions, including the

given X. In most cases, the infinitely many solutions in exp−1(M) form an isolated set of skew

symmetric matrices. Similar to taking inverse of a periodic function on R by returning the unique

solution in a specified period, the principal logarithm of M , if it exists, is defined as the following

unique point

log(M) := {X ∈ Cn×n : exp(X) = M} ∩ {X ∈ Cn×n : |Im(λi)| < π,∀i = 1, · · · , n}

where λi are the eigenvalues of X and Im : (a + b · i) 7→ b,∀a, b ∈ R takes the imaginary part of

a complex number. The set {X ∈ Cn×n : |Im(λi)| < π, i = 1, · · · , n} is known as the principal

branch of the matrix exponential.

Note that not every matrix has its principal logarithm well defined. For example, take Y ∈

{X ∈ Cn×n : ∃1 ≤ i ≤ n, Im(λi) = π} on the boundary of the principal branch, then the preimage

of M = exp(Y ) has no intersection with the principal branch, as the imaginary parts in exp−1(M)

differ in multiples of 2iπ. If there are λj = a + π · i in Y , then any solution in the preimage

Ỹ ∈ exp−1(M) has an eigenvalue in the form of λ̃j = a+ (2k+ 1)π · i where k is an integer. Notice

that |Im(λ̃j)| = |(2k + 1)π| ≥ π, i.e., Ỹ /∈ {X ∈ Cn×n : |Im(λi)| < π, i = 1, · · · , n}.

The observations above apply to the more restricted case of the special orthogonal group.

Further note that the eigenvalues of a skew symmetric matrices are either 0 or appear in purely-

imaginary conjugate pairs ±θi · i, i = 1, 2, · · · ,m where 2m = n or 2m + 1 = n. The statements

specific to the special orthogonal group follow.

1. The matrix exponential exp : Skewn → SOn is a smooth and surjective function.

2. The principal branch restricted on Skewn takes the form of

P := {S ∈ Skewn : ‖S‖2 < π} (2.1)

where ‖ · ‖2 is the matrix 2-norm that returns the largest magnitude among the eigenvalues

of the matrix.

3. The principal logarithm of a special orthogonal Q ∈ SOn, if it exists, is

log(Q) = {S ∈ Skewn : ‖S‖2 < π, exp(S) = Q}.
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4. For a skew symmetric S with a pair of eigenvalues λ± = ±π · i, Q = exp(S) does not have its

principal logarithm defined.

To see how the matrix 2-norm arises, notice the absolute value of the imaginary part of a purely-

imaginary conjugate pair is the magnitude of the eigenvalues themselves, i.e., for λ± = ±θi · i,

|Im(λ±)| = |θi|.

2.2.2 Real Schur Decompositions

The real Schur decomposition plays an essential role in this dissertation and this section collects

some important features and notations associated with it. Please refer to the textbook [16] for more

details about the Schur decomposition.

Matrix Partitions. A real Schur decomposition converts any matrix into a block upper

triangular matrix, in which the diagonal blocks are 2× 2 or 1× 1, in the diagonal and zero entries

below them. To simplify the expression in writing the action of such a block upper triangular

matrix, the following notation in partitioning matrices into 2× 2 blocks is introduced.

Definition 2.2.1. For any matrix M of size n× n, denote

M[i,j] :=

[
M2i−1,2j−1 M2i−1,2j

M2i,2j−1 M2i,2j

]
,∀i, j ≤ m

where n = 2m or n = 2m + 1. For the odd n = 2m + 1, additionally denote M[m+1,j] :=[
Mn,2j−1 Mn,2j

]
,∀j ≤ m in the leftover row, M[i,m+1] :=

[
M2i−1,n

M2i,n

]
,∀i ≤ m in the leftover

column and M[m+1,m+1] :=
[
Mn,n

]
in the leftover diagonal such that

M =

M[1,1] · · · M[1,m]
...

. . .
...

M[m,1] · · · M[m,m]

, n = 2m, or

 M[1,1] · · · M[1,m+1]
...

. . .
...

M[m+1,1] · · · M[m+1,m+1]

 , n = 2m+ 1.

For a 5× 5 matrix M ∈ R5×5, the partition gives
M11 M12

M21 M22

M13 M14

M23 M24

M15

M25

M31 M32

M41 M42

M33 M34

M43 M44

M35

M45

M51 M52 M53 M54 M55

 =

M[1,1] M[1,2] M[1,3]

M[2,1] M[2,2] M[2,3]

M[3,1] M[3,2] M[3,3]

 .
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Schur Decomposition and Sepctral Decomposition. A real Schur decomposition of a

real skew symmetric matrix S ∈ Skewn is given by S = RDRT where R is an orthogonal matrix

and D is a block diagonal matrix in the form of

D =

 diag(D[1,1], D[2,2], · · · , D[m,m]), n = 2m

diag(D[1,1], D[2,2], · · · , D[m,m], D[m+1,m+1]), n = 2m+ 1
(2.2)

where D[i,i] =

[
0 −θi
θi 0

]
, θi ∈ R, i = 1, 2, · · · ,m and D[m+1,m+1] := 0.

Note that the Schur decomposition on both a skew symmetric matrix and a special orthogonal

matrix results in a block diagonal matrix with blocks in the form of D[i,i] =

[
ai −bi
bi ai

]
, rather than

a block upper triangular matrix in general. Also notice that the real Schur decomposition of S

is not unique but that all of them share the same block diagonal structure given in (2.2). The

characterization of all Schur decompositions will be provided later in this section.

It follows immediately that a real Schur decomposition of any special orthogonal matrix Q ∈

SOn is given by Q = RERT with E = exp(D) which consists of E[i,i] =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
, i =

1, · · · ,m and an additional E[m+1,m+1] = 1 when n = 2m+ 1.

Another important implication of the structured Schur decomposition is that it reveals the

spectral decomposition of S in the following simple way. Consider the unitary 2× 2 matrix U2 :=
√

2
2

[
1 1
−i i

]
where i =

√
−1 is the imaginary unit, notice that it always consists of the eigenvectors

of any Di in (2.2) such that D[i,i] = U2

[
−θii 0

0 θii

]
UH

2 where H denotes the conjugate transpose.

Use the U2 to form the n× n unitary matrix as

U :=

diag(U2, U2, · · · , U2), n = 2m

diag(U2, U2, · · · , U2, 1), n = 2m+ 1
(2.3)

such that the unitary V := RU consists of the eigenvectors of S, as

S = RDRT = R(UUH)D(UUH)RT = V (UHDU)V H

=

V diag(−θ1i, θ1i, · · · ,−θmi, θmi)V H, n = 2m

V diag(−θ1i, θ1i, · · · ,−θmi, θmi, 0)V H, n = 2m+ 1

= V ΛV H.

(2.4)

Characterization of Multiple Schur Decompositions. Recall that a spectral decomposi-

tion may not be unique if there exists a repeated eigenvalue. It gets more complicated in the Schur

decomposition case, where matrices with distinct eigenvalues still have multiple Schur decomposi-

tions, possibly even with a different block diagonal matrix. This part presents an alternative way
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of expressing a Schur decomposition and a characterization of all possible Schur decompositions on

the given matrix based on the preferred Schur decomposition.

Definition 2.2.2 (Preferred Schur Decomposition). Let X = RDRT be a Schur decomposition of a

skew symmetric matrix or a special orthogonal matrix X with block diagonal X = diag(D[1,1], · · · )

where D[i,i] =

[
ai −bi
bi ai

]
, i = 1, · · · ,m and the additional D[m+1,m+1] = 1 or 0 in the n = 2m + 1

case. Then it is referred to as a preferred Schur decomposition, , if the following conditions on the

diagonal blocks are satisfied.

1. bi ≥ 0,∀i = 1, · · · ,m.

2. For a skew symmetric matrix, the diagonal blocks are placed in the following order{
bi ≥ bi+1, i = 1, · · · ,m− 1, if X ∈ Skewn

ai ≤ ai+1, i = 1, · · · ,m− 1, if X ∈ SOn

The resulting Schur decomposition is denoted as

X = R diag(Daj ,bj , · · · , Dar,br)R
T

br = 0 and ar =

1,X ∈ SOn

0,X ∈ Skewn

for n = 2m+ 1
(2.5)

where (ai, bi) 6= (aj , bj),∀i 6= j, Da,b are the block diagonal matrix that share the same (a, b), bj ≥ 0

and bj > bj+1 for X ∈ Skewn or |aj | ≤ |aj | for X ∈ SOn.

Proposition 2.2.3. Let X be a skew symmetric matrix or a special orthogonal matrix and let

X = RDRT = R diag(D[1,1], · · · )RT = R diag(Da1,b1 , · · · , Dar,br)R
T

be a preferred Schur decomposition. Let the dimension of Dai,bi , i = 1, · · · , r be ni = 2mi + 1 or

ni = 2mi. Then, for any Schur decomposition

X = R̃X̃R̃T = R̃ diag(X̃[1,1], · · · )R̃T,

there exist the orthogonal transformations P , G and Q, such thatR̃ = RQGP

D̃[j,j] = D∗[ij ,ij ],∀j = 1, · · · ,m

where {ij}mj=1 is a permutation of {1, 2, · · · ,m} and D∗[ij ,ij ] is either D[ij ,ij ] itself or its transpose,

depending on the determinant of G[i,i]. The orthogonal transformations are given as follows
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1. The Permutation: P = Pm⊗ I2 for n = 2m or P =

[
Pm ⊗ I2 0

0 1

]
for n = 2m+ 1, where Pm

permutes 1, 2, · · · ,m into i1, · · · , im and ⊗ denotes the Kronecker product.

2. The orthogonal transformations applied to vectors in groups of 2:

G = diag(G1, · · · , Gm) for n = 2m or G = diag(G1, · · · , Gm, 1) for n = 2m+ 1 where Gi are

any 2× 2 orthogonal matrices.

3. The orthogonal transformations applied to the vectors from repeated diagonal blocks:

Q = diag(Qa1,b1 , · · · , Qar,br) where Qai,bi are ni × ni orthogonal matrices as{
Qai,bi = Qmi ⊗ I2, ∀mi ×mi orthogonal Qmi if br 6= 0

Qai,bi is any ni × ni orthogonal matrix if br = 0

Angles in Skew Symmetric and Special Orthogonal Matrices. The structured real

Schur decomposition on both the skew symmetric matrices and the special orthogonal matrices,

especially the characterization of θ1, · · · , θm ∈ R in the block diagonal matrix, is essential for the

analyses derived in this work and the following notions are introduced.

Definition 2.2.4. Let X = RDRT be a preferred Schur decomposition of a skew symmetric matrix

or a special orthogonal matrix X, with diagonal blocks D[i,i] =

[
ai −bi
bi ai

]
with bi > 0.

1. When X is skew symmetric, there are ai = 0 and use θi = bi as more geometric intuitive

notation. The the set of θi are denoted as the angles of the X:

ΘX := {θi}mi=1 ∈ Rm. (2.6)

2. When Y is skew symmetric, there are a2
i + b2i = 1 with bi ≥ 0. Then, there exists a unique

θi ∈ [0, π], such that ai = cos(θi) and bi = sin(θi). Such a set of θi in range of [0, π] are

denoted as the principal angles of the X:

ΘX := {θi}mi=1 ∈ [0, π]m. (2.7)

On the other hand, given a set of angles Θ ∈ Rm and the dimension n = 2m or n = 2m + 1,

the notation DΘ and EΘ are reserved for the block diagonal matrix in some Schur decompositions

of a skew symmetric S = RDΘRT and of a special orthogonal

Q = exp(S) = R exp(DΘ)RT := REΘRT

with diagonal blocks DΘ
[i,i] =

[
0 −θi
θi 0

]
and EΘ

[i,i] =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
for i = 1, · · · ,m.

20



2.2.3 Related Work

Theoretically speaking, the matrix exponential map exp : Skewn → SOn is also the exponential

map induced by the Lie group structure of SOn. This observation makes some general results in

the Lie group context applicable to this dissertation. In particular, [31][Prop. 7, Sec. 1.2] gives the

formula of the differential of the exponential map exp induced by Lie group G

D expX : TeG → Texp(X)G

Y 7→ exp(X)
1− exp(− adX)

adX
Y

where the e ∈ G is the identity element of the Lie group, the adX is the adjoint action on G and

the operator 1−exp(− adX)
adX

is given by the power series

1− exp(− adX)

adX
=
∞∑
k=0

(−1)k

(k + 1)!
(adX)k.

Furthermore, the invertibility of D expX can be characterized by the eigenvalues of the adjoint action

adX . Therefore, the work in this dissertation can be viewed as finding the respective explicit forms

specific to the special orthogonal group. It is worth noting that such explicit forms for the general

linear group have been studied, in which case the adjoint action is given by adX(Y ) = XY − Y X

with its eigenvalues being equal to the eigenvalues of X. Although the special orthogonal group

can be viewed as a subgroup of the general linear group, some results cannot be blindly applied to

the special orthogonal group as shown in this dissertation, which makes the derivation presented

in this work necessary.

Computationally speaking, there have been many discussions and studies on the differential of

the matrix exponential. In [28][Algorithm 4.5] Najfeld and Havel give a formula of the differential

at diagonalizable foot. In [26][Algorithm 7.4] Al-mohy and Higham give the formula of the

differential at general feet. In [27][Algorithm 6.1] Al-mohy and et al. give the formula of the

inverse action at a foot within the principal branch. However, there is an absence of work specific

to the skew symmetric matrices and the special orthogonal matrices. The invertibility condition

of D expS : Skewn → TQSOn is still not completely understood. Not to mention that there are

many structures in the skew symmetry and special orthogonality unexploited which have important

computational implications. The work in this dissertation is in hope of filling some of these gaps

so that the theoretical geometric analysis on SOn may have stronger consequences in applications.
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2.3 Problem Statement

Before giving any details of the formula D expS : Skewn → TQSOn at S with Q = exp(S), it is

important to recall the characterization of TQSOn

TQSOn = {QΩ : Ω ∈ Skewn} .

In most of the application scenarios, especially in the context of differentiable manifolds, it is the

skew symmetric Ω ∈ Skewn in ∆Q = QΩ ∈ TQSOn that participates in various computations

and analyses rather than ∆Q itself. For example, suppose a curve on SOn γ(t) ∈ SOn, ∀t ∈ [0, 1]

emanating from γ(0) = Q along with d
dtγ(t)

∣∣
t=t=0

= QΩ is required. With Ω ∈ Skewn, it

is easy to construct γ(t) := Q exp(tΩ). Although it is possible to construct another curve via

∆Q = QΩ as γ(t) := ProjSOn
(Q + t∆Q) where ProjSOn

is some (local) projector onto SOn, e.g.,

the polar projector X 7→ Q where QR = X is a polar decomposition, such a curve does not

share the rich geometry or convenient properties of exp(tΩ). Therefore, the D expS : Skewn →

TQSOn investigated in this work emphasizes the skew symmetric characterization Ω of QΩ = ∆Q =

D expS [∆S ] ∈ TQSOn as the LS defined below.

Definition 2.3.1. For any given S ∈ Skewn and the respective Q = exp(S) ∈ SOn, the linear

map LS : Skewn → Skewn is defined as

LS(∆S) := QT (D expS [∆S ]) (2.8)

such that D expS [∆S ] = QLS(∆S).

This section derives the symbolic formulae for computing the LS and its (pseudo) inverse based

on the existing formula for a more general case as reviewed in Lemma 2.3.2.

Lemma 2.3.2. [28][Theorem 4.5] For any diagonalizable X = ZΛZ−1 ∈ Cn×n, the differential

D expX [∆] along ∆ ∈ Cn×n is given by

D expX [∆] = Z
(
(Z−1∆Z)�Ψ

)
Z−1, (2.9)

where � is the Hadamard product that performs entry-wise multiplication and the symmetric

matrix Ψ has the entries

ψij = ψji =


eλj − eλi
λj − λi

λi 6= λj

eλi λi = λj

. (2.10)
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Any skew symmetric matrix S is diagonalizable which makes (2.9) applicable. It follows imme-

diately that the desired LS can be written for the diagonalizable foot X = S ∈ Skewn as

LX(∆) = exp(X)−1 D expX [∆]

=
(
Z exp(−Λ)Z−1

) (
Z
(
(Z−1∆Z)� Φ

)
Z−1

)
= Z

(
(Z−1∆Z)� (exp(−Λ)Ψ)

)
Z−1

= Z
(
(Z−1∆Z)� Φ

)
Z−1

(2.11)

where Φ = exp(−Λ)Ψ has the following entries

φij =


eλj−λi − 1

λj − λi
λi 6= λj

1 λi = λj

.

Furthermore, the relationship between the spectral decomposition PΛPH and the Schur decompo-

sition RDRT of S in (2.4) yields LS in the form

LS(∆S) = P
(
(PH∆SP )� Φ

)
PH

= RU
(
(UH(R∆SR

T)U)� Φ
)
UHRT

Notice that the Schur vectors R only act as as a change of variables in the domain and range of

LS in the expression above. For ∆S ,∆Q ∈ Skewn with ∆Q = LS(∆S), let M := RT∆SR and

N := RT∆QR be the skew symmetric matrices computed by ∆S ,∆Q and R, such that

LS(∆S) = RU
(
(UH(R∆SR

T)U)� Φ
)
UHRT

⇐⇒ N = U
(
(UHMU)� Φ

)
UH.

Observe that the second linear map M 7→ N only depends on the eigenvalues of S which are

completely determined by its angles. It is natural to further decompose the linear map LS into

compositions of linear actions as follows.

Definition 2.3.3. For any S ∈ Skewn with the Schur vectors R, the angles Θ and the Q = exp(S),

denote the linear operator BR for the characterization under the base R as

BR : Skewn → Skewn

∆ 7→ R∆RT
(2.12)

The respective core linear operator CΘ is given by

CΘ : Skewn → Skewn

M 7→ U
(
(UHMU)� Φ

)
UH

(2.13)
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such that

LS = BR ◦ CΘ ◦ B−1
R .

Here, the eigenvalues Λ are determined by the angles Θ as in (2.4) and B−1
R (∆) = RT∆R.

For any S ∈ Skewn with the Schur vectors R, the angles Θ and the Q = exp(S), this section

solves the following problems.

1. Derive an efficient formula for computing the linear action LS : Skewn → Skewn.

2. Investigate the invertibility of D expS , which is equivalent to the invertibility of CΘ.

3. Derive an efficient formula for computing the action of L−1
S in the invertible case.

4. Define a pseudoinverse action L†S with an efficient formula in the non-invertible case.

2.4 Differential Formula

The complexity of computing LS in the form of (2.11) is dominated by the 4 matrix multiplica-

tions with the complex P and PH. For LS = BR ◦ CΘ ◦ B−1
R , the 4 complex matrix multiplications

are replaced by the 4 real matrix multiplications and the core map CΘ only involves complex ma-

trix multiplications with the block diagonal U and the entry-wise Hadamard product. This means

the complexity of BR ◦ CΘ ◦ B−1
R has already been reduced to 1/4 compared to (2.11). However,

it remains beneficial to further exploit the formula of CΘ for faster computation as well as more

insight into its invertibility.

Consider the n = 5 case as an example to investigate CΘ. Let S ∈ Skew5 be a skew symmetric

5× 5 matrix with the Schur vectors R, angles Θ = {θ1, θ2}, eigenvectors P = RU and eigenvalues

{−θ1i, θ1i,−θ2i, θ2i, 0}. Then, for any M = B−1
R (∆S) ∈ Skewn, the block diagonal structure in U

yields the N = CΘ(M) written as

N = U
((
UTMU

)
� Φ

)
UH

=

U2

(
UH

2 M[1,1]U2 � Φ[1,1]

)
UH U2

(
UH

2 M[1,2]U2 � Φ[1,2]

)
UH

2 U2(UH
2 M[1,3] � Φ[1,3])

U2

(
UH

2 M[2,1]U2 � Φ[2,1]

)
UH

2 U2

(
UH

2 M[2,2]U2 � Φ[2,2]

)
UH

2 U2(UH
2 M[1,3] � Φ[2,3])

(M[3,1]U2 � Φ[3,1])U
H
2 (M[3,2]U2 � Φ[3,2])U

H
2 M[3,3]


where the M[i,j] denotes blocks of sizes 2× 2, 1× 2 and 2× 1 as given in Definition 2.2.1.

In the expression above, there are only 2 nontrivial linear actions, the

U2(UH
2 M[i,j]U2 ◦ Φ[i,j])U

H
2 ,∀j ≤ i ≤ m
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acting on the [i, j]-th 2× 2 block and the

(M[m+1,j]U2 � Φ[m+1,j])U
H
2 ,∀j ≤ m

acting on the [m + 1, j]-th 1 × 2 block. These linear actions are independent of each other and

they act in an in-place fashion, with M[i,j] computing N[i,j] respectively. Note that the skew

symmetry in N and M saves the computation of the [i, j]-th 2 × 2 blocks with i < j and the

U2(UH
2 M[i,m+1] � Φ[i,m+1]) with ∀i ≤ m. These linear actions are given in the following lemma via

some simple linear algebraic manipulations.

Lemma 2.4.1. For any x = θi ∈ R that determines the (2i − 1)-th and the (2i)-th eigenvalues

−λii and λii and any y = θj ∈ R that determines the (2j − 1)-th and the (2j)-th eigenvalues −λji

and λji of a skew symmetric matrix S, the linear action on [i, j]-th 2× 2 block

N[i,j] = U2

(
UH

2 M[i,j]U2 ◦ Φ
)
UH

2

can be written as a matrix Nx,y ∈ R4×4 in the forms of

Nx,y :=
1

2


a+ c −b− d b− d a− c
b+ d a+ c −a+ c b− d
−b+ d −a+ c a+ c −b− d
a− c −b+ d b+ d a+ c

 ,


a =

sin(x− y)

x− y
, b =

cos(x− y)− 1

x− y

c =
sin(x+ y)

x+ y
, d =

cos(x+ y)− 1

x+ y

(2.14)

that acts on the vectorized system as Nθi,θj · vec(M[i,j]) = vec(N[i,j]),∀i, j ≤ m. In the limits when

(1) x = y 6= 0, a = 1 and b = 0 or (2) x = y = 0, then a = c = 1 and b = d = 0.

Proof. For the 2× 2 block [i, j], i, j ≤ m associated with eigenvalues −θii, θii,−θji and θji, there is

Φ[i,j] =

 ei(−θj+θi)−1
i(−θj+θi)

ei(θj+θi)−1
i(θj+θi)

ei(−θj−θi)−1
i(−θj−θi)

ei(θj−θi)−1
i(θj−θi)

. Denote a, b, c and d as

Φ[i,j] :=

[
a− ib c− id
c+ id a+ ib

]
with


a =

sin(θi − θj)
θi − θj

b =
cos(θi − θj)− 1

θi − θj

c =
sin(θi + θj)

θi + θj
d =

cos(θi + θj)− 1

θi + θj

.

Denote the real block M[i,j] as

[
ξ1 ξ3

ξ2 ξ4

]
and denote the complex block

UH
2 M[i,j]U =

1

2

[
η1 − iη4 η2 − iη3

η2 + iη3 η1 + iη4

]
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to obtain the relation between ξi’s and ηi’s as
η1

η2

η3

η4

 =


1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0



ξ1

ξ2

ξ3

ξ4

 .
Further writes U2

(
UH

2 M[i,j]U2 � Φ[i,j]

)
UH

2 as expression of ηi’s as

G
(
GHM[i,j]G� Φ[i,j]

)
GH =

1

2

[
η1a+ η2c− η3d− η4b −η1b+ η2d+ η3c− η4a
η1b+ η2d+ η3c+ η4a η1a− η2c+ η3d− η4b

]

⇒vec
(
N[i,j]

)
=

1

2


a c −d −b
b d c a
−b d c −a
a −c d −b

 η =
1

2


a+ c −b− d b− d a− c
b+ d a+ c −a+ c b− d
−b+ d −a+ c a+ c −b− d
a− c −b+ d b+ d a+ c

 ξ.

Lemma 2.4.2. For any x = θj ∈ R that determines the (2j − 1)-th and the (2j)-th eigenvalues

−λji and λji of a skew symmetric matrix S, the linear action on [m+ 1, j]-th 1× 2 block

N[m+1,j] = (M[m+1,j]U2 � Φ[m+1,j])U
H
2 ,∀j ≤ m

can be written as a matrix Nx ∈ R2×2 in the forms of

Lx :=

[
e f
−f e

]
with


e =

sin(x)

x

f =
cos(x)− 1

x

(2.15)

that acts on the vectorized system as Nθj · vec(M[m+1,j]) = vec(N[m+1,j]), ∀j ≤ m. In the limits

when x = 0, then e = 1 and f = 0.

Proof. The proof is essentially the same with the proof of Lemma 2.4.1 and therefore details are

omitted. The important steps for the 1× 2 case are

Φ[3,j] =
[

exp(−iθj)−1
−iθj

exp(iθj)−1
iθj

]
=
[
e+ if e− if

]
[
ξ1 ξ2

]
U2 =

√
2

2

[
ξ1 − iξ2 ξ1 + iξ2

]
[
ξ1 ξ2

]
U2 ◦ Φ[m+1,j] =

√
2

2

[
eξ1 + fξ2 + i(fξ1 − eξ2) eξ1 + fξ2 + i(eξ2 − fξ1)

]
([
ξ1 ξ2

]
U2 ◦ Φ[3,j]

)
UH

2 =
[
eξ1 + fξ2 −fξ1 + eξ2

]
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Theorem 2.4.3. For any skew symmetric S ∈ Skewn with the Schur vectors R and the angles

Θ = {θ1, · · · , θm} where n = 2m or n = 2m + 1, the core action CΘ(M) = N evaluated at

M = BR(∆S), ∀∆S ∈ Skewn assembles (2.14) on 2× 2 blocks asM[1,1] · · · M[1,m]
...

. . .
...

M[m,1] · · · M[m,m]

 7→
N[1,1] · · · N[1,m]

...
. . .

...
N[m,1] · · · N[m,m]


vec(M[1,1]) · · · vec(M[1,m])

...
. . .

...
vec(M[m,1]) · · · vec(M[m,m])

 7→
 Nθ1,θ1 · vec(M[1,1]) · · · Nθ1,θm · vec(M[1,m])

...
. . .

...
Nθm,θ1 · vec(M[m,1]) · · · Nθm,θm · vec(M[m,m])


and the additional (2.15) on 1× 2 blocks when n = 2m+ 1 as vec(N[m+1,j]) = Nθj (vec(M[m+1,j]))

and N[j,m+1] = −NT
[m+1,j], ∀j ≤ m.

Proof. The Lemma 2.4.1 and Lemma 2.4.2 give the constructive proof of Theorem 2.4.3.

When the matrix M and N are vectorized in the order of

blk-vec(X) := vec(vec(X[1,1]), vec(X[2,1]), . . . , vec(X[m,m]), . . .),

the linear map CΘ : N 7→ M can be written as the block diagonal matrix consists of Nθi,θj and

the additional Nθj , ∀i, j ≤ m as CΘ := diag(Nθ1,θ1 , . . .Nθm,θm , . . .), such that CΘ blk-vec(M) =

blk-vec(N).

Note that the a, b, c, d, e and f are well defined in all cases due to the nature of the function

sin(z)/z and (cos(z)− 1)/z in the limit of z → 0 as illustrated in Figure 2.1.

2.5 Inverse of the Differential Formula

This section investigates the invertibility of D expS : Skewn → TQSOn which is equivalent

to the invertibility of LS : Skewn → Skewn as D expS [∆S ] = QLS(∆S) where Q ∈ SOn is

always invertible. The invertibility of LS : Skewn → Skewn is equivalent to the invertibility

of CΘ : Skewn → Skewn as LS(∆) = BR ◦ CΘ ◦ B−1
R where BR : Skewn → Skewn is always

invertible. According to Theorem 2.4.3, the core map CΘ is a collection of independent smaller

linear systems Nx,y ∈ R4×4 and the additional Nx ∈ R2×2 where x, y take values from the angles

Θ of S. Therefore, this section discusses the invertibilities of Nx,y and Nx.

A natural approach to obtain an invertible CΘ is to ask if all Nx,y, and the additional Nx when

n = 2m + 1, ∀x, y ∈ Θ are invertible. According to the symbolic form of these matrices given in

(2.14) and (2.15), their symbolic inverse form are available as follows.
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Figure 2.1: Illustration of sin(z)/z and (cos(z)− 1)/z.

Proposition 2.5.1. The symbolic inverse formulae, if exist, of the linear maps Nx,y defined in

(2.16) and Nx defined in (2.17) are in the form of

N−1
x,y =

1

2


a′ + c′ b′ + d′ −b′ + d′ a′ − c′
−b′ − d′ a′ + c′ −a′ + c′ −b′ + d′

b′ − d′ −a′ + c′ a′ + c′ b′ + d′

a′ − c′ b′ − d′ −b′ − d′ a′ + c′

with


a′ =

a

a2 + b2
, b′ =

b

a2 + b2

c′ =
c

c2 + d2
, d′ =

d

c2 + d2

(2.16)

when a2 + b2 6= 0 and c2 + d2 6= 0,

N−1
x =

[
e′ −f ′
f ′ e′

]
with


e′ =

e

e2 + f2

f ′ =
f

e2 + f2

(2.17)

when e2 + f2 6= 0.

Proof. Proof of verifying the symbolic inverse is obtained by direct computation of the matrix

multiplications Nx,yN−1
x,y = I4 and NxN−1

x = I2. The algebra is omitted.
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Notice that the following trigonometric identities

sin2(z)

z2
+

(cos(z)− 1)2

z2
=

sin2(z) + cos2(z) + 2 cos(z) + 1

z2
=

2− 2 cos(z)

z2

sin(z)

z

/
2− 2 cos(z)

z2
=
z

2
· sin(z)

1− cos(z)
=
z

2
· 2 sin(z/2) cos(z/2)

2 sin(z/2)2
=
z

2
· cot

(z
2

)
1− cos(z)

z

/
2− 2 cos(z)

z2
=
z

2

, ∀z ∈ R.

further simplify the expressions of a′, b′, c′, d′, e′ and f ′ as

a′ =
θi − θj

2
· cot

(
θi − θj

2

)
b′ =

θi − θj
2

c′ =
θi + θj

2
· cot

(
θi + θj

2

)
d′ =

θi + θj
2

e′ =
θi
2
· cot

(
θi
2

)
f ′ =

θi
2

, (2.18)

which introduces the following sufficient condition of the invertibility of CΘ.

Corollary 2.5.2. The core map CΘ : Skewn → Skewn is invertible if for any two angles ∀θi, θj ∈

Θ, including any angle repeated itself, there is

θi ± θj 6= 2kπ,∀i, j ≤ m, k = ±1,±2, . . .

θi 6= 2kπ,∀i ≤ m, k = ±1,±2, . . . additional for n = 2m+ 1.
(2.19)

Proof. Under this condition (2.19), the simplified (2.18) are always well defined, which yields the

invertibility of all Lθi,θj and the additional Lθi . Note that the θi± θj = 0 case does not violate the

condition, as z cot(z) is not define only at z = kπ, k = ±1, . . ..

Note that Corollary 2.5.2 is consistent with the classic result of differentiating the exponential

map on the general linear group

GLn := {X ∈ Rn×n : det(X) 6= 0},

c.f. [31][Prop. 7, Sec. 1.2], stating that D expA : Rn×n → TQGLn = Rn×n is invertible if and only

if for any 2 eigenvalues λi, λj ,∀1 ≤ i, j ≤ n, there is λi − λj 6= 2kπi, k = ±1, . . .m where i =
√
−1.

Indeed for a skew symmetric matrix A with the angles Θ, the eigenvalues are either ±θii, 1 ≤ i ≤ m

or 0. Then, θi ± θj = 2kπ is equivalent to iθi ± iθj = 2kπi. For the differential

D expS : Rn×n → TQGLn,∆S 7→ Q · BR ◦ CΘ ◦ B−1
R (∆S),

notice that B−1
R : Rn×n → Rn×n, X 7→ RTXR is surjective, which make Rn×n the domain of CΘ in

D expS : Rn×n → TQGLn. Therefore, the maps Nθi,θj and the additional Nθi are acting on free
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variable vec(M[i,j]) and the additional vec(M[n,j]) and vec(vec(M[i,n])). Therefore, any of N ’s being

rank deficient is equivalent to the action CΘ ◦ B−1
R : Rn×n → Rn×n being rank deficient, which is

equivalent to D expS : Rn×n → TQGLn not being invertible.

However, (2.19) is not necessary for D expS : Skewn → TQSOn to be invertible, as there

are extra constraints on the domain of CΘ introduced by the skew symmetry, which is preserved

under B−1
R : Skewn → Skewn. For the upper or lower 2 × 2 blocks M[i,j], i 6= j or the additional

M[i,m+1] and M[m+1,j], skew symmetry relates M[i,j] = −MT
[j,i], the entries within each of these

blocks remain unconstrained in the respective small map and by the same argument given on

D expS : Rn×n → TQGLn, D expS : Skewn → TQSOn is not invertible if the following condition

fails.
θi ± θj 6= 2kπ,∀i 6= j ≤ m, k = ±1,±2, . . .

θi 6= 2kπ,∀i ≤ m, k = ±1,±2, . . . additional for n = 2m+ 1.

For the diagonal block, the domain M[i,i] is no longer a free matrix in R2×2 as the skew symmetry

in M[i,i] = −MT
[i,i] =

[
0 −x
x 0

]
leaves only 1 degree of freedom and the repeated angles yield a = 0,

b = 1 in (2.14) as θi − θi = 0. Together, the linear action of Lθi,θi acting on the diagonal block

M[i,i] has the special form of

Nθi,θi(vec(M[i,i])) =
1

2


1 + c −d −d 1− c
d 1− c −1− c −d
d −1 + c 1 + c −d

1− c d d 1 + c




0
x
−x
0

 =


0
x
−x
0

 ,∀x, θi ∈ R,

which is an identity map on M[i,i]. Such an identity map is always invertible and therefore the i = j

case on the sufficient condition (2.19) can be dropped. The following Theorem 2.5.3 summarizes

the discussion above as a stronger necessary and sufficient condition of the invertibility in the more

restricted linear map D expS : Skewn → TQSOn.

Theorem 2.5.3. The differential D expS : Skewn → TQSOn of the restricted matrix exponential

exp : Skewn → SOn at S ∈ Skewn, with the angles Θ and its exponential Q = exp(S), is invertible

if and only if
θi + θj 6= 2kπ,∀i < j ≤ m, k ∈ Z \ {0}

θi 6= 2kπ,∀i ≤ m, k ∈ Z \ {0} additional for n = 2m+ 1.
(2.20)

Proof. The previous argument completes the sufficiency of (2.20).
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To see the necessity of (2.20), suppose θi + θj = 2kπ, i 6= j, k 6= 0, there is c = 0 and d = 0 and

a, b are undetermined, i.e.,

Lθi,θj =
1

2


a −b b a
b a −a b
−b −a a −b
a −b b a

 .
Let M[i,j] =

[
1 1
1 −1

]
, M[j,i] = −MT

[i,j] and 0 elsewhere in M . There is

vec(N[i,j]) = Nθi,θj vec(M[i,j]) = 0, ∀a, b ∈ R.

Corollary 2.5.4. The conjugate locus of the identity matrix In in the tangent space TInSOn =

Skewn is the set of skew symmetric matrices with the angles not satisfying (2.20), i.e.,

ConjIn :=

S ∈ Skewn :
∃i 6= j, k 6= 0, s.t. θi ± θj = 2kπ

or ∃i, k 6= 0, s.t. θi = 2kπ for n = 2m+ 1

 (2.21)

2.6 Pseudoinverse of the Differential Formula

This section investigates the behavior of the rank-deficient differential at S ∈ S− and it specifies

a pseudoinverse of this rank-deficient linear map. Since the action of Nθi,θi on diagonal blocks is

known to be the identity action, this section only considers Nθi,θj acting on 4 free variables from

M[i,j] and the additional Nθi acting on 2 free variables from M[m+1,j] with i 6= j ≤ m.

Consider the most extreme case where θi + θj = 2kπ, θi − θj = 2lπ for some integer k, l 6= 0. In

this case, the a, b, c and d in (2.14) are all 0 and Nθi,θj degenerates to a trivial map R4 3 x 7→ 0

with rank 0. Such a trivial map has no meaningful pseudoinverse. Similarly, if θi = 2kπ with some

integer k 6= 0, Nθi degenerates to a trivial map to 0 and it has no meaningful pseudoinverse either.

Then, for θi + θj = 2kπ for integer k 6= 0 and θi − θj 6= 2lπ,∀l = ±1,±2, · · · , there is c = 0,

d = 0 and a2 + b2 6= 0. In this case, the action of Lθi,θj degenerates to

Nθi,θj


ξ1

ξ2

ξ3

ξ4

 =
1

2


a −b b a
b a −a b
−b −a a −b
a −b b a



ξ1

ξ2

ξ3

ξ4

 =
1

2


a(ξ1 + ξ4)− b(ξ2 − ξ3)
b(ξ1 + ξ4) + a(ξ2 − ξ3)
−b(ξ1 + ξ4)− a(ξ2 − ξ3)
a(ξ1 + ξ4)− b(ξ2 − ξ3)

 :=


η1

η2

η3

η4

 .
Notice that the following equations can be solved as

η1 = η4, ξ1 + ξ4 = 2 · aη1 + bη2

a2 + b2

η2 = −η3, ξ2 − ξ3 = 2 · aη2 − bη1

a2 + b2

with η = ProjR(Nθi,θj )



y1

y2

y3

y4


 =

1

2


y1 + y4

y2 − y3

y3 − y2

y1 + y4


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where y ∈ R4 is an arbitrary vector, R(Lθi,θj ) ⊂ R4 denotes the range of Nθi,θj and Proj is the

orthogonal projector on R4.

As expected, there are still 2 degrees of freedom available for ξ with Nθi,θjξ = η for a given

η. The extra constraints on ξ imposed by ξ1 = ξ4 and ξ2 = −ξ3 are then introduced to specify a

particular pseudoinverse N †θi,θj for η ∈ R(Nθi,θj ) such that

N †θi,θj


η1

η2

−η2

η1

 =
1

a2 + b2


aη1 + bη2

aη2 − bη1

bη1 − aη2

aη1 + bη2


Note that such a choice is not unique but it is chosen as the smallest solution in the preimage on

R4 that satisfies Nθi,θjξ = η as stated later in Proposition 2.6.2.

Similar analysis derives the formulae for θi − θj = 2lπ for some integer l 6= 0 and θi + θj 6=

2kπ, ∀k ∈ ±1, . . . as
η1 = −η4, ξ1 − ξ4 = 2 · cη1 + dη2

c2 + d2

η2 = η3, ξ2 + ξ3 = 2 · cη2 − dη1

c2 + d2

with η = ProjR(Nθi,θj )



y1

y2

y3

y4


 =

1

2


y1 − y4

y2 + y3

y2 + y3

y4 − y1

 ,
furthermore, under the extra constraints ξ1 = −ξ4 and ξ2 = ξ3 imposed on ξ, a pseudoinverse is

given by

N †θi,θj ·


η1

η2

η2

−η1

 :=
1

c2 + d2


cη1 + dη2

cη2 − dη1

cη2 − dη1

−cη1 − dη2

 .
The following Definition 2.6.1 collects the formulae derived above and defines a pseudoinverse of

a rank deficient CΘ.

Definition 2.6.1. For a rank deficient small system Nθi with θi = 2kπ for some integer k 6= 0, its

trivial pseudoinverse is chosen as

N †θi :=

[
0 0
0 0

]
For a rank deficient small system Nθi,θj , the N †θi,θj , i 6= j denotes the pseudoinverse as the linear

maps:

1. If ∃ integers k, l 6= 0 s.t., θi + θj = 2kπ, θi − θj = 2lπ, then

N †θi,θj := 0 ∈ R4×4.
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2. If ∃ an integer k 6= 0 and ∀ integers l 6= 0, s.t. θi + θj = 2kπ, θi − θj 6= 2lπ, then

N †θi,θj :=
1

2


a′ b′ −b′ a′

−b′ a′ −a′ −b′
b′ −a′ a′ b′

a′ b′ −b′ a′

 . (2.22)

3. If ∃ an integer l 6= 0 and ∀ integers k 6= 0, s.t. θi + θj 6= 2kπ, θi − θj = 2lπ, then

N †θi,θj :=
1

2


c′ d′ d′ −c′
−d′ c′ c′ d′

−d′ c′ c′ −d′
−c′ −d′ −d′ c′

 . (2.23)

The C†Θ : Skewn → Skewn denotes the pseudoinverse of CΘ : Skewn → Skewn that consists of

N †θi,θj acting on the vectorized off-diagonal blocks N[i,j], i 6= j, the identity map I4 acting on the

vectorized diagonal blocks N[i,i] and the additional C†Θ, when S ∈ S−. The C†Θ degenerates to C−1
Θ

when S ∈ S+, i.e., when CΘ is invertible. The pseudoinverse operators of LS : Skewn → Skewn

and D expS : Skewn → TQSOn are given by L†S := BR ◦C†Θ ◦B
−1
R and (D expS)† [Q∆Q] := L†S(∆Q),

respectively.

Notice that such a pseudoinverse operator is consistent with (2.16) by setting a′, b′ = 0 and/or

c′, d′ = 0 and with (2.17) by setting e′, f ′ = 0.

Also notice that the nontrivial small pseudoinverse consists of the projector onto the range space

of the respective forward action and the explicit inverse formulae derived above. The verification of

CΘ being a pseudoinverse by writing out CΘ ◦ C†Θ ◦ CΘ = CΘ is omitted for simplicity. As mentioned

in the construction, such a pseudoinverse is not unique and this particular C†Θ is chosen due to the

following extra properties.

Proposition 2.6.2. For the pseudoinverse C†Θ given in Definition 2.6.1, the following statements

hold.

1. For any N ∈ Skewn that may or may not be in the range space R(CΘ), the pseudoinverse

finds the nearest point to N on R(CΘ) as

CΘ ◦ C†Θ(N) := N∗ = arg min
Y ∈R(CΘ)

‖Y −N‖2F.

2. For any N ∈ R(CΘ), the pseudoinverse finds the smallest solution as

C†Θ(N) := M∗ = arg min
CΘ(X)=N

‖X‖2F.
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Proof. Since the small systems are independent of each other, it suffices to prove the similar state-

ments about N †θi,θj acting on N[i,j] and the additional N †θj acting on N[m+1,j]. When the pseudoin-

verse is trivial, by construction there is R(Nθi,θj ) = {0 ∈ R4} or R(Nθi) = {0 ∈ R2}, which yields

the statements.

For the nontrivial pseudoinverse that only happens on the 4×4 system N †θi,θj acting on N[i,j], i 6=

j, without loss of generality, consider the θi+θj = 2kπ case. The θi−θj = 2kπ case can be similarly

proved by interchanging the plus and minus between η1 + η4 and η2 − η3. The pseudoinverse by

construction satisfies

Nθi,θjN
†
θi,θj



η1

η2

η3

η4


 =

1

2


η1 + η4

η2 − η3

η3 − η2

η1 + η4

 ,
which is an orthogonal projection from y = vec(N[i,j]) to the range space characterized as

R(Nθi,θj ) = {η ∈ R4 : η1 = η4, η2 = −η3}.

The orthogonal projection implies ‖Nθi,θj ◦ N
†
θi,θj

(
vec(N[i,j])

)
− vec(N[i,j])‖2 is minimized, where

‖ ·‖2 denotes the vector 2 norm. It only remains to notice that the vector-2 norm is the same as the

matrix Frobenius norm in the form of ‖ vec(N[i,j])‖2 = ‖N[i,j]‖F. The proof of the first statement

follows immediately.

For the second statement, without loss of generality, consider the θi + θj = 2kπ case. Notice

that the preimage of Nθi,θj denoted as {ξ ∈ R4 : Nθi,θj = η} is given in the form of ξ1 + ξ4 = 2C1

and ξ2− ξ3 = 2C2 where C1 and C2 are constants determined by c, d and y. The second statement

follows from the classic results

arg min
ξ1+ξ4=2C1

(
ξ2

1 + ξ2
4

)
= (C1, C1)

arg min
ξ2−ξ3=2C2

(
ξ2

2 + ξ2
3

)
= (C2,−C2).

2.7 Routines and Implementations

This section elaborates the algorithmic and implementation details of the derived formulae.

Recall that the proposed new formulae are derived from the complex formulae (2.9) by exploiting

the skew symmetry and avoiding complex arithmetic. For simplicity, the new formulae are denoted

as “real” formulae while the formulae (2.9) are denoted as the “complex” formulae. For the
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formulae proposed in [26] and [27], they both utilize the Padé series of the matrix exponential for

the computation and therefore they are denoted as the “Padé” formulae in this section.

These formulae apply to different range of matrices S in D expS [∆S ] = Q∆Q where Q = exp(S)

and the following table presents a summary. Note that the row in “forward” means the computation

∆S 7→ ∆Q while the row in “backward” means the computation ∆Q 7→ ∆S .

Table 2.1: The feasible conditions of the root S in computing ∆S ↔ ∆Q

Condition Real Complex Padé

Forward Skew Symmetric Diagonalizable, [28] All Complex Matrix , [26]

Backward Skew Symmetric Diagonalizable, [28] Within Principal Branch, [27]

2.7.1 Three-Stage Evaluation

First of all, the computation of the formulae derived in this chapter all share three similar

stages. They all require some intermediate results typically computed during the matrix expo-

nential S 7→ exp(S). These computed objects are then used to further compute the necessary

parameters in the formulae. The final stage is to apply the formulae to an input variable. This

3-stage procedure applies to other existing formulae, not specific to the skew symmetric and special

orthogonal matrices. These stages are denoted as “PreEval-Param-Action”. In the PreEval stage,

the routine gets objects that are either available from previous computations or recomputed from

the scratch. In the Param stage, all parameters in the formula other than the input variable are

computed. The Action stage computes the action of the formula provided with an input ∆.

The stages like the PreEval and the Param are considered as a single “Preprocessing” stage

in a typical algorithmic analysis. However, it is necessary in this case to distinguish them for

the following reasons. Firstly, different formulae require different intermediate results that are

computed in different ways of computing S 7→ exp(S) and these objects do not convert easily from

one to another. Secondly, the contribution of the PreEval stage to the overall complexity may vary

from a very significant portion, if it is computed from the scratch, to nothing at all, if it reuses

the previous computation appropriately. Finally, the contribution of the Param stage to the overall

complexity is usually negligible. In conclusion, having PreEval and Param split provides important

details in usage of these formulae.

In the PreEval, the formulae specific to skew symmetric and special orthogonal matrices require

the Schur decomposition of the skew symmetric matrix, the formulae in [28] and [27] require the
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spectral decomposition of the skew symmetric matrix and the formula in [26] requires the interme-

diate matrix products in the scaling and squaring method [18]. Note that the algorithmic details in

various ways of computing S 7→ exp(S) is beyond the scope of this dissertation. A brief discussion

about this topic is given in later chapter on important primitives. Although the complexity of the

matrix factorization significantly varies by the structure of the matrix being factored, this section

no longer dive into details. Instead of elaborating all possible cases in the matrix factorization,

this dissertation refers to the standard library of each formula that can handle most cases in a

reasonable range with consistent complexity, which is discussed below.

2.7.2 Refinements on Existing Formulae

To demonstrate a comprehensive and reliable analysis of the complexity of the proposed new

formulae specific to skew symmetric matrices, it is necessary to introduce appropriate refinements

to the existing formulae that are designed for more general scenarios. These refinements should

exploit part of the structure in the skew symmetry and accelerate the existing formulae so that

the comparison is fair. Secondly, these refinements are expected to help narrowing down the vary

range of complexity as the formulae are evaluated in a more targeted set of matrices.

The existing formulae proposed in [28], [26] and [27] are assumed to be evaluated on a normal

matrix S, i.e., SST − STS = 0, i.e., S is unitarily diagonalizable with the spectral decomposition

ZΛZH where ZH is the Hermitian transpose of Z. It is clear that normal matrices include skew

symmetric matrices S but not vice versa. With the additional normal structure, the formulae in

[28] are free from computing the inverse of the eigenvectors of S as normal matrix has unitary

eigenvectors and their inverse is given by the simple Hermitian transpose. For the formula in [27],

the normal structure reduces the repeated solves on block upper triangular matrices into solves

on block diagonal matrices. For the formula in [26], the differential of the matrix exponential

is expressed as the linear combination of a series of dense matrix products, in which the normal

structure cannot speed up the computation. Fortunately, this formula is already fast enough for

the experiments.

Based on the discussion above, the PreEval stage of the formulae executes the following compu-

tations. The real formulae perform the SYTRD-like method proposed for the Schur decomposition of

the skew symmetric matrices proposed in [24]. The complex formulae and Padé perform the HETRD

in CLAPACK for the spectral decomposition of the Hermitian matrices. The Padé formula performs

the dense matrix multiplications for the matrix products in the scaling and squaring method.
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2.7.3 Pseudo Codes

Algorithm 1: Linear Operators of D expS and D exp−1
S

Input: Set of angles Θ
Output: Parameters for LΘ stored as vectors

1 for j = 1, · · · ,m do

2 Lj :=
[
aj bj

]T
; // Equation 2.16

3 L†j :=
[
a′j b′j

]T
; // Equation 2.17

4 for i = j + 1, · · · ,m do

5 Lij :=
[
aij + cij aij − cij bij + dij bij − dij

]T
; // Equation 2.14

6 L†ij :=
[
a′ij + c′ij a′ij − c′ij b′ij + d′ij b′ij − d′ij

]T
; // Equation 2.15

7 Return Lij , L
†
ij , Li, L

†
j for i > j = 1, 2, · · · ,m;

Algorithm 2: Action of the Directional Derivative D expS or its Inverse.

Input: Real Schur vectors W of S with linear operators from Algorithm 1 and ∆.
Output: ∆Q from D expS [∆] = exp(S)∆Q or ∆S from D expS [∆] = exp(S)∆Q.

1 X ←WT∆W ;
2 for j = 1, · · · ,m do
3 for i = j + 1, · · · ,m do

4 Y[i,j] ← L[i,j](X[i,j]) or Y[i,j] ← L−1
[i,j](X[i,j]) ; // Equation 2.14,2.16

5 Y[j,i] ← −Y T
[i,j]; // Skew-symmetry

6 Y[j,j] ← X[j,j];

7 if n = 2m+ 1 then

8 Y[m,j] ← L[m,j](X[m,j]) or Y[m,j] ← L−1
[m,j](X[m,j]) ; // Equation 2.15,2.17

9 Y[j,m] ← −Y T
[m,j]; // Skew-symmetry

10 Return WYWT;

2.8 Complexity Analyses and Numerical Results

This part presents the analysis of operation counts in the proposed new formulae and the existing

formulae in [28], [26] and [27] and numerical experiments that validate the complexity analyses.

2.8.1 Complexity

Real formulae for skew symmetric S: A real Schur decomposition of S is required for

D expS [·] and D (expS)−1
Q [·] which takes approximately 25n3 floating point operations (FLOPs),

[16]. All angles of S are known at no additional cost from the Schur decomposition. It remains

to determine all the a, b, c, d from the angles by Algorithm 1 so that all parameters in the direct

formulae are obtained. This takes 8n2 FLOPs. Finally, the execution of Algorithm 2 requires 4
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matrix multiplications and O(n2) ≈ 3n2 updates in 2× 2 blocks, with a complexity approximately

8n3 + 3n2 FLOPs.

Complex formulae for normal S: A spectral decomposition for an arbitrary normal matrix

is obtained based on the real Schur decomposition [16] and it requires approximately 25n3 + 9n2

FLOPS when S is skew symmetric. It remains to determine the exp(−Λ)Ψ matrix from

∆Q = exp(S)−1D expS [∆S ] = Z exp(−Λ)Z−1(Z((Z−1∆SZ) ·Ψ)Z−1)

= Z(exp(−Λ)((Z−1∆SZ) ·Ψ))Z−1

= Z((Z−1∆SZ)� (exp(−Λ)Ψ))Z−1

where the last equal sign follows from the fact that exp(−Λ) is a diagonal matrix. These complex

computations require approximately 8n2 FLOPs. Finally, the evaluation computes 4 complex

matrix multiplications and 1 complex Hadamard product, which is 32n3 + 3n2 FLOPs. For the

inverse of the directional derivative, the Hadamard product with exp(−Λ)Ψ is replaced by the

Hadamard division with exp(−Λ)Ψ.

Padé formulae for normal S: Since the underlying algorithms for the matrix exponential and

the matrix principal logarithm are fundamentally different, the two directional derivatives have

different complexity. D expS [·] does not require a decomposition and D logQ[·] requires a real Schur

decomposition. The complexity of the implementations depends on the Padé order t of the matrix

exponential and the rescaling process s on a large ∆S and/or S. According to both [26] and [27],

the recommended Padé order is t = 13 and no rescaling is considered in the complexity analysis,

i.e., s = 0. Note that repeated evaluations with the same S or Q are required for these primitives

and therefore those computations that only depend on S or Q are considered the preprocessing of

the D expS or D logQ, which are reusable in repeated evaluations. The preprocessing for D expS

requires 6 real matrix multiplications(12n3 FLOPs) and 1 LU decomposition(2/3n3 FLOPs), while

the D logS has no reusable terms for repeated evaluations. The evaluation of D expS requires 13

real matrix multiplications(26n3 FLOPs) and 2 LU solver on n × n matrices(4n3 + 4n2 FLOPs).

The evaluation of D logS requires 17 real matrix multiplications for 34n3 FLOPs.

The following tables summarize the complexity discussion. Note that the decomposition com-

putation is usually free from earlier computations in later chapters. The preprocessing compu-

tations can be reused in repeated evaluations. Also note that the preprocessing computation for

D (expS)−1
exp(S) [·] can reuse the preprocessing computation for D expS [·] if it is available. In the

case of reusing the preprocessing computation, the required computation is given in curly brackets.
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Table 2.2: Complexity of the Directional Derivative of the Matrix Exponential

Algorithm Decomposition Preprocessing Evaluation

Padé 0 (12 + 2/3)n3 30n3 + 4n2

Complex 25n3 + 9n2 8n2 32n3 + 3n2

Real 25n3 9n2 8n3 + 3n2

Table 2.3: Complexity of the Directional Derivative of the Nearby Matrix Logarithm

Algorithm Decomposition Preprocessing Evaluation

Padé 25n3 0 34n3

Complex 25n3 + 9n2 8n2 {0}? 32n3 + 5n2

Real 25n3 5n2 {n2}? 8n3 + 3n2

? : Complexity that reuses the preprocessing from D expS [·].

2.8.2 Experiments

For each formula, the following experiment is performed. Given a dimension n, two random

skew symmetric matrices S,∆ ∈ Skewn are generated and Q = exp(S) is computed in advance.

Then, the formula or its inverse is executed with the full 3-stages, i.e., the PreEval stage is executed

from scratch. The computed times of the individual stage are recorded and the results are plotted

against the dimension n, in Figure 2.2 and Figure 2.3. Besides reporting time for computing the

actions ∆Q 7→ ∆S and ∆S 7→ ∆Q, the figures also present the combined time of Param and Action

stages as the best scenario, where no PreEval is needed to be computed from scratch, and the

combined time of all 3 stages as the worst scenario.

Note that the Padé Algorithm for the inverse action is not included as it is restricted within the

principal branch and relies on a system solver that is significantly slower than the other 2 methods.

Figure 2.2: Computation Time of ∆S 7→ ∆Q in D expS(∆) = Q∆Q
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Figure 2.3: Computation Time of ∆Q 7→ ∆S in D expS(∆) = Q∆Q

Overall, the new formulae proposed in computing the linear map LS(∆) and L−1
S (∆) is 4 ∼ 4.5

times as fast as the other formulae. The extra speedup beyond 4 is observed in large dimen-

sions, in which case dense matrix products and complex arithmetics affects more in the real time

performances.
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CHAPTER 3

LOCAL DIFFEOMORPHISM IN SKEW

SYMMETRIC MATRICES

Based on the differential of the matrix exponential on the skew symmetric matrices investigated

in Chapter 2, this chapter further studies its implications between the special orthogonal group

and the skew symmetric matrices via exp : Skewn → SOn and presents a solution to the smoothly

evolving geodesic problem (4.2) proposed in Chapter 4. In particular, this chapter first identifies a

local diffeomorphism in exp : Skewn → SOn in which the inverse of the matrix exponential is well-

defined, unique and smooth. Then, some intriguing properties of the diffeomorphism are derived

and discussed. The notion of the nearby logarithm proposed in [9] is re-interpreted under this

diffeomorphism. Finally, two different algorithms are designed to compute the smoothly evolving

geodesic problem (4.2).

3.1 Skew Symmetric Matrices with an Invertible Differential

In order to identify a diffeomorphism structure within exp : Skewn → SOn around some skew

symmetric matrix S ∈ Skewn, its differential at S restricted to the skew symmetric matrices,

D expS : Skewn → TQSOn where Q = exp(S), must be invertible. In other words, S is not on the

conjugate locus ConjIn characterized in Corollary 2.5.4, denoted as

S := Skewn \ ConjIn = {S ∈ Skewn : S satisfies condition (2.20)}. (3.1)

Recall that the conjugate locus ConjIn is described as the union of countable conditions indexed

by the integers k 6= 0 and each one of them states that there exists a pair of angles (θi, θj), i 6=

j = 1, 2, · · · ,m such that θi ± θj = 2kπ. Therefore, the skew symmetric S satisfying the k-indexed

condition consists of the following two or three subsets

Ak,+ ∪ Ak,− := {S ∈ Skewn : ∃θi + θj = 2kπ} ∪ {S ∈ Skewn : ∃θi − θj = 2kπ}

Ak,∗ := {S ∈ Skewn : ∃θi = 2kπ} additional for n = 2m+ 1
(3.2)
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such that
ConjIn =

⋃
k=±1,±2,···

(Ak,+ ∪ Ak,−)

or =
⋃

k=±1,±2,···
(Ak,+ ∪ Ak,− ∪ Ak,π) for n = 2m+ 1.

It follows that Ak,+, Ak,− and Ak,∗ are closed and connected subsets in Skewn. Therefore, the

set S is constructed by removing countably many closed subsets from Skewn. It immediately leads

to the following conclusion on the subset structure of S.

Proposition 3.1.1. The set of skew symmetric matrices S with an invertible differential to the

matrix exponential is a collection of countable open and connected subsets denoted as Se, where

e ∈ E belongs to a countable indices set. In other words,

S =
⋃
e∈E
Se. (3.3)

Proof. Simply notice that the closed subsets defined in (3.2) are closed subsets in the vector space

Skewn. Removing countably many closed and connected subsets from a vector space results in

countably many open and connected subsets. In this case, they are Se, e ∈ E where the countable

index set E is determined by the integer k = ±1,±2, · · · and the plus-minus-star signs that label

the closed subsets (3.2) (but not themselves, i.e., E 6= ({±1, · · · }, {+,−, ∗})).

Definition 3.1.2. In particular, the 0 ∈ I indexed subset S0 is reserved for the open subset that

consists of the zero matrix 0 ∈ Skewn, i.e.,

S0 := {S ∈ Skewn : ∀i 6= j, θi + θj < 2π}. (3.4)

For the case n = 4, there are only 2 angles of a skew symmetric matrix S, denote them as θ1 and

θ2. Figure 3.1 illustrates the angles of the matrix at the conjugate locus in red. Note that each

red dashed line corresponds to a closed subset in ConjIn ⊂ Skew4. The 4 dashed lines correspond

to the 4 closed subsets A1,+, A1,−, A−1,+ and A−1,−. The interior red box in the middle is the

0-label subset S0.

The skew symmetric matrix in the principal branch (2.1) has its angles bounded by −π and

π. The boundary of the principal branch is plotted as the black dashed line and the interior black

box is the principal branch. Notice that the principal branch is fully contained in S0 and this

observation applies to more general n > 4, as θi ± θj < 2π,∀i 6= j = 1, · · · ,m easily concludes

|θi| < π,∀i = 1, · · · ,m.
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Figure 3.1: Illustrations of the conjugate locus and the principal branch in Skew4

3.2 Preimage of Exponential at Special Orthogonal Matrices

With the conjugate locus ConjIn fully characterized on Skewn, it leads to the next question

characterizing the distribution on the preimage of the matrix exponential {X ∈ Skewn : exp(X) =

Q ∈ SOn}, especially for the Q = exp(S) with S ∈ ConjIn .

Consider a special orthogonal matrix Y that has a set of principal angles Θ ∈ [0, π]m specified

in the preferred Schur decomposition

Y = RERT = R diag(E[1,1], · · · )RT = R diagEa1,b1
,··· ,Ear,br

as in (2.7). Let

X = RDRT = R diag(D[1,i1], · · · )RT = R diag(D0,c1 , · · · , D0,cr)R
T

be the skew symmetric matrix constructed from the angles Θ and Schur vectors R from Y . Recall

that the notation E[i,i] stands for 2 × 2 blocks, and an additional 1 when n = 2m + 1, in the

diagonal. The notation Ear,br stands for the repeated diagonal block Eaj ,bj =

[
aj −bj
bj aj

]
⊗ Ikj with

multiplicity kj , and an additional E1,0 =

[
I2 ⊗ Ikr−1 0

0 1

]
when n = 2m + 1. Similar structures

follow for D[i,i] and D0,cj . The constructed skew symmetric X = RDRT serves as a reference skew

symmetric matrix that characterizes the preimage

E−1
Y := {X ∈ Skewn : exp(X) = Y }. (3.5)
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Lemma 3.2.1. For any Y ∈ SOn with a preferred Schur decomposition RERT, with the principal

angles Θ = {θ1, · · · , θm} ∈ [0, π]. Then the skew symmetric matrix X = RDRT with D =

diag(

[
0 −θ1

θ1 0

]
, · · · ) is a preferred Schur decomposition and it satisfies exp(X) = Y .

Proof. By construction, there is

exp(D[i,i]) = exp

([
0 −θi
θi 0

])
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
= E[i,i]

such that exp(X) = R exp(D)RT = RERT = Y follows immediately. To see that RDRT is a

preferred Schur decomposition, notice that θi ≥ 0 is satisfied as they are principal angles chosen to

be nonnegative. For the ordering in cosine values, there is

cos(θ) ≤ cos(ω)⇐⇒ θ ≥ ω,∀θ, ω ∈ [0, π],

as cos(x), x ∈ [0, π] is monotonically decreasing. Then, θi ≥ θi+1, i = 1, · · · ,m− 1 follows.

Notice that if the principal angles Θ in Y are bounded by π, i.e., 0 < θi < π,∀i = 1, · · · ,m, the

X = RDRT constructed in Lemma 3.2.1 is the classic principal logarithm that is uniquely defined

within the principal branch {X ∈ Skewn : ‖X‖2 < π}, as

‖X‖2 = ‖RDRT‖2 = ‖D‖2 = max
i=1,··· ,m

(|θi|) < π.

Lemma 3.2.1 not only relates the special orthogonal Y = RERT with a skew symmetric

X = RDRT, but also implies that the repeated block diagonal structure in Q, if any, is preserved

in the X constructed from the principal angles. This is not true for S ∈ E−1
Y in general is discussed

later in this section. The next Lemma 3.2.2 states the implications of a shared repeated block

diagonal structure in terms of the set of possible Schur vectors.

Lemma 3.2.2. For any two Y,Z skew symmetric or special orthogonal matrices with the corre-

sponding preferred Schur decompositions Y = RMRT and Z = RNRT, let M and N share the

same block diagonal structures and repeated pattern given by
N = diag(Na1,b1 , · · · , Nar,br), Naj ,bj =

[
aj −bj
bj aj

]
⊗ Ikj

M = diag(Mc1,d1 , · · · , Ncr,dr), Mcj ,dj =

[
cj −dj
dj cj

]
⊗ Ikj

where k1, · · · kr is the multiplicity of the repeated diagonal block that satisfies
∑r

j=1 kr = 2m. Then

Y and Z share the same set of possible Schur vectors.
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Proof. From Proposition 2.2.3, the set of all possible Schur vectors is {R̃ = RQGP}, generated

by orthogonal transformations Q,G and P . The G term and the P term only depends on the

dimension n = 2m or n = 2m + 1. The Q term depends on the multiplicity and the position of

repeated blocks, which are both identical in M and N . Therefore, the same sets of Q,G and P

generates the same sets of Schur vectors of Y and Z.

According to Lemma 3.2.2, the X = RDRT constructed by the principal angles Θ of Y =

RERT shares the same set of possible Schur vectors, i.e., for any given set of Schur vector R̃ of Y ,

it is also a Schur vector of X, i.e., D̃ := R̃TXR̃ must be in forms of a block diagonal structure.

This insight is further exploited in the following Theorem to characterize the preimage E−1
Y .

Theorem 3.2.3. For any Y ∈ SOn with a preferred Schur decomposition RERT and the principal

angles Θ ∈ [0, π]m, the Schur decomposition on the skew symmetric matrix S = RDΘRT is a

preferred Schur decomposition and S satisfies exp(S) = Y . Furthermore, the preimage at Y is

given by

{X ∈ Skewn : exp(X) = Y } =

R̃D̃R̃T :

R̃ = RQG, D̃ = diag(D̃[1,1], · · · )

D̃[i,i] =

[
0 −θi − 2kiπ

θi + 2kiπ 0

]
, ki ∈ Z

 (3.6)

where Q = diag(Qcos(θ1),sin(θ1), · · · , Q0,1) and G = diag(G[1,1], · · · ) with the additional condition

det(G[i,i]) = 1, i = 1, · · · ,m are orthogonal transformations specified in Proposition 2.2.3 applied

to the preferred Schur decomposition Y = RERT.

Proof. Let X = RDRT be a preferred Schur decomposition on the skew symmetric matrix X as

constructed in Lemma 3.2.1. By Lemma 3.2.2, both X and Y share the same set of possible

Schur vectors.

(RHS =⇒ LHS): Notice that det(G[i,i]) = 1, which yields G[i,i]D̃[i,i]G
T
[i,i] = D̃[i,i], i = 1, · · · ,m.

For Q = diag(Qa1,b1 , · · · , Qar,br) where Qaj ,bj = I2⊗Qkj with any kj×kj orthogonal matrix acting

on the j-th repeated diagonal block in E with the multiplicity of kj . The j-th repeated diagonal

block is expressed as Eaj ,bj =

[
aj −bj
bj aj

]
⊗Ikj . Simple algebra shows that Qaj ,bjEaj ,bjQ

T
aj ,bj

= Eaj ,bj

as discussed in Proposition 2.2.3. Then, it can be concluded that “RHS =⇒ LHS”

exp(RQGD̃GTQTRT) = exp(RQD̃QTR) = RQ exp(D̃)QTR

= RQdiag(exp(D̃[1,1]), · · · )QTRT = RQdiag(E[1,1], · · · )QTRT

= RQEQTRT = R diag(Qa1,b1Ea1,b1Q
T
a1,b1 , · · · )R

T

= R diag(Ea1,b1 , · · · )RT = RERT = Y
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(LHS =⇒ RHS): Let S = RSMRT
S be a solution to exp(X) = Y with the Schur vectors RS .

Then RS is also a Schur vector of Y as

Y = RS exp(M)RT
S = RS diag(exp(M[1,1]), · · · )RT

S .

By Proposition 2.2.3 applied to Y , there exists orthogonal transformations Q = In, G and R such

that

R̃S(PTGT diag(exp(M[1,1]), · · · )GP )R̃T
S = R̃SER̃

T
S .

By Proposition 2.2.3 applied to S, R̃S remains a set of Schur vectors of S, i.e., S = R̃SM̃R̃S is a

Schur decomposition. Then, it remains to verify that the new Schur decomposition falls in (3.6).

Let Ẽ = diag(Ẽ[1,1], · · · ) with Ẽ[i,i] := G[i,i] exp(M[i,i])G
T
[i,i], then the

PẼPT = diag(Ẽ[i1,i1], · · · )

where P permutes i1, · · · , im to 1, 2, · · · ,m. Since the solutions to

Ẽ[ij ,ij ] = exp

([
0 −θ̃ij
θ̃ij 0

])
=

[
cos(θj) − sin(θj)
sin(θj) cos(θj)

]
is given by {θ̃ij = θj + 2kjπ : kj ∈ Z}, there is M[ij ,ij ] =

[
0 −θj − 2kjπ

θj + 2kjπ 0

]
. Then, it is

ready to conclude “LHS =⇒ RHS” as

RSMRT
S = RSGMGTRS = RGPPTMPPTGTRS

= R̃SP
T diag(M[1,1], · · · )PR̃S = R̃S diag(M[i1,i1], · · · )R̃S

= R̃S



[
0 −θ1 − 2k1π

θ1 + 2k1π 0

]
0 · · ·

0

[
0 −θ2 − 2k2π

θ2 + 2k2π 0

]
· · ·

...
...

. . .

 R̃T
S

where the first equality follows from the assumption det(G[i,i]) = 1 and the fourth equality follows

from the fact that PT permutes 1, · · · ,m back to i1, · · · , im by construction.

Computationally speaking, it is important to note that the extra condition det(G[i,i]) = 1

introduced in Proposition 4.5.4 provides a convenient yet sufficient characterization based on the

principal angles Θ ∈ [0, π]m, but it also suppresses the equivalent matrix expression of the Schur

decompositions with R̃[i] = R[i]G[i,i], ki ∈ Z where det(G̃[i,i]) = −1. Although the suppressed

expression is equivalent to G[i,i] := G̃[i,i]

[
0 1
1 0

]
and −ki ∈ Z, i.e.,

R̃[i]

[
0 θi − 2kiπ

−θi + 2kiπ 0

]
R̃T[i] = R̃[i]

[
0 1
1 0

] [
0 −θi + 2kiπ

θi − 2kiπ 0

] [
0 1
1 0

]
R̃T[i],
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the Schur decomposition on skew symmetric matrices computed from the standard library does

not appear in the characterization chosen in Theorem 3.2.3. Therefore, extra considerations are

needed to be taken care of if there are algorithmic demands on the form of Schur decompositions.

There are also two intriguing implications from the characterization (3.6) on particular skew

symmetric matrices that sheds some light on the geometric insight of exp : Skewn → SOn. The

first one justifies the cut locus CutIn on SOn being {X ∈ Skewn : ‖X‖2 = π} and the second

one relates the skew symmetric matrices on the conjugate locus to skew symmetric matrices with

repeated diagonal blocks structure.

Corollary 3.2.4. For any skew symmetric matrix S ∈ Skewn on the cut locus CutIn = {X ∈

Skewn : ‖X‖2 = π}, there exists a different X 6= S also on the cut locus such that exp(S) = exp(X)

and ‖X‖2 = ‖S‖2.

Proof. Let S = RDRT be a preferred Schur decomposition with angles θi ≥ θi+1. Since

π = ‖S‖2 = ‖RDRT‖2 = ‖D‖2 = max
i=1,··· ,m

∥∥∥∥[θi [0 −1
1 0

]]∥∥∥∥
2

= max
i=1,··· ,m

|θi|,

there are θ1 = π and 0 ≥ θi ≤ π, i = 2, · · · ,m. Write S as the following

S = R[1]

[
0 −π
π 0

]
RT

[1] +
m∑
i=2

R[i]D[i,i]R
T
[i].

Let Q = exp(S) = RERT. By construction, Θ is the principal angles of Q. Therefore the preimage

E−1
Q is characterized by (3.6) with S. Consider the X with −2π shift in the first block as

E−1
Q 3 X = R[1]

[
0 π
−π 0

]
RT

[1] +
m∑
i=2

R[i]D[i,i]R
T
[i]

It is easy to see that X 6= S as S −X = R[1]

[
0 −2π

2π 0

]
RT

[1] 6= 0. Then, there are two geodesics

exp(t ·X) and exp(t · S) arriving at Q from In with the same distances
‖X‖F = ‖RXDXR

T
X‖F = ‖DX‖F =

√√√√2(−π)2 + 2

m∑
i=2

θ2
i

‖S‖F = ‖RSDSR
T
S‖F = ‖DS‖F =

√√√√2π2 + 2

m∑
i=2

θ2
i

.
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Corollary 3.2.5. A special orthogonal Q has repeated eigenvalues if and only if

E−1
Q ∩ ConjIn 6= ∅,

i.e., there exists S ∈ ConjIn such that exp(S) = Q.

Furthermore, the repeated eigenvalues are characterized by a repeated block diagonal structure

in its preferred Schur decomposition Q = RERT = R diag(Ea1,b1 , · · · , Ear,br)RT where there is at

least one diagonal block Eaj ,bj larger than 2 × 2. Such an Eaj ,bj is characterized by the angles

Ω in S. If there are k angles that violate (2.19) with ω = ωi as i 6= i1 6= i2 6= · · · ik such that

ω ± ωij = 2kjπ, then

Ecos(ω),| sin(ω)| = Ik ⊗
[

cos(ω) −| sin(ω)|
| sin(ω)| cos(ω)

]
or with i1 6= i2 6= · · · ik such that ωij = ±2kjπ and n = 2m+ 1, then E1,0 = I2k+1.

Proof. When ωi = 2kπ and n = 2m + 1, there is exp

([
0 −ωi
ωi 0

])
= I2, which means a pre-

ferred Schur decomposition RERT = exp(S) must have E1,0 with dimension 3 × 3 at least. The

corresponding canonical angle is 0 and the statement follows.

When ωi ± ωj = 2kπ, observe that ωi ± ωj = 2kπ ⇔ ωi = (−ωj ± 2kπ). For S = RDΩRT

constructed by the angles ωi, let Q = diag

(
I2∗(j−1),

[
0 1
1 0

]
, In−2j

)
and R = RQ such that the

j-th diagonal is flipped as

S = RDΩRT = R̃ diag

([
0 −ω1

ω1 0

]
, · · · ,

[
0 ωj
−ωj 0

]
, · · ·

)
R̃T.

Then, shift the j − th block with ±2kπ to get

X = R̃ diag

(
· · · ,

[
0 ωj ∓ 2kπ

−ωj ± 2kπ 0

]
, · · ·

)
R̃T

= R̃ diag

(
· · · ,

[
0 ωi
ωi 0

]
, · · ·

)
R̃T

i.e., X has repeated diagonal blocks in i, j positions. Then, it is easy to verify exp(S) = exp(X). Let

the exponential of the repeated block be Ecos(ωi),sin(ωi), convert it to a preferred Schur decomposition

as Ecos(ωi),| sin(ωi)| to find the corresponding (repeated) principal angles θ ∈ [0, π] satisfying cos(θ) =

cos(ωi) and sin(θ) = | sin(ωi)|.

The above discussion on constructing repeated diagonal blocks from the conjugate locus can

be reversed to construct a skew symmetric matrix on the conjugate locus from a repeated angles.

Therefore, the “if-and-only-if” statement follows.
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Corollary 3.2.5 reveals the relation between the set of special orthogonal matrices with repeated

eigenvalues and the conjugate locus. Such a set is denoted as

Q := {exp(S) : S ∈ ConjIn} = {Q ∈ SOn : Q with repeated eigenvalues}. (3.7)

Note that having Q ∈ Q only implies there exists a S ∈ ConjIn satisfying exp(S) = Q, but not

necessarily suggesting E−1
Q ⊂ ConjIn . In other words, there may be X ∈ Skewn with exp(X) =

Q ∈ Q and an invertible D expX : Skewn → TQSOn. With the set Q identified, the following

theorem concludes an essential feature of the preimage E−1
Q ,∀Q /∈ Q.

Theorem 3.2.6. For any Y ∈ SOn \Q, the preimage {X ∈ Skewn : exp(X) = Y } is an isolated

set with points separated by a distance of at least 2π in matrix 2-norm, i.e.,

‖A−B‖2 > 2π,∀A 6= B ∈ Skewn, exp(A) = exp(B) (3.8)

Proof. Let X = RDRT be the reference skew symmetric as constructed in Lemma 3.2.1 with the

Q = RERT such that both A and B can be expressed as a shift from X in forms of (3.6) with

ξ, η ∈ Zm, QA, GA and QB, GB such that
A = R̃AD

ξR̃T
A, R̃A = RQAGA,D

ξ = diag

([
0 −θ1 − 2ξ1π

θ1 + 2ξ1π 0

]
, · · ·

)
B = R̃BD

ηR̃T
B, R̃B = RQBGB,D

η = diag

([
0 −θ1 − 2η1π

θ1 + 2η1π 0

]
, · · ·

) .

Since Y /∈ Q, there is no repeated diagonal block in E, the QA and QB are both the identity matrix

In, which yields

‖A−B‖2 = ‖RGADξGT
AR−RGBDηGT

BR‖2 = ‖GADξGT
A −GBDηGT

B‖2

= ‖Dξ −Dη‖2 = max
i=1,··· ,m

‖Dξ
[i,i] −D

η
[i,i]‖2

= max
i=1,··· ,m

|2(ξi − ηi)π| ≥ 2π

where the third equality follows from det(GA,[i,i]) = 1 and det(GB,[i,i]) = 1, the fourth equality

follows from the 2-norm on block diagonal matrix and the fifth equality follows from the fact that

A 6= B ⇔ ξ 6= η.

The condition Y /∈ Q is necessary for Theorem 3.2.6. Otherwise, the following proposition

finds a connected set of skew symmetric matrices that have the image under the exponential equals

to the same Y with the repeated diagonal blocks.
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Proposition 3.2.7. Consider Y = RERT ∈ Q with principal angles Θ and X = RDRT ∈ Skewn

be constructed by the principal angles, with θj = θj+1. Let S = RDξRT ∈ ConjIn with shifts ξ ∈ Zn

in multiples of 2π, then for any ω ∈ [0, 2π] and Q(ω) :=

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
⊗ I2 the set

{S(ω) : ω ∈ [0, 2π]} ⊂ E−1
Y

and ‖S(ω)− S(0)‖2 ranges in [0, 2|ξj − ξj+1|π] continuously where

S(ω) :=
∑

i 6=j,j+1

R[i]D
ξ
[i,i]R

T
[i] +

[
R[j] R[j+1]

]
Q(ω)

[
Dξ

[j,j] 0

0 Dξ
[j+1,j+1]

]
Q(ω)T

[
RT

[j]

RT
[j+1]

]
.

Proof. This follows from the Gershgorin circle theorem.

3.3 Diffeomorphism Structure in Skew Symmetric Matrices

Based on the structures exploited on the connected subsets Se, e ∈ E and their boundaries

ConjIn , it is now possible present the local diffeomorphism in the matrix exponential exp : Skewn →

SOn as follow.

Proposition 3.3.1. Given any S ∈ Se,∀e ∈ E, let Q = exp(S). There exists a small enough

neighborhood of S denoted as MS ⊂ Se with its image denoted as

NQ := {Y = exp(X) : X ∈MS},

such that the restricted matrix exponential exp :MS → NQ is a diffeomorphism.

Proof. Since the Se,∀e ∈ E is an open and connected subset, it is always possible to build any small

enough neighborhood MS ⊂ Se.

For such a MS , any X ∈ MS , including the X = S, has an invertible differential D expX :

Skewn → Texp(X)SOn. By the inverse function theorem, there exists a small enough neighborhood

of MS on which the matrix exponential is invertible.

Then, let thatMS be this smaller subset, on which exp :MS → NQ is a bijection. Furthermore,

the differential D expX : Skewn → TY SOn, ∀X ∈ MS , Y = exp(X) ∈ NQ is invertible, i.e., the

inverse exp−1 : NQ →MS is differentiable for any Y ∈ NQ. It concludes with the definition that

states a bijection with an invertible differential is a diffeomorphism.
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3.3.1 Sufficient Condition of Constructing Diffeomorphism

The locality of the diffeomorphism within Se, ∀e ∈ E cannot be extended to the entire Se, as the

exponential exp : Se → SOn may not be a bijection. To see that, simply notice that S0 contains

S ∈ Skewn with an angle θi ∈ (π, 2π). For example, in the illustration of Skew4 in Figure 3.1,

the region within the red box but outside the black box contains such an angle greater than π.

Replace θi in S with θ′i = θi− 2π ∈ (−π, 0) to obtain S′ that still lies within S0. In the illustration

of Skew4, S′ lies within the black box. It is easy to see that exp(S) = exp(S′), i.e., exp : S0 → SOn

is not a bijection, which implies exp : S0 → SOn is not a diffeomorphism.

Fortunately, the diffeomorphism within Se,∀e ∈ E is lost solely due to the loss of bijection

structure, as for any X ∈ Se, ∀e ∈ E , the differential is always invertible. Combined with the fact

that the preimage of the matrix exponential is a set of isolated points, a stronger statement on the

diffeomorphism is proposed in below.

Proposition 3.3.2. Let MS be an open neighborhood of S ∈ Se for e ∈ E and let NQ be its image

under the matrix exponential. Then the matrix exponential exp :MS → NQ is a diffeomorphism if

for ∀A,B ∈MS, ‖A−B‖2 < 2π.

Proof. The matrix exponential can only fail its one-to-one nature inMS if there are at least 2 points

A 6= B from a preimage of some Y ∈ NQ lie withinMS . By construction, Y /∈ Q which yields that

the two points are separated in at least 2π distance, i.e., ‖A − B‖2 ≥ 2π as stated in Theorem

3.2.6. This statement contradicts the imposed condition. Therefore, the matrix exponential is a

bijection on such a MS .

On the other hand, theMS ⊂ Se by construction has all differential D expX ,∀X ∈MS invert-

ible, the diffeomorphism of exp :MS → NQ follows.

3.3.2 Diffeomorphism on an Inscribed Ball

The Proposition 3.3.2 provides a sufficient condition to construct a diffeomorphism in Se, ∀e ∈

E . The following proposition further shows that for any S ∈ Se, an inscribed ball of S, that

is tangential to the boundary of Se, satisfies the proposed sufficient condition. This provides a

practical way to identify a local diffeomorphism.

Proposition 3.3.3. For any skew symmetric S ∈ Se,∀e ∈ E with Schur vectors R and angles Θ,

its distance under 2-norm to the conjugate locus, which is also its distance to the boundary of Se,

51



is fully determined by its angles Θ, denoted as δΘ. It is given by

2δΘ :=


min

i 6=j=1,··· ,m,k 6=0
{|θi + θj − 2kπ|, |θi − θj − 2kπ|} , n = 2m

min
i 6=j=1,··· ,m,k 6=0

{|θi + θj − 2kπ|, |θi − θj − 2kπ|, |θj − 2kπ|} , n = 2m+ 1
. (3.9)

Furthermore, this distance is bounded from above as

δΘ ≤

π, S ∈ S0

π/2, S /∈ S0

. (3.10)

Proof. Recall that a distance from a point to a subset is the infimum among the distance from that

point to any point on the subset. In this case, the given point is S ∈ Se and the subset is ConjIn .

Since the ConjIn is a closed set that consists of countably many closed subsets, the distance from

S to ConjIn becomes the infimum among the distances from S to all closed subsets. Then, one can

characterize the distance from S to the closed subset Ak,+

dk,+ := dist(S,Ak,+).

Since Ak,+ is a closed subset in Skewn, there must be a Xk,+ ∈ Ak,+ that realizes the distance, i.e.,

dist(S,Xk,+) = ‖S−Xk,+‖2 = dist(S,Ak,+) = dk,+. It is easy to find such a Xk,+ as Xk,+ = RD′RT

where R is the Schur vectors of S, D′ consist of the same angles of S except the i, j-th angles that

realize the minimum

arg min
i 6=j=1,2,··· ,m

|θi + θj − 2kπ|.

Let ε be the difference 2kπ − θi − θj that realized the minimum in magnitude and set the corre-

sponding i, j-th angles as θ′i = θi + ε/2 and θ′j = θj + ε/2.

By construction, the resulting X = RD′RT has θ′i + θ′j = 2kπ, i.e., it is on Ak,±. Since

X = RD′RT and S = RDRT share similar structures in the Schur decomposition, their distance

under matrix 2-norm is given by

‖X − S‖2 = ‖R(D′ −D)RT‖2 = ‖D′ −D‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 · · · 0 · · · 0 · · ·
...

. . . · · · · · · · · · · · ·

0 · · ·
[

0 −ε/2
ε/2 0

]
· · · 0 · · ·

...
...

...
. . . · · · · · ·

0
... 0

...

[
0 −ε/2
ε/2 0

]
· · ·

...
...

...
...

...
. . .



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=
|ε|
2
,
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i.e., 2dk,+ = |ε| = min
i 6=j=1,2,··· ,m

|θi + θj − 2kπ|.

Similarly, one can define dk,− and dk,∗ to the closed subset Ak,− and Ak,∗ realized by Xk,− and

Xk,∗ respectively. Taking the minimum over dk,+, dk,− and the optional dk,∗ for all k = ±1, · · · ,

yields (3.9).

Finally, to see the bound on the matrix 2-norm, consider S ∈ S0 first. In this case, the

boundary of S0 is simply the 4 subsets A±1,±. Let the distance be realized on A1,+ at θi, θj as

2δΘ = 2d1,+ = |θi + θj − 2π|.

Suppose 2d1,+ > 2π. Since, S ∈ S0, there is θi + θj < 2π, there is −4π < θi + θj − 2π < −2π.

In this case,
2d−1,+ = min

i 6=j=1,2,··· ,m
|θi + θj + 2π|

≤ |θi + θj + 2π|

= |θi + θj − 2π + 4π|

= 4π + (θi + θj − 2π) ≤ 2π < 2d1,+.

This is a contradiction as d1,+ realizes the shortest distance, therefore, 2d1,+ ≤ 2π. When d1,−

realizes the distance, similar argument can be made by looking into d−1,−.

When S ∈ Se 6= S0, the boundary of Se must include at least one of the following 3 pairs of

subsets: (1) Ak,+ and Ak+1,+; (2) Ak,− and Ak+1,−; (3) Ak,∗ and Ak+1,∗, where k, k + 1 6= 0 are

integers. Apply the same argument above to this tighter pair of boundary yields 2δΘ ≤ π, which

concludes the proof. Note that the missing closed subsets A0,+, A0,− and A0,∗ makes the S0 the

only special case with δΘ ≤ π.

Theorem 3.3.4. For any S ∈ Se, e ∈ E with angles Θ, let

MS := {X ∈ Skewn : ‖X − S‖2 < δΘ} (3.11)

be the inscribed ball under the matrix 2-norm centered at S, where δΘ is the distance from S to

ConjIn. Then exp :MS → NQ is a diffeomorphism where NQ := {exp(X) : X ∈MS}.

Proof. By construction, the inscribed ball MS lies within Se. Then, the triangle inequality of the

matrix 2-norm yields ∀A,B ∈ MS , ‖A − B‖2 ≤ ‖A − S‖2 + ‖B − S‖2 < 2π, i.e., the sufficient

condition in Proposition 3.3.2 is satisfied.

From this point, the MS in a diffeomorphism exp :MS → NQ is assumed to be the inscribed

ball (3.11) unless otherwise specified. Note that the principal branch (2.1) happens to be the largest
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inscribed ball centered at 0 ∈ Skewn with the radius δ0 = π. This result is also consistent with

the classic result stating that the matrix exponential is invertible within the principal branch.

3.4 Nearby Logarithm

The immediate result following from the diffeomorphism exp :MS → NQ is the well defined in-

verse function exp−1 : NQ →MS , which is also a smooth bijection map with invertible differential.

It leads to the definition of the nearby matrix logarithm, which is originally proposed in [9].

Definition 3.4.1. Given a skew symmetric S ∈ S, Let MS ⊂ S be an open neighborhood con-

sisting of S and let NQ := {exp(X) : X ∈ MS} be its image such that exp : MS → NQ is a

diffeomorphism. Then, a nearby matrix logarithm is the inverse function of the diffeomorphism

denoted as

logS : NQ →MS . (3.12)

Note that any diffeomorphism exp :MS → NQ meets the condition in Definition 3.4.1, i.e., the

MS is not restricted to the inscribed ball in (3.11) or even the sufficient condition in Proposition

3.3.2. However, the inscribed ball is convenient in practice.

Also note that the skew symmetric S in logS serves more as a parameter that locally determines

the nearby logarithm in a loose manner, rather than an input variable. Given a well-defined nearby

matrix logarithm logS : NQ → MS , ∀X ∈ MS , the same open subset MS can also be viewed as

the neighborhood of X, such that logX : NQ → MS is the same nearby logarithm. One can still

force S to be an input variable and define the nearby matrix logarithm around S as something

like Skewn × SOn → Skewn, (S, Y ) 7→ X where exp(X) = Y , but such a function is not even

continuous in the Skewn portion of its domain.

3.4.1 Comparison with the Original Definition

Compared to the vague description given in [9] stating that the nearby matrix logarithm around

the given S seeks a solution (X, exp(X) = Y ) nearest to (S, exp(S) = Q), Definition 3.4.1 clarifies

the condition of S around which the nearby logarithm is defined.

The description of the “nearest” solution of (X,Y ) to (S,Q) is ambiguous, as the measurement

to quantify the “nearest” notion can be made on Skewn or SOn, in different metrics. Furthermore,
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the “nearest” notions on the two different metric space may not be equivalent. Therefore, Defini-

tion 3.4.1 drops the “nearest” statement and replaces it with diffeomorphism. The impression of

finding solution “near” to exp(S) = Q is kept naturally in the diffeomorphism description, as one

may shrink MS to an arbitrarily small open neighborhood of S and the diffeomorphism structure

stays on the shrunk neighborhood. For this reason, the term “nearby” is kept in the new definition

even though the notion of “being the nearest solution” does not explicitly appear in it. In conclu-

sion, the basically heuristic definition of the nearby matrix logarithm given in [9] is subsumed and

accurately interpreted in the new definition given above.

3.4.2 Algorithms

This section develops two different approaches in computing the nearby logarithm logS : NQ →

MS , the Newton method Algorithm 3 and the adaptive method Algorithm 4, that operate on

Skewn and SOn respectively.

Newton Method. The Newton method in Algorithm 3 is improved from the prototype

algorithm proposed in [9], with the input S ∈ Se and Y ∈ NQ clarified and the Ni in line 6

is computed with the improved formula, rather than appealing to a brute-force linear solver on

D expXi [Ni] = QiMi as a matrix free action, which is suggested in [9]. Note that this algorithm

operates on Skewn and generates a sequence of {Xi} ⊂ Skewn that has convergence guaranteed

by the classic Newton framework with a good initial guess S0.

Algorithm 3: Newton Method for Computing the Nearby Logarithm

Input: S ∈ Se with diffeomorphism exp :MS → NQ and Y ∈ NQ near Q = exp(S)
Output: The unique inverse of exp :MS → NQ at Y as X = logS(Y ).

1 Initial guess X0 ← S if not provided;
2 Y0 ← Y ;
3 i← 0;
4 while ‖Yi − Y ‖ > ε do
5 Mi ← Skew(Y T

i Y − In) ; // Project difference to TYiSOn

6 Ni ← L−1
Xi

(Ni); // Algorithm 2

7 Xi+1 ← Xi + α ·Ni; // Line search for step size α
8 Yi+1 ← exp(Xi+1);
9 i← i+ 1;

10 Return Xi;

There are three important algorithmic considerations to note in Algorithm 3. First of all,

the Mi in line 5 is an estimation of the difference between Yi and Y . Theoretically speaking, the

Mi = log(Y T
i Y ) should be used. However, the computation cost in one iteration is dominated

by the matrix exponential in line 8, including an extra matrix logarithm in line 5 would double
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the execution time in one iteration. On the other hand, due to the close enough assumption of

Y ∈ NQ, the estimation Skew(Y T
i Y − In) is good enough for the convergence. Therefore, the latter

is used rather than the former. Secondly, the computation executed in line 6, L−1
Xi

(Mi) = Ni,

should reuse the information available in line 8 from the last iteration, exp(Xi) = Yi. It implies

that the matrix exponential should be computed with the Schur decomposition approach exp(Xi) =

exp(RiDiR
T
i ) = RT

i exp(Di)R
T
i and the Schur vectors Ri and angles Θi in Di should be kept for

later computations in line 6. Finally, although the line search procedure is mentioned in line 7 for

the sake of completeness, it is actually not recommended to perform complicated line search for the

step size, as verifying the quality of a try on the step size requires a full matrix exponential. The

current stable implementation of Algorithm 3 uses the constant step size α = 1. A more careful

discussion of the linear search and convergence investigation is left as future work.

Recursive Algebraic Method. The recursive algebraic method takes a different approach

by exploiting the fact that the smooth curve {Y (t) = exp(S) exp(t · ∆) : t ∈ [0, 1]} ⊂ NQ where

Y (0) = exp(S) and Y (1) = Y produces a smooth curve {X(t) = logS(Y (t)) : t ∈ [0, 1]} ∈ Skewn

where X(1) = logS(Y ) is the desired solution.

Therefore, for any δ > 0, there exists a sufficiently small mesh 0 = t0 < t1 < · · · < tk = 1, such

that ‖X(ti−1) − X(ti)‖2 < δ,∀i = 1, · · · , k. Although computing the matrix 2-norm is almost as

expensive as computing a matrix logarithm, it is not hard to estimate its lower bound as

‖M‖2 ≥ max
i,j=1,··· ,n

|Mi,j |

where Mi,j are the entries in M . Then, for a preferred Schur decomposition Y (t) = RERT with

X = RD̃RT where D̃ are shifted from the principal Θ in Y , there is ‖S −X‖2 = ‖RTSR − D̃‖2.

Note that the freedom in the above difference is the 2π shifts on the diagonal. Let M = RTSR,

then

|M2i+2,2i+1 − θi − 2ξiπ| < π,∀i = 1, · · · ,m (3.13)

is necessary to have ‖M − D̃‖2 < π, where ξi ∈ Z. Such an integer vector ξ is unique and can be

found from the integer part of (M2i+2,2i+1 − θi)/2π. It leads to the following recursive algebraic
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algorithm.

Algorithm 4: Algebraic Method for Computing the Nearby Logarithm

Input: S ∈ Se, Q = exp(S) with diffeomorphism exp :MS → NQ, ∆ ∈ Skewn where
{exp(S) exp(t ·∆) : t ∈ [0, α]} ⊂ NQ, threshold δ < π on matrix 2-norm, step size
α ≤ 1 and shrinking parameter σ < 1.

Output: Xα = logS(Q(α))
1 If δ not provided, δ ← δΩ, the distance from S to ConjIn ; // (3.10)
2 Qα ← Q exp(α ·∆S);
3 Factor Qα for a preferred Schur decomposition RERT and the principal angles Θ;
4 M ← RTSR;
5 Find the unique set of integers ξi, i = 1, · · · ,m that satisfies (3.13);

6 M̃ ←M − diag

([
0 −θ1 − 2ξ1π

θ1 + 2ξ1π 0

]
, · · ·

)
;

7 if ‖M̃‖2 < δ then

8 Xα ← R diag

([
0 −θ1 − 2ξ1π

θ1 + 2ξ1π 0

]
, · · ·

)
RT;

9 Return (Qα, Xα)

10 else
11 Call itself for (Qσα, Xσα) from Algorithm 4 with (S,Q,∆, δ, σ · α, σ);
12 Call itself for (Qα, Xα) from Algorithm 4 with (Xσα, Qσα,∆, δ, (1− σ) · α, σ);
13 Return (Qα, Xα);

In this recursive algorithm, the divide-and-conquer idea is employed in lines 11 and 12, when

the trial solution identified in line 5 does not satisfy the bound δ on the matrix 2-norm. The failure

in line 5 suggest that the algebraic approach has no guarantee in computed solution. Then, a

break point Qσα = Q exp(σα ·∆) is inserted and then line 9 attempts to solve the easier problem

Xσα = logS(Q exp(σα · ∆)). When line 9 succeeds, the algorithm moves on the solve the nearby

logarithm problem on the remaining Q exp(t ·∆), t ∈ [σα, α]. When the call in line 11 fails at its

first attempt, another breakpoint is inserted at t = σ2α and another two calls to Algorithm 4

are made in line 11. This process continues until all calls to Algorithm 4 succeed, and it thereby

produces a mesh {t0 = 0, · · · , tk = 1} with Xi = logS(Q exp(ti ·∆)) satisfying ‖Xi+1 −Xi‖2 < δ.

There are tthree important algorithmic observations in Algorithm 4. Firstly, the complexity

within each call to Algorithm 4 is dominated by three parts, the matrix exponential in line 2,

the Schur factorization in line 3 and the matrix 2-norm evaluation in line 7. Improvements on

these subroutines will help improve the overall performance considerably. Secondly, the divide-

and-conquer strategy in line 11 and 12 can be adjusted so that they reuse the previous computed

objects in the recursive calls as much as possible. For example, by setting σ = 1/2, the matrix

exponential in line 2 in each call becomes exp((k/2s)∆). By further restricting α being 1/2s, only

exp((1/2s)∆) are needed. These exponentials are available in one call to the scaling and squaring

57



algorithm [25] when computing exp(∆). Finally, the threshold δ < π significantly affects the total

number of calls, it is currently using the distance from S to ConjIn as the inscribed ball guarantees

a diffeomorphism. However, this condition is not necessary and it may be too restrictive in some

cases. It is left as future work to determine a more efficient and precise bound δ.

3.4.3 Visualizing Geodesics with Skew Symmetric Matrices

The complexity of the Algorithm 3 and Algorithm 4 depends on various complicated factor as

discussed above. They include the quality of the initial guess for Algorithm 3 and the appropriate

bound in (4.3) for Algorithm 4. Other than the algorithmic influences, the primitives that requires

the real Schur decomposition on skew symmetric matrices and special orthogonal matrices also

have significant influences to the overall complexity. This is an active research area with a lot of

potential unexploited, see [24], so it is too earlier to make systematic comparison of the computing

performances in the two presented algorithm. Therefore, this chapter performs a simple experiment

to demonstrate that both algorithms have the correct functionality, which is to computed the nearby

matrix logarithm around S ∈ Skewn that is potentially beyond the principal branch.

Consider the geodesics Q(t) = exp(S) exp(t ·∆), t ∈ [0, 1] used in the last experiment, instead of

just getting logS(Q(1)), this part extends the geodesic with large enough t ∈ [0, T ] and inserts 5000

mesh points 0 = t0 < t1 < · · · < tk = T . Then, the nearby matrix logarithm is used step-by-step

as S0 = S, Si = logSi−1
(Q(ti)), i = 1, · · · , k. The returned Si are expected to be a smooth curve on

Skewn, which is illustrated in Figure 3.2. For a skew symmetric matrix S ∈ Skewn with the angles

θ1 and θ2, Figure 3.2 reports its angles to demonstrates the smoothness. Notice that the order in

θ1 and θ2 as well as the signs in them can be arbitrarily flipped while the corresponding S ∈ Skewn

remains the same. Therefore, the eight possible combinations of angles in every S ∈ Skew4

{(θ1, θ2), (θ2, θ1), (−θ1, θ2), (θ2,−θ1), (θ1,−θ2), (−θ2, θ1), (−θ1,−θ2), (−θ2,−θ1)}

are checked and the most appropriate combination is selected to be reported in Figure 3.2.
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Figure 3.2: Illustration of Geodesics with Skew Symmetric Matrices.

Red Dashed: ConjIn ; Black Dashed: {S : ‖S‖2 = π}; Solids: Curves Computed by the Nearby Logarithm
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CHAPTER 4

SMOOTHLY EVOLVING GEODESIC PROBLEM

ON THE SPECIAL ORTHOGONAL GROUP

4.1 Introduction

The special orthogonal group SOn arises in many applications, [5, 22, 10, 15], and a special

orthogonal matrix is usually interpreted as a rotation to set of independent variables. For example,

a 3×3 special orthogonal matrix is usually used to represent a rotation of the 3 spacial coordinates

and it can be extended to a 6 × 6 special orthogonal matrix if the rotations in the velocities are

included. This information may be collected from a gyroscope and a GPS locator that describes an

object’s momentum in each time frame. Part of the anti-vibration algorithm in cameras takes the

average of these rotation information of lens to adjust the graphic information at each time frame

and to produce a picture with more consistent and stable quality. However, these applications suffer

from the fact that the rotation information can only be smoothly represented in a small region and

there is a lack of a smooth representation of all rotations in practice, see [40].

With the differential of matrix exponential restricted to the skew symmetric matrices and the

nearby matrix logarithm on the special orthogonal matrices developed in the previous two chapters,

it is possible to define and solve the smoothly evolving geodesic problem on SOn. The smoothly

evolving geodesics computed in this chapter present a novel solutions to the above issues and

they also yield important implications on other manifolds with special orthogonal constraints as

discussed in later chapters.

4.2 Preliminaries

SOn is a set of orthogonal n× n matrices that have their determinant equal to 1, i.e.,

SOn :=
{
Q ∈ Rn×n : QTQ = In, detQ = 1

}
. (4.1)

This is a Lie group and there is a natural Riemannian structure induces by the Lie structure, as

developed in [11]. Some important notions are reviewed in this section.
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As a Lie-group-induced Riemannian structure, SOn is a complete manifold, on which the Rie-

mannian exponential is smoothly defined on the entire tangent space at any point. Furthermore,

SOn is connected. It is then safe to conclude that the Riemannian exponential on SOn forms a

smooth surjective map ExpQ : TQSOn → SOn at any Q ∈ SOn. More details specific to SOn are

given below.

The tangent space of SOn at special orthogonal matrix Q is characterized by the set of skew

symmetric matrices as

TQSOn = {QS : S ∈ Skewn}

where Skewn = {S ∈ Rn×n : S + ST = 0} collects all skew symmetric n × n matrices. The

Riemannian metric is given by the inner product between the skew symmetric matrices as

gQ(QS1, QS2) =
1

2
tr(ST

1 S2).

The corresponding Riemannian geodesic takes the simple form of

ExpQ(QS) = Q exp(S)

where exp(·) is the matrix exponential.

Note that the identity matrix In lives in SOn and the cut locus of In in TInSOn takes the

following simple form:

CutIn = {S : S ∈ Skewn, ‖S‖2 = π}.

In other words, for any skew symmetric S with ‖S‖2 < π, the geodesic Q(t) = exp(t · S), t ∈ [0, 1]

is the unique shortest geodesic between In and exp(S). According to the Lie group structure, the

characterization of CutIn can be transported to any Q ∈ SOn as follows

CutQ = {Q · S : S ∈ Skewn, ‖S‖2 = π}.

4.3 Problem Formulation

With the notations introduced above, it is easy to write the smoothly evolving geodesic problem

on SOn in the form of PS(0) = PS

P exp(S(t)) = Q(t), ∀t ∈ [0, 1]

61



for substituting (1.2) with P ∈ SOn for x ∈ M, PS ∈ TPSOn for v ∈ TxM and P exp(S(t)) for

Expx(v(t)). However, this formulation is equivalent to a simpler formulation that emanates from

the identity matrix as in the following Definition 4.3.1.

Consider the general formulation of the smoothly evolving geodesic problem (1.2) on the special

orthogonal group M = SOn with x = In, TxM = Skewn, v = S and Expx(v) = exp(S). The

smoothly evolving geodesic problem on SOn is defined as follows.

Definition 4.3.1 (Formulation at the Identity Matrix). For a smooth curve of special orthogonal

matrices {Q(t), t ∈ [0, 1]} ⊂ SOn with a skew-symmetric matrix S satisfying exp(S) = Q(0), the

smoothly evolving geodesic problem on SOn seeks a smooth curve of skew-symmetric matrices

{S(t), t ∈ [0, 1]} ⊂ Skewn such thatS(0) = S

exp(S(t)) = Q(t),∀t ∈ [0, 1]
(4.2)

It remains to show that the smoothly evolving geodesic problem at any point P ∈ SOn can be

solved under the formulation (4.2) at In, which follows from the transitive property of the geodesics

on SOn. For an arbitrary smooth curve {Q(t), t ∈ [0, 1]} ⊂ SOn, a reference special orthogonal

matrix P 6= In and an initial velocity PS ∈ TPSOn such that ExpP (PS) = Q(0), there isPS(0) = PS

P exp(S(t)) = Q(t), ∀t ∈ [0, 1]
⇐⇒

S(0) = S

exp(S(t)) = PTQ(t), ∀t ∈ [0, 1]

Let Q̃(t) = PTQ(t). Then, the smooth evolving geodesic problem of Q(t) referenced at P is

converted to (4.2) of Q̃(t) referenced at In. The found solution S(t) of the Q̃(t) problem can be

recovered as the solution PS(t) ∈ TPSOn of the Q(t) problem.

The ability of shifting a geodesic emanating from P to a geodesic emanating from In and vice

versa is known as the transitive property, which follows from the Lie group structure. On a more

general manifold that may not enjoy similar features, one should expect more complications in

solving the smoothly evolving geodesic problem.

4.4 Solution Characterized by the Nearby Matrix Logarithm

With the smoothly evolving geodesic problem on SOn formulated at the identity matrix as (4.2),

it is simplified to the problem of finding a smooth inversion of the matrix exponential evaluated
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in the skew symmetric matrices. This problem is locally solved by the nearby matrix logarithm

developed in Chapter 3, as the local diffeomorphism exp : MS → N at a neighborhood of S

uniquely specifies the inversion. This statement is summarized as follows.

Proposition 4.4.1. Consider any skew symmetric S /∈ ConjIn with Q = exp(S), let exp :MS →

NQ be a local diffeomorphism where MS is an open neighborhood that includes S. Then, for any

smooth curve {Q(t) : t ∈ [0, 1]} ⊂ SOn with Q(0) = Q, the solution to the smoothly evolving

geodesic problem (4.2) with Q(t) and S(0) = S is uniquely given by the nearby matrix logarithm

S(t) = logS(Q(t)).

Proof. The existence and the smoothness of the curve S(t) = logS(Q(t)) are guaranteed by the

diffeomorphism. It is also easy to see that exp(S(t)) = Q(t) by construction. Therefore, S(t) is a

solution.

The uniqueness follows from characteristics of the isolated preimage. Since the neighborhood

MS does not include any matrix in the conjugate locus by construction. Theorem 3.2.6 suggests

that the solution S(t) = logS(Q(t)) at any t ∈ [0, 1] is an isolated point such that ∀X 6= S(t)

satisfying exp(X) = exp(S(t)) = Q(t), there is ‖X − S(t)‖2 ≥ 2π. If any other smooth curve X(t)

satisfying exp(X(t)) = Q(t) exists, then there is ‖X(t)−S(t)‖2 > π,∀t ∈ [0, 1]. This is impossible,

as X(0) = S(0) = S is the shared initial point.

With Theorem 3.3.4 constructing a practical diffeomorphism in an inscribed ball and the

Algorithm 3 and Algorithm 4 computing the nearby logarithm reliably, it remains to partition

the smooth curve {Q(t) : t ∈ [0, 1]} into 0 = t0 < t1 < · · · < tk = 1, such that

{Q(t) : t ∈ [ti−1, ti]} ⊂ NQ′ ,∀i = 1, · · · , k, for some diffeomorphism exp :MS′ → NQ′ . (4.3)

The divide-and-conquer idea is applicable to the partition process, which leads to the following

algorithm that has a structure similar to the algebraic algorithm of the nearby matrix logarithm,
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Algorithm 4.

Algorithm 5: Smoothly Evolving Geodesics Computed by the Nearby Matrix Logarithm

Data: Special orthogonal {Y (t), t ∈ [0, 1]}
Input: Section [t, s] ∈ [0, 1], skew symmetric X(t), shrinking parameter σ < 1
Output: X(α) from the solution X(t) in (4.2)

1 if Condition (4.3) for {Y (t), t ∈ [t, s]} is satisfied with exp :MS′ → NQ′ then
2 Return logS′(Y (s)) ; // Algorithm 3 or Algorithm 4
3 else
4 δ ← (1− σ)t+ σs;
5 Call itself for X(δ) from Algorithm 5 with ([t, δ], X(t), σ);
6 Call itself for X(s) from Algorithm 5 with ([δ, s], X(δ), σ);
7 Return X(s);

There are two important algorithmic considerations in Algorithm 5. Firstly, the difficulties

in verifying the condition in line 1, i.e., in (4.3), may vary from no computation to very expensive

computations. It depends on the structure of Q(t), e.g., it is difficult to locate a diffeomorphism

covering Q(t), if it exists, when Q(t) gets arbitrarily close to the Q in (3.7). On the other hand,

when Q(t) takes a simple form like Q(t) = Q exp(t · · ·∆), a sufficiently small section of s − t < ε

guarantees (4.3). One of the practical criteria is to check

lQ(t)→Q(s) < LδΘ

where lQ(t)→Q(s) is the (estimated) length of Q(t) section, L is the (estimated) upper bound of

operation norm L−1
X for X ∈ MS(t) and δΘ is the radius of the inscribed ball MS(t), which is the

distance from S(t) to ConjIn . Secondly, the appropriate choice in computing the nearby logarithm

in line 2 also depends on the structure and the knowledge of Q(t). When Q(t) = Q exp(t ·∆), the

curve coincides with the intermediate curve used in Algorithm 4, which makes it an appropriate

choice. In the case where users can generate a good initial guess for logS′(Y (s)), Algorithm 3

becomes more feasible.

Unfortunately, it is not clear how to justify the global existence of the solution X(t) to the

smoothly geodesic problem (4.2) with arbitrary smooth curve Y (t). A convenient sufficient condi-

tion is to assume {Y (t) : t ∈ [0, 1]}∩Q = ∅, i.e., there must exist an open cover {MSi ⊂ Se}ki=1 for

some e ∈ E , such that {exp(M)Si}ki=1 covers {Y (t) : t ∈ [0, 1]} and the respective nearby logarithm

of exp :MSi → NQi identifies the unique solution {X(t) : t ∈ [0, 1]} ⊂ Se. However, this condition

is not necessary. For the Y ∈ Q, there still exists an isolated solution X ∈ E−1
Y with an invertible

D expX as given in Theorem 3.2.6. For such Y = exp(X), let S(t) = X, there is still a local

diffeomorphism around X that guarantee the existence of solution to (4.2) locally around X. Even
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for the X ∈ ConjIn that solves exp(X) = Y ∈ Q, the numerical experiment performed on the

geodesic Y (t) = Q exp(t ·∆) in Chapter 3 indicates that such a curve can be extended to infinity

in general. This observation leads to the discussion in the next section about the Y (t) being the

geodesics on SOn rather than arbitrary smooth curves.

4.5 Smoothly Evolving Geodesics of Endpoints Varying along
Geodesic

In the smoothly evolving geodesic problem (4.2), the smooth condition is the constraint on

the varying endpoints Q(t). Based on the local diffeomorphism exp : MS → NQ established on

Se, e ∈ E , the smoothly evolving geodesic problem has a local solution in Proposition 4.4.1. This

section considers the locality constraint in Proposition 4.4.1 and further investigates the smoothly

evolving geodesic problem (4.2) on the endpoints varying along geodesics emanating from Q as

Q(t,∆) := Q exp(t · · ·∆) = ExpQ(t ·Q∆).

The more restricted and structured varying endpoints yield a stronger and more global conclusion.

4.5.1 Vector Fields and Geodesics

First of all, recall that a Riemannian geodesic γ(t) emanating from γ(0) along γ̇(0) on the

manifold M is the unique solution to the ODE problemγ̇(t) = Pγ,0→tγ̇(0)

γ(0) = γ(0)
(4.4)

where Pγ,0→t : Tγ(0)M→ Tγ(t)M is the parallel translation along γ. Then, the parallel translation

on SOn along the geodesic γ(t) = Q(t,∆) is given by the map

PSOn
γ,0→t(QS) = Q exp(t∆)S, ∀QS ∈ TQM = {QS : S ∈ Skewn}.

In other words, any given geodesic Q(t,∆) is equivalent with a vector field on SOn as

V∆ := {Q∆ : Q ∈ SOn} ⊂ TSOn (4.5)

where TSOn =
⋃
Q TQSOn is the tangent bundle of SOn. At any point Q, the vector field V∆(Q)

assigns a tangent vector Q∆ ∈ TQSOn. With this vector field given and the initial point γ(0) = Q

specified, the original geodesic Q(t,∆) can be uniquely recovered.
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Recall that the (pseudo) inverse operator at X ∈ Skewn with Y = exp(X) is

D exp†X : Texp(X)SOn → Skewn

Y S 7→ L†X(S), ∀S ∈ Skewn.

Notice that the “prefix” Y is dropped and the vector field V∆, (4.5), to SOn naturally relates to

the following vector field to the set of skew symmetric matrices

S∆ := {L†X(∆) : X ∈ Skewn}. (4.6)

At any X ∈ Skewn, the vector field S∆(X) assigns the tangent vector L†X(∆) ∈ TXSkewn =

Skewn.

Proposition 4.5.1. The vector field S∆ constructed in (4.6) is locally smooth around X if ∆ ∈

R(LX), i.e., Y∆ is in the range space of D expX , where Y = exp(X).

Proof. When X /∈ ConjIn , LX is invertible and the LS is smooth around X, according to the

explicit formula derived in (2.8). Then, the smoothness of S∆ around X follows.

When X ∈ ConjIn and ∆ ∈ R(LX), by the nature of a pseudo inverse operator, there is LX = ∆

and the designed projector onto R(LX) degenerates to the identical map. Without the non-smooth

action given by the projector, for any X(t) ∈ Skewn with X(0) = X and Y (t) = exp(X(t)). There

is Y (0) = exp(X) ∈ Q. When X(t) leaves ConjIn , i.e., Ẋ(0) is not tangential to ConjIn , Y (t) leaves

Q and the restricted S∆(X(t)) = L†X(Y (t)) is smooth. When Ẋ(0) is tangential to ConjIn , the

designed pseudo inverse operator remains a smooth action, which follows from the explicit formula

developed in Definition ??.

Note that for the ∆ /∈ R(LX) case, the vector field S∆ is no longer smooth around X, which

only happens on the conjugate locus ConjIn . The almost every where smooth vector field yields the

ODE problem with the unique solution that coincides with the solution of the smoothly evolving

geodesic problem as stated in follows.

Theorem 4.5.2. For any geodesic Q(t,∆) = Q exp(t ·∆) with exp(S) = Q and ∆ ∈ R(LS), there

exists a unique (local) solution S(t), t ∈ [0, ε] to the ODE problem

Ṡ(t) = S∆(S(t))

(S(0)) = S
(4.7)

This solution coincides with the smoothly evolving geodesic problem (4.2) with Q(t,∆) and S(0) = 0.
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Proof. The existence and uniqueness of the S(t) as a solution to the ODE (4.7) is guaranteed by

the smoothness that follows from Proposition 4.5.1.

To see that it is the solution to the smoothly evolving geodesic problem, notice that

d

dt
exp(S(t)) = D expS(t)

[
d

dt
S(t)

]
= D expS(t)[S∆(S(t))] = exp(S(t))∆.

By the existence and uniqueness of the solution to the ODE (4.4) with exp(S(0)) = Q, the solution

must be exp(S(t)) = Q exp(t · · ·∆). Therefore, {S(t), t ∈ [0, ε]} satisfies the criteria of the solution

to (4.2).

Note that the ODE formulation presented in this section is a more universal characterization

of the smoothly evolving geodesic problem on an arbitrary Riemannian manifold. Therefore, it is

expected to define the same curves stated in Theorem 4.5.2. Thanks to the rich geometry in the

SOn, the solution to the smoothly evolving geodesic problem can be computed without introducing

the ODE (4.7).

4.5.2 Co-Manifold Characterization

With the vector field S∆ as a function of ∆ ∈ Skewn that defines ODEs throughout Skewn,

the following definition of a co-manifold characterization is introduced to establish a “copy” of the

SOn around some exp(X) = Y realized in TInSkewn.

Definition 4.5.3. For any X ∈ Skewn and Y = exp(X), let B be a subspace of R(LX). Then a

co-manifold characterization around X with B is defined as a map

CX,B : B→ Skewn

∆ 7→ X(1)
(4.8)

where ∆ yields a solvable ODE (4.7) for t ∈ [0, 1] and X(1) is the solution X(t) evaluated at

t = 1.

Note that it is not completely understood if any ∆ with arbitrary scale yields a solvable ODE,

i.e., it is not clear if the local solution {X(t) : t ∈ [0, ε]} to ODE (4.7) can be extended to infinity.

Therefore, CX,B may only be well defined within an envelope in B. Nevertheless, the well-defined

part remains a smooth map.

Proposition 4.5.4. The well defined co-manifold characterization CX,B is a smooth and invertible

mapping, which further provides a smooth characterization of {Q exp(∆) : ∆ ∈ B} as Q exp(∆) 7→

X(1).
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Proof. The map Q exp(∆) 7→ X(1) is the solution to the smoothly evolving geodesics with endpoints

restricted to vary along geodesic evaluated at the endpoint Q(1) 7→ X(1). However, this mapping

is generally not invertible, as the solution is path-dependent. In this case with the path fully

characterized by ∆, the mapping between X(1) and ∆ is indeed invertible.

When the existence and uniqueness of CX,B(∆) is guaranteed around ∆, the smoothness follows

from the fact that it is locally realized by the nearby logarithm, which is a local diffeomorphism.

Note that the co-manifold characterization CX,B remains a local characterization. However,

the set {Y exp(S) : S ∈ B} generated at Y = exp(X) with B has a very strong global manifold

structure in SOn. It is reasonable to speculate that there is a manifold structure in the collection

of the co-manifold characterization as defined in below.

Definition 4.5.5. Consider a submanifold G in SOn generated at Y ∈ SOn defined as

G = G(Y,B) := {Y exp(S) : S ∈ B} (4.9)

where B is a subspace. The co-manifold characterization of the submanifold G is the union of the

co-manifold characterization around X where exp(X) ∈ G defined as

CG :=
⋃

{X:exp(X)∈G}

CX,B. (4.10)

The co-manifold characterization is a novel concept that attempts to translate and preserve

the structure of a submanifold in SOn to Skewn which enjoys an embedded Euclidean structure.

Although most of the geometry in the co-manifold is not understood globally, it provides a con-

nected manifold-like feasible set that supports the retraction-like first order update according to

the following observation.

Lemma 4.5.6. A geodesic triangle on SOn with the vertices QA, QB, QC ∈ SOn and the edges

QA exp(t · XAB), QA exp(t · XAC), QB exp(t · QBC) for t ∈ [0, 1] and XAB, XBC , XAC ∈ Skewn

is equivalent to a geodesic triangle with the vertices In, Q
T
AQB, Q

T
AQC with the edges exp(t ·

XAB), exp(t ·XAC) and QT
AQB exp(t ·QBC).

The geodesic triangles on SOn can be arbitrarily shifted by any special orthogonal matrices. In

Lemma 4.5.6, the triangle QA, QB, QC is shifted by the transpose of a vertex QT
A. Regardless of
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how the triangle is shifted, the skew symmetric matrices XAB, XBC and XAC that characterizes the

edges remains unchanged. Notice that the triangle In, Q
T
AQB, Q

T
AQC in SOn also yields a triangle

in Skewn with vertices 0, XAB and XAC with edges parameterized by t ∈ [0, 1]: SAB(t) = t ·XAB,

SAC(t) = t ·XAC and SBC(t) solved from the smoothly evolving geodesic problem exp(SBC(t)) = QT
AQB exp(t ·XBC)

SBC(0) = XAB

.

The following proposition states a more general result.

Proposition 4.5.7. Consider any A ∈ Skewn with a solution SAB(t) that arrives at a B ∈ Skewn

that is characterized by XAB ∈ Skewn as follows, exp(SAB(t)) = exp(A) exp(t ·XAB)

SAB(0) = A
.

If there is another solution SBC(t) that emanates from B and arrives at a C ∈ Skewn given by exp(SBC(t)) = exp(B) exp(t ·XBC)

SBC(0) = B
.

Then, there exists a solution SAC(t) that emanates from A and arrives at a C ∈ Skewn given by exp(SAC(t)) = exp(A) exp(t ·XAC)

SAC(0) = A
,

such that SAB(t), SBC(t), SAC(t) forms a triangle in Skewn and their exponential form a geodesic

triangle in SOn.

Proof. When A = 0 which makes exp(A) = In, the edge SAB(t) is fully characterized as SAB(t) =

t·B. Then, the edge SBC(t) is given as an assumption. Let C be the arriving point in SBC(t) and the

edge SAC(t) = t · C naturally follows. For the A 6= 0 case, shift the geodesic triangle by exp(−A)

to obtain the endpoint Q′A = exp(−A)QA = In, Q′B = exp(−A)QB and Q′C = exp(−A)QC .

Then, let A′ = 0 so that B′ and C ′ in the respective exp(B′) = Q′B and exp(C ′) = Q′C can

be solved by the nearby matrix logarithm, as indicated in the first scenario. Shift the geodesic

triangle Q′A, Q
′
B, Q

′
C and the corresponding skew symmetric triangle A′, B′, C ′ back to QA, QB, QC

concludes the statement.
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Corollary 4.5.8. For any sequential updates Si → Si+1 → · · · → Si+n along the solutions to the

smoothly geodesic problems in the form of
exp(Sj→j+1(t)) = exp(Sj) exp(t ·Xj→j+1)

Sj→j+1(0) = Sj

Sj→j+1(1) = Sj+1

, j = 1, · · · i+ n− 1,

there exists a direct update Si→i+n(t) in the form of the solution to
exp(Si→i+n(t)) = exp(Si) exp(t ·Xi→i+n)

Si→i+n(0) = Si

Si→i+n(1) = Si+n

such that it construct a polygon with n+ 1 edges in Skewn.

Proof. Repeatedly apply Proposition 4.5.7 to get the triangle with the edges Si→i+1(t), Si+1→i+2(t)

and Si→i+2(t), and then the triangle with the edges Si→i+2(t), Si+2→i+3(t) and Si→i+3(t). It con-

tinues until the Si+n is produced.

Corollary 4.5.8 is essential to the computations, especially in solving an optimization prob-

lem with iterative updates. In those computations, a series of data points {X0, X1, · · · } are

computed along the smoothly evolving geodesic and this corollary guarantees that there exists

a smoothly evolving geodesic that connects the originated initial guess X0 to any Xi, i > 0.

Such a geodesic maintains connectivity and smoothness from the initial guess to any interme-

diate result as long as the update is constrained by the smoothly evolving geodesic problems in

Corollary 4.5.8. Notice that the constrained update in Corollary 4.5.8 is exactly the condi-

tion proposed on the co-manifold characterization, i.e., the sequential updates in the co-manifold

characterization also maintains connectivity and smoothness inherited from a smoothly evolving

geodesic. This is useful in many applications and analyses. For example, in the Stiefel man-

ifold that consists of n × p orthonormal matrices, each matrix X is identified with the subset

{Q ∈ SOn : ∀Q =
[
X X⊥

]
}. This subset is a submanifold in SOn and can be fully characterized

as

{
Q exp

([
0 0
0 ∆n−p

])
: for some Q =

[
X X⊥

]
, ∀∆n−p ∈ Skewn−p

}
. The co-manifold char-

acterization then further translates this submanifold characterized in ∆n−p to TInSOn = Skewn.
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CHAPTER 5

VELOCITY-BASED KARCHER MEAN ON THE

SPECIAL ORTHOGONAL GROUP

5.1 Introduction

The Karcher mean problem that finds an average of a given set of points arises in the literature

and applications in various contexts. The Karcher mean on a Riemannian manifold has a significant

amount of attention as the manifold structure provides an intrinsic representation of constrained

objects. These objects are embedded in a parameterization space that has significantly larger di-

mension than the manifold in general. Furthermore, a Riemannian metric equips the manifold

with a metric space that is inherently related to the motion on the constrained sets rather than the

embedded space. Ever since the work by Edelman et al. in [11], the notion of Riemannian mani-

folds is proposed on various constrained objects and the Karcher mean problem on the respective

Riemannian manifold has been studied extensively, see for example [20], [35], [2] and [39].

Recall that a Karcher mean on a metric space M with distance function dist : M×M → {x ≥ 0}

is the global minimum to the following objective function

f(x) :=
1

2k

k∑
i=1

dist(x, yi)
2,∀x ∈M

where {y1, · · · , yk} are the given data points. In a Riemannian setting, the distance between 2

points is realized by the length of a shortest geodesic between them, which is measured by its

velocity under the Riemannian metric. Then, the objective function is equivalent to

f(x) =
1

2k

k∑
i=1

gx(Logx(yi),Logx(yi))

=
1

2k

k∑
i=1

gyi(Logyi(x),Logyi(x))

(5.1)

where Logp : M → TpM for p ∈ M is the Riemannian logarithm. It returns an initial velocity

at p that emanates a shortest geodesic arriving at the given q ∈ M. This elegant and compact

objective function provides a necessary and sufficient condition for x ∈ M being a critical point if
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and only if
k∑
i=1

Logx(yi) = 0. (5.2)

This is obtained from differentiating the objective as D fx[∆] =
∑k

i=1 gx(Logx(yi),∆)/k. Unfortu-

nately, there are severe theoretically concerns in utilizing the condition (5.2).

All concerns arise from the differentiability of f(x), which depends on the distance function al-

ways being differentiable, i.e., the Riemannian logarithm always being differentiable. Unfortunately,

this is impossible in general. Consider the SOn investigated in this dissertation as an example,

there exist multiple shortest Riemannian geodesics for some pair of points. On these points, neither

the distance function is differentiable, nor is the Riemannian logarithm well-defined or continuous.

As a consequence, the objective function (5.1) may be globally non-smooth and non-convex, which

may introduce multiple local minima to this objective function based on distances. Other than

the theoretical difficulties in identifying the “unique” Karcher mean, the existence of multiple local

minima implies the sensitivity and discontinuity within the computed Karcher mean with respect

to the varying data set as well as the varying computing setup. In other words, when the given data

points or the initial computing setup are perturbed (in a smooth manner), the computed Karcher

mean may jump from one local minimum to another discontinuously.

Except for the rare cases where the Riemannian manifold is shown to be globally geodesically

convex, e.g., the set of positive definite matrices in [39], the issues of differentiability persist. In

most of the literature about Karcher mean on Riemannian manifolds, the global minimum require-

ment in the classic distance-based Karcher mean formulation is dropped and any local minimum

characterized by (5.2) is accepted as a Karcher mean, e.g., [20, 38]. Some literature addresses

and handles the uniqueness by restricting the data set to be close enough, e.g., [20]. When the

Riemannian logarithm is not computationally available, the (5.2) with an alternative for Logx is

used to define a Karcher-mean-like mean, e.g., [2].

This chapter investigates the differentiability issues of the Karcher mean on SOn by looking

into a SO2 example, i.e., the Karcher mean on a circle. Then, it applies the tools developed on

SOn to propose a generalized Karcher mean that depends on velocity input on SOn, namely the

velocity-based Karcher mean. The velocity-based Karcher mean is designed to maintain the differ-

entiability in computations and numerical experiments are performed to demonstrate its potential

in applications.
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5.2 Example on a Circle

This section considers the simplest non-trivial Karcher mean problem on SOn, the Karcher

mean problem on SO2 with 2 points Q1 and Q2. Any 2 × 2 special orthogonal matrix takes the

form of Q =

[
c −s
s c

]
where c2 + s2 = 1 and this characterization is equivalent with the unit circle

c2 + s2 = 1 with the point p =
[
c s

]T
representing the given Q. Meanwhile, any 2 × 2 skew

symmetric matrix takes the form of ∆ = ∆[0,θ,0] =

[
0 −θ
θ 0

]
where θ ∈ R. In this very restricted

setting of SO2, the geodesic becomes

ExpQ(t ·∆) =

[
c cos(t · θ)− s sin(t · θ) −c sin(t · θ)− s cos(t · θ)
c sin(t · θ) + s sin(t · θ) c cos(t · θ)− s sin(t · θ)

]
, t ∈ [0, 1].

This geodesic is equivalent with the arc moving in the unit circle as

p(t) = (c cos(t · θ)− s sin(t · θ), c sin(t · θ) + s sin(t · θ)).

Note that the arc may overlap when tθ > 2π. Furthermore, the length of the geodesic equals the

length of the arc, which makes the Riemannian distance between two points realized by the shortest

arc length between the corresponding points on the unit circle.

5.2.1 Objective Function with the Riemannian Distance

According to SO2 realized on the unit circle constructed above, consider the Karcher mean

problem of the two points Q1, Q2 ∈ SOn which are realized by y1, y2 as

y1 =

[
cos(0.9π)
sin(0.9π)

]
, y2 =

[
cos(0.6π)
sin(0.6π)

]
Consider the unit circle parameterized by

px :=

[
cos(x)
sin(x)

]
, x ∈ [−π, π].

Figure 5.1 illustrates the y1, y2 and x on a unit circle and plots the objective function f(x) := f(px)

against x. The shortest arcs that realize the Riemannian distances from x to y1 and y2 are also

plotted in red.

Note that the middle point
[
cos(0.75π) sin(0.75π)

]T
with x1 = 0.75π of the arc between y1

and y2 is indeed the Karcher mean of y1 and y2. This is easily verified from the plot of objective

function on the right. However, the objective function f(x) is not globally smooth as expected, it

is not differentiable at x = −0.1π and x = −0.4π. These break points partition the unit circle into
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Figure 5.1: Illustration of the Karcher Mean on an Unit Circle

two regions, the region containing periodic segments [−π,−0.4π] and [−0.1π, π] that can be glued

together at −π and π and the [−0.4π,−0.1π] region. Within both regions, the objective functions

are not only smooth, but also convex, which grants them the respective unique global minimum,

x1 = 0.75π in the first region and the x2 = −0.25π in the second region. Also note that the

non-differentiable points have discontinuous Riemannian logarithms as expected. For example, the

shortest arc from x around −0.1π to y1 = 0.9π flips from the arc in the upper half-circle to the arc

in the lower half-circle or vice versa. This observation is reflected in the discontinuous Riemannian

logarithm with x approaching −0.1π from above or below
lim

x→(−0.1π)−

Logy1

([
cos(x) sin(x)

]T)
=
[
−π sin(0.9π) π cos(0.9π)

]T
lim

x→(−0.1π)+

Logy1

([
cos(x) sin(x)

]T)
=
[
π sin(0.9π) −π cos(0.9π)

]T .

Even with this simple setup, this example has demonstrated the theoretical and computational

subtleties in the Karcher mean formulation on SOn, or on a Riemannian manifold in general.

First of all, the non-smooth structure from the discontinuous Riemannian logarithm introduces

multiple local minima. The more data points it includes in the Karcher mean problem, the more

discontinuous points are introduced. Eventually, it results in more complicated and non-convex

structures in the objective function with more local minima. Secondly, there is no good way to

tell if a local minimum is a global minimum. Even with just 2 points in the example, the found

local minimum x1 and x2 are no different from each other as they both realize the local minimal

objective value with the shortest geodesic connecting to the data points. In other words, one must
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exhaust all local minima to find the true Karcher mean, which is impossible in practice. In an

extreme case when the two points sit the opposite polar point with each other, i.e.,y1 =
[
cos(θ) sin(θ)

]T
y2 =

[
cos(θ) − sin(θ)

]T ,

the corresponding local minima x1 and x2 have the same objective value, i.e., there are two Karcher

means. Last but not the least, some literature, e.g., [20],has relaxed the condition of a Karcher

mean but it may still have computational concerns, as the computed mean is very sensitive with

respect to the initial guess and the distribution of the data set. In other words, consider a set of

relaxed Karcher means of given data set y = {y1, · · · , yk} as follows

ỹ := {x ∈M : f(x) is a local minimum} (5.3)

that consists of all local minima and let

M̂ean(x0,y) ∈ ỹ (5.4)

be the computed relaxed Karcher mean from the initial guess x0. Then the computed mean

M̂ean(x0,y) is not continuous with respect to both the initial guess x0 and the data set y, which

includes the following scenarios.

1. When y stays constant such that ỹ stays constant, M̂ean(x0,y) may jump to a different local

minimum in ỹ as x0 moves.

2. When x0 stays fixed and y varies in a smooth manner such that the set ỹ also varies in

a smooth manner, the computed mean M̂ean(x0,y) may jump from smoothly varying local

minimum to another smoothly varying local minimum.

3. Some of the local minima may vanish as y varies in a smooth manner, e.g., when y1 and y2

overlaps, x2 becomes a kink in the objective function illustrated in Figure 5.1, i.e. it is no

longer a local minimum.

These sensitive relationships are quite common in solving non-convex optimization problems in

general, since the sets of local minima to those non-convex objective functions may not be smooth

in the first place. However, one can expect more structure in the Karcher mean problem on a

Riemannian manifold once the smoothness condition is re-introduced to the objective function.
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5.2.2 Objective Function with the Smoothly Evolving Arc Length

The difficulties in the Karcher mean problem on SOn are consequences of the discontinuous

Riemannian logarithm that is necessary for measuring the distance on a given point. Therefore,

the notion of the smoothly evolving geodesic that comes with a smoothly evolving curve length

is a perfect relaxed alternative to overcome the difficulties. In particular, this section applies the

smoothly evolving geodesic to the same example given above.

For some x ∈ [−π, π], in addition to the point (cos(x), sin(x)) it represents, let θ1, θ2 ∈ R

determine two initial velocities given on y1 and y2 such that the arcs emanating from them along

the respective velocities arrive at x asy1 exp(∆[0,θ1,0]) = px

y2 exp(∆[0,θ2,0]) = px
.

Then, as {x(t) : t ∈ [0, 1]} varies on the unit circle, there exist unique smooth functions θ1(t), θ2(t)

of t such that θi(0) = θi and yi exp(∆[0,θi(t),0]) = px(t). These geodesics correspond to the arcs

on the unit circle that may be greater than the half-circle. Finally, the distance in the objective

function realized by the shortest geodesic is replaced by the curve length of the smoothly evolving

geodesics/arcs. Figure 5.2 illustrates the notion of smoothly evolving arcs in the unit circle and

the corresponding objective function.
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ଶ

𝑟ୠ୪୳ୣ 𝑥, 𝑦ଶ
𝑟ୠ୪୳ୣ 𝑥, 𝑦ଵ

𝑟୥୰ୣୣ୬ 𝑥, 𝑦ଶ

𝑟୥୰ୣୣ୬ 𝑥, 𝑦ଵ

ଵ

ଶ

Figure 5.2: Illustration of the Karcher Mean with Smoothly Evolving Arcs on an Unit Circle

There are two different sets of initial θ1, θ2 presented in Figure 5.2, the blue set and the green

set. For each set, the corresponding objective function degenerates to a globally smooth and convex
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function that consists of the global minimum as the unique critical point. The green set finds the

local minimum x1 from the classic Karcher mean formulation and the blue set finds the local

minimum x2. Even when the data point y1 and y2 overlaps, x2 remains the global minimum to

the green set. More importantly, the original non-smooth and non-convex objective function can

be recovered from taking the minimum over the relaxed objective functions with all possible sets

of initial velocity θ1, θ2. This further validates the observation that distance realized by a shortest

geodesic in the classic Karcher mean formulation is not appropriate.

In conclusion, the Karcher mean formulation in SO2 with the distance replaced by the curve

length of a set of smoothly evolving geodesics has overcome the issues addressed in the previous

section. In particular, the objective function with the velocities of the initial geodesic specified,

namely the velocity-based objective function, is globally smooth and convex on the manifold and

obtains a unique critical point as the global minimum. As long as the algorithmic objects vary

in a smooth manner, the computation under any algorithm remains in the same framework of

the velocity-based objective function and should converge to the corresponding global minimum.

In other words, the computation of solving the optimization problem under this velocity-based

objective function is reliable to the perturbation on the initial guess and the data set.

5.3 Velocity-Based Karcher Mean

In the SO2 example, utilizing the metric space nature in a Riemannian manifold in (5.1) yields

theoretical and computational issues. While these issues cannot be handled by relaxing the global

minimum condition to a local minimum condition, introducing the notion of the smoothly evolving

arc/geodesic solves them naturally. This example suggests that the classic Karcher mean formu-

lation (1.10) is not applicable for a Riemannian setting without some appropriate generalizations.

Therefore, this section considers a more general statement that describes the Karcher mean in a

length argument, which degenerates to the classic formulation in a Hilbert space. Based on that

length argument, a novel Karcher mean formulation based on velocity argument is proposed as a

special case specific to a Riemannian manifold setting.

5.3.1 Length-Based Karcher Mean Objective

Recall that the distance in a Hilbert space is realized by the length of the unique shortest curve

between the given points. In this context, the classic Karcher mean with the objective (1.10) can

be interpreted as a special case of the following statement.
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Lemma 5.3.1. The Karcher mean of a set of data points {y1, · · · , yk} in a metric space M finds a

set of continuous curves, that connects each data point to itself, such that these curves realize the

minimal sum of the squared lengths

f̃(τ̃ , x) :=

∑k
i=1 l

2
τi

2k
, τ̃ = {τ1, · · · , τk} ⊂ Γ(M) (5.5)

where Γ(M) denote the space of all continuous curves in M with well defined length, τi is a curve

connecting yi = τi(0) and x = τi(1) and lτi is the length of τi(t), t ∈ [0, 1].

Consider a Hilbert space as the metric space M in which the shortest curve between given

points is unique and realizes the distance with its length. Then, the minimal sum of the squared

lengths is always achieved by the sum of the squared lengths of the shortest curves, i.e., the sum

of the squared distances. The uniqueness of such shortest curves, given the data points and the

Karcher mean, also makes it trivial to identify them. Eventually, the length-based argument given

in Lemma 5.3.1 degenerates to the classic formulation (1.10) in a Hilbert space, and it is referred

to as the distance-based Karcher mean in this chapter.

When it comes to a Riemannian manifold M where the points can be connected by multiple

geodesics, the shortest curves between points are no longer globally continuous for arbitrary pair of

points in M. The SO2 example has already demonstrated the disadvantages in dropping the non-

minimal geodesics for keeping the distance argument. Since the shortest curve constraint simplifies

the length-based statement in Lemma 5.3.1 only if it is uniquely and continuously defined over

all pair of points on the metric space, one must resort back to the more general length-based

statement to work with a Riemannian manifold. Furthermore, it necessary to further weaken the

global constraint such that the mean associated to non-minimal geodesic can be included. This

ideas lead to the following generalization of the length-based statement.

Definition 5.3.2. The generalized Karcher mean (τ̃∗, x∗) of a set of data points {y1, · · · , yk} is a

local minimum of the length-based objective (5.5) such that for any perturbation (τ̃ , x) 6= (τ̃∗, x∗)

, there is f̃(τ̃∗, x∗) ≤ f̃(τ̃ , x)

Note that the perturbation includes the cases of x∗ = x while τ̃∗ 6= τ̃ and the cases of x∗ 6= x,

i.e., it is both the curves and the shared endpoint x∗ together that realize the local minimum.

However, working on a space of curves Γ(M) with infinite dimension is not desireable in many

ways. The following section considers the generalized Karcher mean (the local minima) of the (5.5)
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specific to a complete Riemannian manifold and derives a simplified version based on a velocity

argument. This is similar to the process of the length-based arguments (5.5) degenerating to the

classic distance-based Karcher mean (1.10) in a Hilbert space.

5.3.2 Velocity-Based Karcher Mean on a Riemannian Manifold

In a Riemannian manifold (M, g), consider a Riemannian geodesic γ(t) = Expy(t · v) with

velocity v ∈ TyM that connects arbitrary y and x = γ(1). Although such a geodesic is no longer

guaranteed to be a curve with the minimal length between x and y, it achieves the local minimal

length in Γ(M), the space of all continuous curves in M with well defined length. In other words,

for any other perturbed curve τ(t) ≈ Expy(t · v) that connects y and x, there is lγ ≤ lτ where the

length of a curve is obtained from the integration of
√
gτ(t)(τ̇(t), τ̇(t)). Note that in an inner product

space like (M, g), the space of curves with well defined length can be further specified as follows.

Γ(M) is the space of continuous curves consists of the curves that can be partitioned into finite

segments such that the aforementioned integral exists on each segment. But the characterization

of Γ(M) is not a primary focus since it is dropped in the simplified formulation.

On the other hand, the Hopf-Rinow theorem guarantees that the Riemannian exponential in a

complete Riemannian manifold is smoothly defined on the entire tangent space at any point y ∈M.

Suppose the manifold is also connected, which is a reasonable assumption for the Karcher mean

problem and denote the set of initial velocities emanating from y ∈M

V(y, x) := {v ∈ TyM : Expy(v) = x} ⊂ TyM

that arrives at x ∈ M along the Riemannian geodesic γ(t) := Expy(ti · v), t ∈ [0, 1]. Then, V(y, x)

is well defined and nonempty for any x, y ∈ M. Furthermore, the length-based argument given in

Definition 5.3.2 is simplified to the following velocity-based argument.

Proposition 5.3.3. Let (M, g) be a complete and connected Riemannian manifold and let y =

{y1, · · · , yk} ⊂ M be a set of data points. Then, any local minimum (γ̃, x) of the length-based

objective (5.5) is equivalent to a local minimum in the velocity-based objective

f(v, x) :=
k∑
i=1

gyi(vi, vi)

2k
=

k∑
i=1

gx(wi, wi)

2k
,v = (v1, · · · , vk), vi ∈ V(yi, x), (5.6)

with the Riemannian geodesics γi(t) = Expyi(t · vi) carrying velocitiesvi := γ̇i(0) ∈ V(yi, x) ⊂ TyiM

wi := γ̇i(1) ∈ TxM
, ∀i = 1, · · · , k. (5.7)

79



More specifically, for any local minimum (v, x) of the of the velocity-based objective (5.6), (γ̃, x)

with γi(t) = Expyi(t · vi) is a local minimum of the length-based objective (5.5).

Proof. This statement follows from the fact that any curve in a complete Riemannian manifold has

the local minimal length between the endpoints if and only if the curve is a Riemannian geodesic.

Note that such a Riemannian geodesic may not be a shortest one.

Suppose there exists a local minimum (τ̃ , x) to the length-based objective such that the τi(t)

is not a Riemannian geodesic. Then, the length operator evaluated at τi ∈ Γ(M) is not a local

minimum, i.e., there exists a perturbed γi 6= τi ∈ Γ(M) with the same endpoints, such that

lγi < lτi , i.e., f̃({τ1, · · · , γi, · · · , τk}, x) < f̃({τ1, · · · , τi, · · · , τk}, x). This is a contradiction to the

assumption. Therefore, any local minimum (γ̃, x) to (5.5) consists of Riemannian geodesics in the

form of γi(t) = Expyi(t · vi), vi ∈ V(yi, x).

It remains to show that the corresponding (v, x) is a local minimum of the velocity-based

objective (5.6). Notice that for any vi ∈ TyiM, it uniquely defines a curve Expyi(t · vi) ∈ Γ(M)

whenM is a complete Riemannian manifold and the length of such a curve is given by
√
gyi(vi, vi).

Therefore, the velocity-based objective (5.6) can be viewed as a restricted subproblem of the length

objective as

f̃(τ̃ , x) :=
l2τi
k
, τ̃ = {τ1, · · · , τk}, τi(t) = Expyi(t · vi).

Then, any local minimum to the full problem (5.5) is naturally a local minimum to the above

subproblem, i.e., a local minimum to the velocity-based objective (5.6).

Note that in both the length-based objective and the velocity-based objective, the shared ar-

riving point x = τi(1) in (5.5) and x = Expyi(vi) in (5.6) for all i = 1, · · · , k is redundant.

However, keeping the shared x in the objective emphasizes that the perturbation to the objective

should yield a shared motion at the point x as a crucial characteristic. In the length-based ob-

jective (5.5), if there is an infinitesimal change (δ̃τ̃ ,∆x) applied to (τ̃ , x) where ∆x ∈ TxM and

δ̃τ̃ = {δi(t) ∈ Tτi(t)M : t ∈ [0, 1]}ki=1, then there must be

δi(1)(t) = ∆x,∀i = 1, · · · , k.

For the velocity-based objective (5.6), the redundant x becomes more informative in expressing the

tangents to the feasible set as follows.
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Proposition 5.3.4. Consider the feasible set that is constrained by (5.7) and let (v, x) be a point

in the feasible set. Then, the tangent to the feasible set around (v, x) takes the form of

(∆v,∆x) :=

({(
D Expyi

)−1

vi
[∆x]

}k
i=1

,∆x

)
∈ Ty1M× · · · × TykM× TxM. (5.8)

Proof. For each geodesic γi(t) = Expyi(t · vi) with the fixed emanating point yi, the infinitesimal

change ∆x ∈ TxM on the arriving point x is fully characterized by the infinitesimal change ∆vi ∈

Tvi (TyiM) = TyiM where ∆vi =
(
D Expyi

)−1

vi
[∆x] have been carefully discussed in the smoothly

evolving geodesic problem in previous chapters.

Note that special considerations are needed if there is an operator D Expyi : TyiM → TxM

that is not invertible. In particular, if ∆x does not fall into the range space of D Expyi , such a

motion to x within (v, x) is not possible in the feasible set constrained by (5.7). It implies that the

feasible set may not be a manifold globally. It remains future work to investigate this specific case.

Nevertheless, the tangent to the feasible set characterized in (5.8) yields the following differential

operator and gradient operator to the velocity-based objective (5.6).

Proposition 5.3.5. The differential of the velocity-based objective (5.6) along (∆v,∆x) in the

form of (5.8) is given by

D f(v, x)[(∆v,∆x)] =
k∑
i=1

gx (wi,∆x)

k
= gx

(
k∑
i=1

wi
k
,∆x

)

=
k∑
i=1

gyi

(
vi,
(
D Expyi

)−1

x
[∆x]

)
k

.

(5.9)

Proof. The first equation follows directly from differentiating the Riemannian metric with respect to

the perturbation to the root along ∆x. By doing so, the v terms in the objective are independent

and therefore dropped. For any w ∈ TxM, there is D gx(w,w)[∆x] = 2gx(w,∆x). The second

equality follows from the bi-linearity in the Riemannian metric. The third equality is obtained

through the chain rule in differentiating the v terms as follows

D fx(v)[(∆v,∆x)] :=

k∑
i=1

1

2k
D (gyi(vi, vi))vi [(∆v,∆x)]

=
k∑
i=1

gyi (vi,D(vi)[(∆v,∆x)])

k
=

k∑
i=1

gyi (vi,∆vi)

k

where ∆vi = (D Exp)−1
vi

[∆x] as characterized in (5.8).
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Corollary 5.3.6. The gradient descent direction

grad f(v,x) := (grad fv1 , · · · , grad fvk , grad fx)

of the velocity-based objective evaluated at (v, x) is given by the grad fx as follows.
grad fx =

k∑
i=1

wi
k

grad fvi =
(
Expyi

)−1

vi
[grad fx]

, ∀i = 1, · · · , k. (5.10)

Furthermore, any (v, x) is a critical local minimum if grad f(v,x) = 0, i.e.,
∑k

i=1wi = 0.

5.3.3 Velocity-Based Karcher Mean on the Special Orthogonal Group

In the special orthogonal group, the tangent space TQSOn at any Q ∈ SOn is equivalent to

Skewn as discussed in previous chapters. Applying the velocity-based Karcher mean notion to

SOn yields the following specific formulation.

Proposition 5.3.7. The objective of the velocity-based Karcher mean on SOn with the data set

{Y1, · · · , Yk} ⊂ SOn is given by

f(S, Q) =
k∑
i=1

tr(ST
i Si)

4k
,S = {S1, · · · , Sk}, Si ∈ E−1

Y T
i Q

, (5.11)

with the gradient given by

grad(fQ)S =
1

2k
Q

k∑
i=1

Si. (5.12)

Proof. It follows from gQ(QA,QB) = tr(ATB)/2 and the geodesic ExpYi(tSi), emanating from Yi

and arriving at Q, has Si ∈ E−1
Y T
i Q

such that exp(Si) = Y T
i Q.

Apply the notion of the smoothly evolving geodesic to further impose a smooth structure be-

tween Q and S as follows.

Definition 5.3.8. The velocity-based objective with the smooth constraint along {Q(t) : t ∈

[0, 1]} ⊂ SOn is given by the solutions {Xi(t) : t ∈ [0, 1]} to the smoothly evolving geodesic

problem Y T
i Q(t) with initial condition Q′ ∈ SOn and X ′i ∈ Skewn, such that

Q(0) = Q′

Xi(0) = X ′i

Yi exp(Xi(t)) = Q(t)

,∀i = 1, · · · , k.
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The corresponding objective is f(Q(t),X(t)), t ∈ [0, 1] where X′ = {X ′1, · · · , X ′k} is the initial con-

dition and X(t) = {X1(t), · · · , Xk(t)} are the solutions to the smoothly evolving geodesic problems

to Q(t) = Yi exp(Xi(t)).

Recall that the skew symmetric matrix moving in a smooth manner that yields any geodesics

in SOn constructs the smooth structure CSOn ⊂ Skewn. This smooth structure can be imposed

to the objective as follows.

Proposition 5.3.9. The velocity-based objective (5.11) of a set of data points Y = {Y1, · · · , Yk} ⊂

SOn around every point (S, Q) satisfying the constraint (5.7) is smooth.

Proof. Firstly, the co-manifold characterization discussed in Proposition 4.5.4 guarantees smooth-

ness around every (Si, Q) from the geodesic γi(t) := Yi exp(t · Si) connecting γi(0) = Yi and

γi(1) = Q. For any tangent (∆S,∆Q), satisfying (5.7), to the feasible set around (S, Q), it can be

decomposed into the tangents (∆Si ,∆Q) on each (Si, Q). These tangents yields smoothly varying

geodesics on γi as discussed in previous chapters. Therefore, the smoothly varying geodesics have

smoothly varying lengths with respect to the tangents. Secondly, notice that the velocity-based

objective is the sum of the squared lengths in these smoothly varying geodesics γ̃ = {γ1, · · · , γk}.

As the length of these geodesics are smoothly varying along any tangents to the feasible set con-

strained by (5.7), the objective velocity-based objective (5.11) is smoothly varying on the feasible

set.

While the feasible set constrained by (5.7) may not be a manifold, Proposition 5.3.9 states that

the velocity-based objective (5.11) where the point (S, Q) in its feasible set moves in the smoothly

evolving geodesic manner as specified in Proposition 4.5.4 maintains smoothness. For the cases

where there is a Si on the conjugate locus ConjIn , the feasible set as well as the tangents to it are

restricted due to the loss of invertibility in D expSi but the velocity-based objective remains smooth

in this more restricted case. While the gradient derived in (5.12) does not exists in this special case,

it is still possible to move the (S, Q) in a smooth manner such that the objective values decrease.

The details of this specific technique is not finalized enough for this dissertation and it is therefore

left as the future work. Suppose the special case with Si ∈ ConjIn is not encountered during the
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computations, a prototype of a gradient descent method on the velocity-based Karcher mean with

the smoothly evolving geodesic constraint is constructed as follows.

Algorithm 6: A Gradient Descent Method for the Velocity-Based Karcher Mean

Data: Y1, · · · , Yk ∈ SOn

Input: Initial condition Q(0) and ∆i,(0) ∈ Skewn such that Yi exp(∆i,(0)) = Q(0)

Output: A velocity-based Karcher mean Q with Yi exp(∆i) = Q and
∑k

i=1 ∆i = 0
1 j ← 0; // Iteration counter j

2 S(j) ←
∑k

i=1 ∆i,(j);

3 while ‖S(j)‖F > ε do

4 Solve ∆i,(j)(t) from the smoothly evolving geodesic problem Y T
i Q(j) exp(tS(j)) with

initial condition ∆i,(j)(0) = ∆i,(j);

5 Line search on step size α along Q(j) exp(tS(j)) and ∆i,(j)(t);

6 Q(j+1) ← Q(j) exp(αS(j));

7 ∆i,(j+1) ← ∆(i,(j))(α);

8 S(j+1) ←
∑k

i=1 ∆i,(j+1);

9 i← i+ 1;

10 Return Q(j), {∆1,(j), · · · ,∆k,(j)};

5.4 Numerical Experiments

To demonstrate the smoothness nature in the velocity-based Karcher mean computations, this

section considers a set of data points {Yi(t)}ki=1 ⊂ SOn that are smoothly varying with respect to

t ∈ [0, 1] by

Yi(t) = Yi exp(t ·∆i), Si ∈ Skewn

where Yi(0) = Yi, i = 1, · · · , k are denoted as the initial data point. For every specific t ∈ [0, 1], the

corresponding set of data points {Yi(t)}ki=1 defines a Karcher mean problem labelled by t.

Then, let (S(t), Q(t)) = ((S1(t), · · · , Sk(t)), Q(t)) be a velocity-Karcher mean computed by

some given condition such that they satisfy the following conditions for any t.
Yi(t) exp(Si(t)) = Q(t), i = 1, · · · , k
k∑
i=1

Si(t) = 0.

When the initial guess of Algorithm 6 is set appropriately, the computed means (S(t), Q(t)) that

solves the t-labelled velocity-Karcher mean problem are expected to be smoothly dependent on the

t. As a comparison, the classic Karcher mean of the t-labelled data {Yi(t)}ki=1 is also computed by
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the algorithm proposed in [20] with the iterative step

Ωiter ← 1

2k

k∑
i=1

log(exp(Siter)TYi)

Qiter+1 ← Qiter exp(Ωiter)

Siter+1 ← log(Y T
i Q

iter+1)

where Qi ∈ SOn are the data point, Xiter ∈ Skewn and Eiter = exp(Xiter) ∈ SOn is the current

guess of the Karcher mean and log : SOn → Skewn is the principal logarithm.

Two experiment setups are designed to demonstrate the feature discussed above. In the first

setup, consider (S, Q) := (S(0), Q(0)) solves the Karcher mean problem with the initial data set

{Y1, · · · , Yk} such that 
Yi exp(Si) = Q, i = 1, · · · , k
k∑
i=1

Si = 0.
.

Let the data points Yi(t) leave the initial mean Q along Yi(t) = Yi exp(−tSi). Notice that Q =

Yi exp(Si), which means Yi(t) = Yi exp(−tSi) = Q exp(−(1 + t)Si). In this special setup, one

can easily verify that ((1 + t)S, Q) is a solution to the t-labelled Karcher mean problem, i.e., the

computed Q is expected to stay at where it is started. Figure 5.3 reports two moments with t = 2.8

on the left and t = 2.9 on the right. The initial meanQ is denoted as the “true mean” and the crosses

are the computed velocity-based Karcher mean using the nearby logarithm and the distance-based

Karcher mean using the principal logarithm. The geodesics {Yi(t) exp(s · (1 + t)Si) : s ∈ [0, 1]}ki=1

that connects the data point Yi(t) to the true mean Q are also plotted as the blue dashed line.

In the experiment, for all t ≤ 2.8, both the distance-based Karcher mean and the velocity-based

Karcher mean converge to the true mean. As t increase to t = 2.9 and beyond, the velocity-based

Karcher mean still converge to the true mean, while the distance-based Karcher mean suddenly

jumps to a different converged point.

The second experiment has a more complicated motions in the varying endpoints. Instead of

choosing ∆i = −Si to force a true mean Q staying at the same point, the skew symmetric ∆i are now

sample randomly. It causes a more complicated behavior of the computed velocity-based Karcher

mean as the data points Yi(t) = Yi exp(t∆i) varies with respect to t. In this experiment, k = 10 data

points are used. As the Yi(t) varies smoothly with respect to t, it generates ten smooth trajectories,

which are the black trajectories reported in Figure 5.4. For each t-labelled Karcher mean problem,

the computed velocity-based Karcher mean and the computed distance-based Karcher mean are
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Figure 5.3: Karcher Mean with Evenly Spearding Spreading Data.
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reported in green and blue respectively. The green and the blue trajectories behave as expected.

The green trajectory appears to be smooth with respect to t, while the blue trajectory is broken into

continuous segments. In other words, the experiment suggests that the computed velocity-based

Karcher mean maintains the smooth dependence while the compute distance-based Karcher mean

does not have the continuous feature.

Figure 5.4: Karcher Mean with Randomly Spearding Spreading Data.
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CHAPTER 6

THE ENDPOINT STIEFEL GEODESIC PROBLEM

WITH THE CANONICAL METRIC

6.1 Introduction

The Stiefel manifold Stn,p consists of n× p orthogonal matrices

Stn,p := {X ∈ Rn×p : XTX = Ip}

and it is one of the most important manifolds and arises in many applications. A point U =[
U1 · · · Up

]
on the Stiefel manifold is usually considered as a preferred basis of the p-dimensional

vector subspace col(U) in Rn so that for any point x ∈ col(U) ⊂ Rn on there is a unique Rp

representation α = (α1, · · · , αp)T with x = Uα =
∑p

i αiUi. For example, the principal component

analysis (PCA) on a distribution on n components that keeps p primary factors is represented by

a rank p covariance matrix C with a spectral decomposition

C = UΛUT

where U ∈ Stn,p and Λ = diag(λ1, · · · , λp). Each coefficient of the unique combination in a basis

vector Ui is a principal component since it is not correlated with other coefficients.

The Riemannian structure of the Stiefel manifold is studied in [11] and two Riemannian metrics

are presented, namely the embedded metric and the canonical metric. Intuitively, for the curve

U(t), t ∈ [0, 1] on Stn,p, the embedded metric puts it in Rn×p before measuring the length while

the canonical metric puts it in SOn with some Q(t) =
[
U(t) U⊥(t)

]
and the length is measured

by the length of Q(t).

This chapter investigates the quotient structure in the SOn that defines the canonical metric

on the Stiefel manifold and proposes a novel algorithm for solving the endpoint geodesic problem

with the tools and primitives developed in previous chapters. In particular, the endpoint geodesic

problem on the Stiefel manifold is equivalent to solving the following matrix equation

exp

([
A −BT

B 0

])
=
[
V V⊥

]
(6.1)
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where V ∈ Stn,p is taken as a parameter and the A ∈ Skewp, B ∈ Rn−p×p and V⊥ ∈ Stn,n−p

as a special orthogonal completion to V are variables that need to be solved from (6.1). Note

that the partitioning of a skew symmetric S =

[
A −BT

B C

]
∈ Skewn that splits S into the blocks

A ∈ Skewp, B ∈ R(n−p)×p and the remaining block in C ∈ Skew(n−p) is often used in this chapter.

For simplicity, the notation is introduced as follows

M = M[A,B,C] :=

[
A −BT

B C

]
∈ Skewn (6.2)

where A ∈ Skewp and C ∈ Skewn−p are assumed to be skew symmetric. Under this notation,

(6.1) becomes exp(X[A,B,0]) =
[
V V⊥

]
with the constrained unknown X and V⊥.

6.2 Preliminaries

6.2.1 Riemannian Submersion

The canonical metric on the Stiefel manifold is constructed by a Riemannian submersion from

SOn. A mapping ϕ : M → N from a manifold M to another manifold N is a submersion if it

is onto, differentiable and its differential Dϕx : TxM → TyN is also onto for any x ∈ M and

y = ϕ(x) ∈ N . In other words, a submersion map ϕ specifies a linear operator TM→ TN , such

that any motion on M can be translated to a motion on TN . When M and N have the same

dimension, i.e., when TxM and TyN have the same dimension for any x ∈M and any y ∈ N , the

submersion becomes a diffeomorphism. In this case, the two manifoldsM and N share the identical

differentiable structure and objects can be translated back and forth. In general, the dimension

dM of M is larger than the dimension dN of N . In this case, the differentiable structure in M

determines a differentiable structure but not vice versa, as the motion at y ∈ N , characterized as

a tangent vector ηy ∈ TyN , cannot describe all motion at some x ∈M where ϕ(x) = y. Those lost

motions at x describe a submanifold structure as follows.

Proposition 6.2.1 (Inverse Theorem on Manifolds). [4] Consider a submersion ϕ :M→N with

dimensions dM > dN . For any y ∈ N , the preimage

F(y) := {x ∈M : ϕ(x) = y} (6.3)

forms a submanifold in M with dimension dF(y) = dM − dN , which is denoted as a fiber over y.

It is clear that a fiber F(y) is specified by y ∈ N or any x ∈ F(y) in itself as y = ϕ(x) if the

submersion ϕ is given in the context. For simplicity, the fiber is denoted as F with the y term
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dropped if both the submersion and the y or the x ∈ F(y) are given in the context. The fact that

a fiber is formed by preimage under ϕ immediate leads to the following observation.

Corollary 6.2.2. Consider a submersion ϕ :M→N and a fiber F over y ∈ N with x ∈M. Then

the tangent space TxF is a subspace of TxM and it is also the null space of Dϕx : TxM→ TyN ,

i.e., Dϕx[ξx] = 0, ∀ξx ∈ TxF .

A horizontal structure on M further equips a submersion structure ϕ : M → N with a set

complementary subspaces to TxF . These complementary subspaces uniquely defines a pseudo

inverse Dϕ†x : TyN → TxM such that the motion at y in N can be uniquely identified by a unique

motion at x ∈ F in M.

Definition 6.2.3. Consider a submersion ϕ :M→N with the subspaces TF ⊂ TM that assigns

TxF at any x ∈ M. A horizontal structure H comprises a set of complementary subspaces Hx to

TxF at any x ∈M (that is smooth with respect to the foot x), i.e.,

∀ξx ∈M, ∃!vξ ∈ TxF , hξ ∈ Hx, such that ξx = vξ + hξ.

As a complementary notation to the notation of horizontal, the tangent space to the fiber TxF is

denoted as the vertical space Vx := TxF .

Definition 6.2.4. Given a submersion ϕ :M→N and a horizontal structure H, a horizontal lift

(to H) is the unique pseudo inverse DϕH
x : TyN → Hx, i.e., the unique linear operator TyN → Hx

satisfying the following conditions.
(

DϕH
x ◦Dϕx ◦DϕH

x

)
[ηy] = ηy, ∀y ∈ TyN(

Dϕx ◦DϕH
x ◦Dϕx

)
[hx] = hx,∀hx ∈ Hx

(6.4)

When the manifoldM is equipped with a Riemannian metric g, the orthogonal complementary

subspace to TxF becomes a natural choice of a horizontal structure. When there are further

consistencies in the Riemannian metric evaluated at the lifted vectors among a fiber, the submersion

becomes a Riemannian submersion as defined below.

Definition 6.2.5. Consider a submersion ϕ :M→N from a Riemannian manifold (M, g) where

g is a Riemannian metric. Then, the submersion is a Riemannian submersion if the horizontal lift

to

H = V⊥ :=
⋃
x∈M
{hx ∈ TxM : gx(vx, hx) = 0,∀vx ∈ Vx} (6.5)
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satisfies
gx1

(
DϕV⊥

x1
[ηy],DϕV⊥

x1
[ζy]
)

= gx2

(
DϕV⊥

x2
[ηy],DϕV⊥

x2
[ζy]
)

∀y ∈ N ,∀ηy, ζy ∈ TyN , ∀x1, x2 ∈ F(y).
(6.6)

The value in (6.6) that depends on ηy and ζy but not x ∈ F(y) is denoted as

gϕy (ηy, ζy) := gx

(
DϕV⊥

x [ηy],DϕV⊥
x [ζy]

)
,∀x ∈ F(y). (6.7)

There are many nice properties induced from a Riemannian submersion and those that are

relevant to this dissertation are summarized as follows.

Proposition 6.2.6. Given a Riemannian submersion ϕ : M → N from (M, g) and consider

y ∈M and x ∈ F , then the following statements hold.

1. The function gϕy (ηy, ζy) : TyN × TyN → R is an inner product operator and the collection of

them for all y ∈ N forms a Riemannian metric gϕ on N .

2. For any y ∈ N , any ηy ∈ TyN and any x ∈ F(y), there is

ϕ
(

Expx(t ·DϕV⊥
x [ηy])

)
= Expϕy (t · ηy), ∀t ∈ [0, 1], (6.8)

where Expx and Expϕy are the respective Riemannian exponential in (M, g) and (N , gϕ). In

other words, any geodesic in M with horizontal velocity DϕV⊥
x [ηy] ∈ Hx maps to a geodesic

in N under gϕ and vice versa.

3. The geodesic Expx(t · DϕV⊥
x [ηy]), t ∈ [0, 1] is a minimal geodesic in (M, g) if and only if the

geodesic Expϕy (t · ηy), t ∈ [0, 1] is a minimal geodesic in (N , gϕ).

6.2.2 Stiefel Manifold with the Canonical Metric

The canonical metric on the Stiefel manifold is a textbook-example on constructing a Rieman-

nian structure from a submersion. This part summarizes some important objects and statements

relevant to the dissertation. More details can be found in [11].

Consider the special orthogonal group SOn equipped with the classic metric

gQ(QS,QX) =
1

2
tr(STX),∀QX,QS ∈ TQSOn = {QX : X ∈ Skewn}

then the map that takes the first p columns out of a special orthogonal matrix as

ϕ : SOn → Stn,p

Q 7→ QIn,p = Q

[
Ip
0

]
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is a Riemannian submersion. The fiber over U is given by F(U) = {Q ∈ SOn : QIn,p = U}. More

importantly, it can be characterized by the Q in itself as

F =

{
Q exp

([
0 0
0 Z

])
: Z ∈ Skewn−p

}
,

which induces the vertical and horizontal spaces as follows.
VQ =

{
Q

[
0 0
0 C

]
: C ∈ Skewn−p

}
HQ =

{
Q

[
A −BT

B 0

]
: A ∈ Skewp, B ∈ R(n−p)×p

} .

The horizontal spaces further yields a characterization on the tangent space TUStn,p when there is

a special orthogonal completion U⊥ to U is given in Q =
[
U U⊥

]
∈ SOn, such that

TUStn,p = {DϕQ[hQ] : hQ ∈ HQ}

=
{
UA+ U⊥B : A ∈ Skewp, B ∈ R(n−p)×p

}
where DϕQ[hQ] = hQIn,p =

[
U U⊥

] [A −BT

B 0

]
In,p = UA+U⊥B. Then, the horizontal lift as an

pseudo inverse order is DϕV⊥
Q [UA+ U⊥B] = Q

[
A −BT

B 0

]
.

The Riemannian geodesic in (Stn,p, g
ϕ) is given by

ExpϕU (t · (UA+ U⊥B)) = ExpQ

(
t ·Q

[
A −BT

B 0

])
= Q exp

(
t ·
[
A −BT

B 0

])
where the Riemannian geodesic in (SOn, g) is given by ExpQ(t ·QX) = Q exp(t ·X) with the matrix

exponential exp : Skewn → SOn.

6.2.3 Related Work

There has been previous work done on solving the endpoint geodesic problem under both met-

rics. For the embedded metric, [6] provides a nice solution. For the canonical metric, [42][Algo-

rithm 4] proposes the state-of-the-art algorithm that has great performance for sufficiently close

endpoints. There is also a recent work done in [33] with more details given in [32] that takes the

shooting approach with Newton direction obtained in a system solve. The work in [29] takes a

similar approach but proposes a Newton algorithm on the shooting approach with the Hessian

operator approximated by difference of Fréchet derivatives.

The state-of-the-art algorithm proposed in [42] is referred to as the BCH algorithm, which is

named due to the essential Baker-Campbell-Hausdorff expansion utilized in the algorithm. Among
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existing algorithms on solving the endpoint geodesic problem on the Stiefel manifold under the

canonical metric, it is the main competitor with the algorithm developed in this chapter. The BCH

solver exploits the fiber structure of ϕ−1(V ) and tries to find a horizontal initial velocity starting

from chosen Q ∈ ϕ−1(U) so that it ends at the fiber ϕ−1(V ).

The BCH algorithm tries to get a global exact step update to bring ξi directly to a solution on

Hx by solving

exp

([
Ai −BT

i

Bi Ci

]
+

[
X −Y T

Y −Ci

])
= exp

([
Ai −BT

i

Bi Ci

])
exp

([
0 0
0 Z

])
(6.9)

where X ∈ Skewp, Y ∈ R(n−p)×p and Z ∈ Skewn−p are unknowns.

Unfortunately, there is no general algorithm for solving (6.9) and [42] proposes using the Baker-

Campbell-Hausdorff infinite series (BCH series) on the right hand side to obtain

exp

([
Ai −BT

i

Bi Ci

]
+

[
X −Y T

Y −Ci

])
= exp

([
Ai −BT

i

Bi Ci

]
+

[
0 0
0 Z

]
+ · · ·

)
?⇐⇒
[
Ai −BT

i

Bi Ci

]
+

[
X −Y T

Y −Ci

]
=

[
Ai −BT

i

Bi Ci

]
+

[
0 0
0 Z

]
+ · · ·

By selecting different terms from the BCH series consisting

[
Ai −BT

i

Bi Ci

]
and

[
0 0
0 Z

]
, approximated

solution Zi to (6.9) can be obtained and it is used to get the next guess Qi+1 = Qi

[
0 0
0 Zi

]
.

However, there are 3 concerns of the BCH algorithm. First or all, the BCH series may not be

converging for ‖SAi,Bi,Ci‖2 > 1 or ‖Zi‖2 > 1. Secondly, when it converges, there is no guarantee

that the converged sequence ‖SAi,Bi,Ci + S0,0,Zi‖2 < π, i.e., the converged sequence may not be on

the principal branch of the matrix logarithm, so the matrix exponential on the equation cannot

be drop arbitrarily. Finally, [42] does not collect the entire first order truncation in terms of Z,

i.e., there are other (infinitely many) terms with Z in the BCS series that are not included in the

truncation. Due to the simple truncation, when BCH series converges and the matrix exponential

can be dropped, the quality of approximated Zi still depends significantly on the size A, B and Z

in the solution. Note that the size of Z is determined by the quality of the initial guess.

All of these concerns can be dropped when the endpoints U and V are sufficiently close together,

as all terms appeared in (6.9) are tiny in this case, which is validated by its excellent numerical

performance. As U and V increase in separation, the theoretical support of the BCH algorithm

becomes empirical and the numerical performance is significantly compromised.
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6.3 Problem Formulation

The endpoint geodesic problem on a Riemannian manifold seeks for any geodesic connecting the

given points. This is a weaker version then the Riemannian logarithm problem and the smoothly

evolving geodesic problem, as the former asks for a shortest Riemannian geodesic between the given

endpoint and the latter asks for a Riemannian geodesic in a smoothly evolving manner as one of

the endpoint moves. Therefore, the geometric insights obtained in developing the algorithm of the

endpoint geodesic problem as well as the solution itself helps in solving these more complicated

geodesic problems. This section gives the formulation of the endpoint geodesic problem on the

Stiefel manifold with the canonical metric along with the necessary preprocessing strategy that

simplifies the problem.

6.3.1 Matrix Equation

On the Stiefel manifold with the canonical metric, the endpoint geodesic problem with the given

U, V ∈ Stn,p takes the following form

ExpϕU (UA+ U⊥B) =
[
U U⊥

]
exp(X[A,B,0])In,p = V (6.10)

where the skew symmetric A ∈ Skewp, B ∈ R(n−p)×p and the respective special orthogonal com-

plementary bases U⊥ are unknown variables. According to the Riemannian submersion that defines

the canonical metric on the Stiefel manifold, any geodesic ExpϕU (t ·UA+U⊥B) that satisfies (6.10)

can be lifted to the special orthogonal group emanating at ∀Q =
[
U U⊥

]
∈ F . This invertible

lifting process translates (6.10) of finding a geodesic in Stn,p into the equivalent problem of finding

a geodesic with horizontal velocity in SOn as

Q exp(X[A,B,0]) =
[
V V⊥

]
(6.11)

where the unknown variable U⊥ degenerates to a known constant and the additional unknown

variable V⊥ as a special orthogonal completion to V is introduced. Although the number of variables

remains the same as expected, the matrix equation (6.11) characterized in SOn is more convenient.

For example, by the transitive property on SOn discussed before, any geodesic emanating from any

Q ∈ SOn can be translated to In back and forth without losing anything. In particular, (6.11) is

further equivalent to the following matrix equation

exp(X[A,B,0]) = QT
[
V V⊥

]
=
[
QTV QTV⊥

]
.
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Notice that QTV is a known parameter with the Q and V given in (6.11) and QTV⊥ remains

a unknown special orthogonal completion to the new QTV . Then, substitute QTV as a given

parameter V ∈ Stn,p and substitute QTV⊥ as a unknown special orthogonal completion V⊥ to the

new V , the formulation (6.1) proposed at the beginning is obtained.

6.3.2 Preprocessing for Rank Reduction

Lifting the endpoint geodesic problem on the Stiefel manifold to SOn and exploiting the tran-

sitive property in SOn resulted in the convenient matrix equation in (6.1) in size of n × n. In

practice, however, the Stn,p may have p � n with a huge n, which makes it still very difficult to

operate on SOn. Fortunately, there exists a smaller problem in Std,p converted from Stn,p with

d ≤ 2p discussed in this section. Although not all solutions to the original problem are kept in this

smaller problem, any solution to the smaller problem recovers a solution to the original problem,

which makes the conversion feasible for the endpoint geodesic problem. This conversion can be

done with a rank-revealing factorization to n× 2p matrix as follows.

Proposition 6.3.1. [29] Consider the endpoint geodesic problem on Stn,p searching for Q,A,B in

P exp

([
A −BT

B 0

])
= Q,

the rank-revealing QR decomposition[
U V

]
n×2p

rank-revealing QR
=

[
U W

]
n×d

[
Id,p V̂

]
d×2p

(6.12)

constructs endpoint geodesic problem on smaller Std,p where the d bounded by p ≤ d ≤ min(n, 2p)

is the rank of
[
U V

]
. The converted problem takes the following specific forms depended on d.

1. When d > p, i.e., U and V span different column spaces, then V̂ ∈ Std,p and the solution

Â ∈ Skewp, B̂ ∈ R(d−p)×p of

exp

([
Â −B̂T

B̂ 0

])
=
[
V̂ V̂ ⊥

]
forms a solution A = Â and B =

[
B̂
0

]
to the original problem with P =

[
U W W⊥

]
.

2. When d = p, i.e., U and V span the same column space, W vanishes and V̂ ∈ Op.

(a) When det(V̂ ) = 1, i.e., V̂ ∈ SOp, the solution Â ∈ Skewp of

exp(Â) = V̂

forms a solution A = Â and B = 0 solves the original problem with P =
[
U U⊥

]
.
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(b) When det(V̂ ) = −1, the solution Â ∈ Skewp, B̂ ∈ R1×p of

exp

([
Â −B̂T

B̂ 0

])
=

[
V̂ 0
0 −1

]

forms a solution A = Â and B =

[
B̂
0

]
to the original problem with P =

[
U U⊥

]
.

Proof. It is easy to see that such rank revealing QR is always possible and

V =
[
U W

]
V̂

where V̂ ∈ Std,p. Then it remains to show that a solution to the problem with Id,p and V̂ always

determine a solution to the problem with U and V , as shown below.

Let Â, B̂ be a solution to the problem with P̂ = Id and V̂ , then

Q̂ =
[
V̂ Q̂⊥

]
= exp

([
Â B̂T

B̂ 0

])
∈ Rd×d

and one can write [
Q̂ 0
0 In−d

]
n×n

= exp

Â −B̂T 0

B̂ 0 0
0 0 0

 .

Let P =
[
U W W⊥

]
n×n, then there is

P

[
Q̂d×d 0

0 In−d

]
n×n

= P exp

Â −B̂T 0

B̂ 0 0
0 0 0


=
[
Un×k Wn×(d−k) W⊥n×(n−d)

] [V̂d×k Q̂⊥d×(d−k) 0

0 In−d

]
=
[ [

U W
]
n×d V̂d×k

[
U W

]
n×d Q̂

⊥
d×(d−k) W⊥

]
=
[
V

[
U W

]
n×d Q̂

⊥
d×(d−k) W⊥

]
:= Q

By construction, there is PIn,k = U and QIn,k = V , i.e., P,Q, Â,

[
B̂
0

]
solves the matrix equation

(6.1).

For the d = p case, V̂ ∈ SOp is straightforward. When V̂ /∈ SOp, simply notice that

[
V̂ 0
0 −1

]
∈

SOp+1 and the zero constraint from the stiefel endpoint problem in Stp+1,p on the lower right 1×1

partition is guaranteed by the skew symmetric structure.
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Note that this conversion is originally proposed in [41] without exploiting the shared dimensions

between U and V . It is later developed in [29] but in a very compact expression without a clear

algorithmic instruction in how to execute the conversion. Proposition 6.3.1 summarizes the

technique and point out that a rank-revealing QR factorization suffices the conversion task. In

addition, it includes the extreme cases when d = n, which are not discussed in [29].

6.3.3 Manifold Root-Finding Formulation

The feasible set of solving (6.1) is the fiber over V with QIn,p = V as

F(V ) = {Q ∈ SOn : QIn,p = V } = {Q exp
(
M[0,0,Z]

)
: Z ∈ Skewn}

where the second characterization fits in the co-manifold characterization CS,B in (4.8) where

exp(S) = Q and B = {M[0,0,Z] : Z ∈ Skewn−p}. Further notice that the co-manifold characteri-

zation collects a set of skew symmetric matrices as smooth submanifold in Skewn that emanates

geodesics arriving at the fiber F .

Recall that a geodesic in Stn,p under the canonical metric gϕ is equivalent to a geodesic in

SOn with a horizontal velocity. Given a Riemannian submersion ϕ :M→ N , a geodesic in N is

equivalent to a geodesic in M that emanates along a horizontal velocity and vice versa. Then the

search on velocity ξ ∈ TxN from {Expϕx(t · ξ), t ∈ [0, 1]} ⊂ N such that is equivalent to searching

the ξ ∈ TxM from {Expx(t · ξ)} ⊂ M constrained with

Expx(ξ) = y ∈ F(y) (6.13)

ξ ∈ Hx (6.14)

Notice that the lifted geodesic (6.8) emanating from x depends smoothly on the velocity ξ ∈ TxM.

Consider the linear system
F : TxM→ Vx

ξ 7→ ProjV(ξ)

where projV is the orthogonal projector onto Vx. Then, the horizontal condition (6.14) can be

expressed as ξ ∈ Hx ⇐⇒ F (ξ) = 0. Together, the searching on the ξ from (6.8) with conditions

(6.13) and (6.14) is equivalent to the system solving with the constrained feasible set

F (ξ) = 0,Expy(ξ) ∈ F(y)

In the setup of Stiefel manifold, there is x = In ∈ SOn, ξ = X[A,B,C] ∈ Skewn, Expy(ξ) =

exp(X) and the orthogonal projector is given by F (X[A,B,C]) = ProjV(X[A,B,C]) = C. Further
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notice that the constraint exp(X) ∈ F(V ) is equivalent to co-manifold characterization X ∈ CS,B

where B = {M[0,0,Z] : Z ∈ Skewn−p}.

Then, the constrained root-finding problem becomes a manifold root-finding problem

F (X) = 0, for X ∈ CS,B (6.15)

with some S ∈ Skewn satisfying exp(S) = Q ∈ F(V ). In other words, the endpoint geodesic

problem on (Stn,p, g
α) is converted to a system solver on a manifold with F : CS,B → Skewn−p

defined on CS,B, where CS,B is an embedded submanifold in Skewn around any given S. Since

the horizontal and vertical spaces, HIn = {X[A,B,0]} and VIn = {X[0,0,C]}, are orthogonal com-

plementary subspaces in TInSOn = Skewn by construction, the system solver problem is further

equivalent the root-finding problem that seeks the intersection between CS,B and HIn .

6.4 R-Newton Method of Solving a System on Manifold

Given a system defined on a manifold, the Riemannian Newton method for solving the system

with an output is a simple generalization of the Newton-Raphson method in the Euclidean setting

that solves F (x) = 0, F : Rn → Rm with the update formula

xi+1 = xi + α∆i

DFxi [∆i] = −F (xi)

where α is a step size and ∆i ∈ Rn is the Newton update. The Newton update in the Euclidean

setting is an infinitesimal change on xi that produce the negation of the current output F (xi) as

the infinitesimal change to the system. Then, the generalization of Newton-Raphson methods in a

manifold setting is obtained by restricting the infinitesimal change ∆i to the tangent space at xi as

xi+1 ← Expxi(α ·∆i)

DFxi [∆i] = −F (xi),∆i ∈ TxiM
(6.16)

where Expxi : TxiM is the Riemannian exponential on M and it can be replaced by any com-

putationally tractable retraction on M. Note that the Newton direction generalized from the

Newton-Raphson method in (6.16) is consistent with the Newton update in the classic Riemannian

Newton method on a real-valued function

∆i = −Hess−1
xi [f ] (Gradxi [f ])
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where f : M → R, x 7→ ‖F (x)‖22 is a real-valued function, Gradxi [f ] is the gradient vector of f

at xi and Hessxi [f ] : TxiM → TxiM is the Hessian operator of f at xi. For more details about

the variation of the Newton method generalized to the Riemannian setting, please refers to the

textbook [1]. Note that the ‖ · ‖2 in f is the vector 2 norm is different from the matrix 2-norm

encountered in other context. It accumulates all squared entries in the system output before taking

the square root of the sum.

6.4.1 Newton Direction

The following Proposition 6.4.1 applies the Riemannian Newton method of solving a system

to the system in the root-finding formulation of the endpoint geodesic problem to obtain a Newton

direction.

Proposition 6.4.1. Consider the endpoint geodesic problem on the Stiefel manifold converted the

root-finding formulation with the nonlinear system

F : CF(V ) → Skewn−p, S[A,B,C]7→C ,

where FV = {Q ∈ SOn : QIn,p = V }. The Newton direction ∆ ∈ TSCF(V ) to the system is

characterized by the matrix equation

D expS
[
∆[X,Y,−C]

]
= QS[0,0,Z]

where S = S[A,B,C] ∈ CF(V ), Q = exp(S) and X,Y, Z are unknown variables. This matrix equation

can be further simplified as

LS(∆[X,Y,−C]) = S0,0,Z . (6.17)

Proof. In order to make the Riemannian Newton method applicable, one needs to verify that the

nonlinear system is smoothly defined on a Riemannian manifold. This follows from 2 observation.

First of all the system F can be smoothly extended to a smooth system on the embedding Euclidean

space as F : Skewn → Skewn−p, S[A,B,C] 7→ C. Secondly, CF(V ) around S is a Riemannian

manifold CS,{M[0,0,Skewn−p]:} that is diffeomorphism with F(V ) locally. In conclusion, F : CF(V ) →

Skewn−p around S ∈ CF(V ) is a smooth system restricted to an embedded submanifold, which

results in a smooth system on the embedded submanifold. Therefore, the Riemannian Newton

method is applicable.
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Then, the characterization of the Newton direction follows from the simple differential

DFS [∆[∆A,∆B ,∆C ]] = ∆C , ∀S ∈ CF(V ).

Therefore, DFS [∆] = −C only if ∆C = −C.

Note that it is necessary to construct the co-manifold structure in Skewn such that the smooth

Riemannian structure in SOn can be translated to CF(V ) in Skewn, on which the smooth nonlinear

system F : CF(V ) → Skewn−p is constructed. Otherwise, it is impossible to construct a smooth

function on SOn directly that measures the “non-horizontalness” of the arriving endpoint Q, as the

notion of horizontal is inherently defined in Skewn that cannot be translated to SOn via a global

diffeomorphism. With the Newton direction characterized in (6.17), it can be solved as follows.

Corollary 6.4.2. The Newton direction characterized in (6.17) can be solved from two different

systems that are derived from (6.17) as the forward system

LForward
S (X,Y, Z) := LS(SX,Y,0)− S0,0,Z = LS(S0,0,C). (6.18)

or the backward system

LBackward
S (Z) :=

[
0 In−p

]
L−1
S (S0,0,Z)

[
0

In−p

]
= −C. (6.19)

Since both linear actions LForward
S and LBackward

S are computationally tractable, the matrix-free

solver like the GMRES is applicable to both systems. Concerning the complexity brought by the

triple dimensions, when n ≤ 2p in the forward system (6.18) while the linear action in both systems

are similar, it is recommended to solve the backward system (6.19) for the direction Z.

6.4.2 Algorithm

With the Newton direction characterized in (6.17) and solved in (6.18) or (6.19), it remains to

handle some technical details before applying the Riemannian Newton algorithm.

First of all, similar to the Newton-Raphson method in the Euclidean setting that fails when

DFx[∆] = −F (x) has no solution that happens when the differential DF is rank deficient. In the

Riemannian setting (6.17). There is also a similar mechanism to handle such a failure. When the

Newton direction does not exists at some x∗ and there is a sequence xi approaching to x∗, the

system DFxi [∆i] = −F (xi) is more and more ill-conditioned with a diverging ∆i that has its norm

diverge to infinity. Therefore, a huge Newton direction is a flag to that detect the non-existing

Newton direction.
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On the other hand, the huge Newton direction is also a flag that indicates the failure of a local

model, as CS,B is not expected to be extended infinitely. Therefore, it is necessary to introduce a

restart mechanism activated when a huge Newton direction is returned from solving (6.17). With a

reasonable scale of ∆ ∈ TSCS,B, the Riemannian geodesic on CS,B is the smoothly evolving geodesic

S(t) solved from the Q(t) = exp(S) exp(t · LS [∆]).

Algorithm 7: The Newton Algorithm of the Stiefel Endpoint Geodesic Problem

Data: V ∈ Stn,p where n ≤ 2p
Input: Initial special orthogonal completion Q0 where Q0In,p = V
Output: Solution S∗ = S[A∗,B∗,0] ∈ Skewn satisfying

1 Return log(Q0) ; // Principal Logarithm

2 i← 0;
3 Si = S[Ai,Bi,Ci] ← log(Qi); // Principal Logarithm

4 while ‖Ci‖F > ε do
5 Solve Zi from LSi(M[Ai,Bi,−Ci]) = N[0,0,Zi] ; // (6.19) or (6.18)

6 if ‖L−1
Si

(S0,0,Zi)‖ > (2π − θ1 − θ2)/2 then

7 S0 ← log(Qi exp(S0,0,Zi));
8 i← 0; // Restart.

9 Goes to line 4;

10 Line search on step size αi along geodesic X(t);
11 Qi+1 ← Qi exp(αiS0,0,Zi);
12 Si+1 ← X(αi);
13 i← i+ 1;

14 Return S∗ = Si;

Note lines 10−11 come from the [42][Algorithm 4] that corresponds to the 5 terms truncation

in the BCH series, and it is used here as the numerical empirical evidence indicates that it is better

than the 1 term truncation of the BCH solver.

6.5 Numerical Experiments

As investigated in the previous chapter, the geometry of the special orthogonal group is more

complicated around Q = exp(S) where S is near the conjugate locus. In the Stiefel manifold Stn,p

where the geodesic is characterized by γ(t) = exp(t · S[A,B,0])In,p that emanates from In,p, the

matrix 2-norm of the generating S[A,B,0] is closely related to the difficulty in solving the Stiefel

endpoint geodesic problem as demonstrated in this chapter.

Consider a Stiefel manifold on Stn,p with a randomly sampled skew symmetric matrix S[A,B,0]

that has ‖S[A,B,0]‖2 = 1. Then, this skew symmetric matrix emanates the following Riemannian
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geodesic arriving at U(σ) as follows

U(σ) = exp(σ · S[A,B,0])In,p ∈ Stn,p.

By construction, the σ · S[A,B,0] is a solution to the endpoint geodesic problem between In,p and

U(σ). On the other hand, the matrix 2-norm of this solution is designed to be ‖σ · S[A,B,0]‖2 = σ.

Then, the BCH method in [42] and the R-Newton method proposed in Algorithm 7 are used to

find the set of endpoint geodesic problem between In,p and U(σ) generated by various σ ∈ [0.1, 4.0].

The performances of these method for solving the σ-labelled problem are collected and reported in

below.

Note there are algorithmic alternatives in the BCH method with different implementations.

Extensive empirical testing has been performed to identify the implementation with the best per-

formance among the existing BCH variants. As a result of the BCH competition, the BCH method

with the 5 terms update is selected as the competitor of the Algorithm 7.

Figure 6.1 reports the experimental results in St20,10 by plotting the performances in the σ-

labelled problem with U(σ) = exp(σ ·S[A,B,0])In,p against σ = ‖σ ·S[A,B,0]‖2. It collects 3 important

characteristics, the executed number of iteration until terminations, the elapsed time consumed in

computing the update directions for both methods and the total elapsed time until termination.

Both methods are set to terminate when it finds exp(S[X,Y,Z])In,p = U(σ) with ‖Z‖F < 10−6.

For the R-Newton method, each update direction solved from (6.19) is computed by a matrix-free

GMRES. This GMRES is set to only accepts solution with absolute error below 10−7. It is clear

that the required number of iterations for the Newton method is significantly smaller than those

needed for the BCH method. Although the cost of computing the Newton direction (6.17) is more

expensive compared to the BCH method, the fewer iterations compensate the elapsed time for

computing the direction as well as the total time. The R-Newton method reduces the elapsed time

by a factor of 1.925 on average. For the complicated problem with σ ∈ [1.8, 3.2], the R-Newton

method is 3.025-times faster the BCH method.
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Figure 6.1: Performances on Solving the Stiefel Endpoint Geodesic Problem on St20,10
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CHAPTER 7

QUOTIENT STRUCTURE ON THE FIXED RANK

POSITIVE SEMI-DEFINITE MANIFOLD

7.1 Introduction

The fixed rank positive semi-definitive (FRPSD) matrix manifold

S+
n,p := {X ∈ Rn×n : XT = X, rank(X) = p,X � 0}

arises in many applications with physics background or computer vision background, e.g., [34] and

[12]. In [3], Bonnabel and Sepulchre construct a submersion from the product manifold M =

Stn,p × S+
p,p to the FRPSD manifold N = S+

n,p as

ϕ :M→N

(U,C) 7→ UCUT
(7.1)

with an α-parameterized Riemannian metric family gα-BS, α > 0 proposed on M. Here, S+
p,p is the

well-studied manifold of positive definite p× p matrices.

This metric family {gα}α>0 is designed for the special horizontal structure

H(U,C) =
{

(U⊥B,H) : B ∈ R(n−p)×p, H ∈ Symmp

}
. (7.2)

where Symmp := {X ∈ Rp×p : XT = X} is the set of all p×p symmetric matrices. Although every

metric gα-BS does not form a Riemannian submersion in (7.1) nor make H(U,C) in (7.2) orthogonal

to the vertical space V(U,C) = T(U,C)F(X) where X = UCUT, it yields invariant metric evaluation

on vectors lifted by (7.2), and the orthogonal complement Vα-BS
⊥ converges to the H specified in

(7.2) as α→ 0.

Unfortunately, the metric family {gα-BS}α>0 proposed in [3] does not form a Riemannian sub-

mersion in (7.1). The lack of a Riemannian submersion makes the application of the metric family

in [3] only interpretable in the limiting behaviors as α → 0, while any individual metric gα-BS is

less meaningful. This chapter further adapts the horizontal structure (7.2) in [3] to construct a

different metric family such that a Riemannian submersion is obtained.
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7.2 Preliminaries

7.2.1 Geometric Interpretations in the FRPSD manifold

The horizontal structure in (7.2) is chosen to decompose the curve in S+
n,p into a curve of

subspaces and a curve of ellipsoids. In particular, it consists of the classic horizontal space of the

Grassmann manifold on the Stiefel manifold HStn,p
U = {U⊥B : B ∈ R(n−p)×p} and the tangent space

of the SPD manifold TRS+
p,p = Symmp := {X ∈ Rn×n : X = XT} as H(U,R) = HStn,p

U × TRS+
p,p,

where the Grassmann manifold is the manifold of p dimensional subspaces in Rn. For a given

{(U(t), C(t)) : t ∈ [0, 1]} ∈ M that forms X(t) = U(t)C(t)U(t)T ∈ S+
n,p at U = U(0) and C = C(0),

the U specifies an orthonormal basis in the p-dimensional subspace in Rn and the C specifies a

p-ellipsoid in the subspace that aligns with the basis given in U .

Note that the motion in the ellipsoid can be further decomposed into the rotations in axes and

the deformations in axis-length. Consider the spectral decomposition of C(t) = Q(t)Λ(t)Q(t)T

that is smooth with respect to t. Then, Q(t) characterizes the rotations and the Λ(t) characterizes

the deformations, [13]. For example, consider two ellipses X =

[
2 0
0 1

]
and Y =

[
1 0
0 2

]
. The

curve Q(t) = I2 and Λ(t) =

[
2− t 0

0 1 + t

]
connects X and Y with no rotation, while the curve

Q(t) =

[
cos(tπ/2) − sin(tπ/2)
sin(tπ/2) cos(tπ/2)

]
and Λ(t) =

[
1 0
0 2

]
connects them with no deformation. This is

illustrated in Figure 7.1.

𝑋 𝑌

𝐷(0.5)

𝐷(0) 𝐷(1)

𝑅(0)

𝑅(0.5)

𝑅(1)

Figure 7.1: Illustration of deformation Q(t) and rotation Λ(t) in ellipse.
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Note that such a rotation in axes, Q(t), is entangled with the motion in U(t) as one can insert

arbitrary O(t) ∈ SOp with O(0) = In as

X(t) = U(t)C(t)U(t)T = (U(t)O(t))
(
O(t)TC(t)O(t)

)
(U(t)O(t))T

= Ũ(t)
(
O(t)TQ(t)Λ(t)Q(t)TO(t)

)
Ũ(t)T = Ũ(t)

(
Q̃(t)Λ(t)Q̃(t)T

)
Ũ(t)T

where Ũ(t) = U(t)O(t) and Q̃(t) = O(t)TQ(t). Through the arbitrary O(t), the same motion X(t)

can be realized by different curves in M.

7.2.2 Objects in the Submersion

This section collects relevant results about the objects in the submersion (7.1), which are avail-

able in the literature, c.f. [36], [23] and [3].

For the point X ∈ N = S+
n,p , consider its representation (U,C) ∈ M = Stn,p × S+

p,p and the

horizontal space specified as in (7.2). Then, the following objects are available.

1. The tangent space to M at (U,C) is given by

T(U,C2)M := {(US + U⊥K,M) : S ∈ Skewp,K ∈ R(n−p)×p,M ∈ Symmp}. (7.3)

2. The fiber over X = UCUT is given by

F(X) = {(UQ,QTCQ) : Q ∈ SOp}, (7.4)

in particular, the spectral decomposition X = UΛUT with eigenvectors in U and eigenvalues

in Λ is in the fiber over Y , i.e., F(Y ) = {(UQ,QTΛQ) : Q ∈ SOp}.

3. The vertical space at (U,C) is given by

V(U,C) = T(U,C)F(X) = {(US,CS − SC) : S ∈ Skewp}. (7.5)

It yields the projection of any ξ := (US + U⊥K,M) ∈ T(U,C)M to H(U,C) against V(U,C) as

ProjH⊕VH : T(U,C)M→ H(U,C)

(US + U⊥K,M) 7→ (U⊥K,M − CS + SC)
(7.6)

such that the ξH := ProjH⊕VH (ξ) ∈ H(U,C) and the ξV := ξ − ξH ∈ V(U,C) is the unique

decomposition of ξ = ξH + ξV into the two complement subspaces.

4. The differential to the submersion map is given by

Dϕ(U,C)[(US + U⊥K,M)] = Dϕ(U,C)[(U⊥K,M − CS + SC)]

= U⊥KCU
T + UCKTUT

⊥ + U(M − CS + SC)UT
(7.7)

where the first equation follows from projecting (US + U⊥K,M) ∈ T(U,C)M to H(U,C).
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7.3 Riemannian Metric by Riemannian Submersion

In order to obtain make the submersion ϕ Riemannian, a metric onM, denoted as gα-Hor, with

the following features is needed.

1. The vertical space and the horizontal space are orthogonal under gα-Hor, i.e.,

gα-Hor
(U,C) ((US,CS − SC), (U⊥K,M)) = 0

for any S ∈ Skewp, K ∈ R(n−p)×p and M ∈ Symmp.

2. The inner products under gα-Hor between the horizontally lifted vectors DϕH
(U,C)[ξ] and

DϕH
(U,C)[η] for any ξ, η ∈ TXN and any (U,C) ∈ F(X) equal to each other, i.e.,

gα-Hor
(U1,C1)

(
DϕH

(U1,C1)[ξ],DϕH
(U1,C1)[η]

)
= gα-Hor

(U2,C2)

(
DϕH

(U2,C2)[ξ],DϕH
(U2,C2)[η]

)
for any X ∈ N , ξ, η ∈ TXN and (U1, C1), (U2, C2) ∈ F(X).

7.3.1 Horizontal Lifting

The first feature can be satisfied by designating bases in the respective subspaces H(U,C) and

V(U,C) as an orthonormal basis of the total space T(U,C)M = H(U,C) ⊕ V(U,C) which totally char-

acterizes an inner product on it. The second feature depends on the horizontal lift operator

DϕH
(U,C) : TXN → H(U,C). Such a horizontal lift specified to (7.2) is not available in the liter-

ature and the proposition below derives an expression from (7.6).

Proposition 7.3.1. For any X ∈ N = S+
n,p and a tangent vector attached to it, denoted as a

∆ ∈ TXN ⊂ Rn×n, the horizontal lift of ∆ to (U,C) ∈ F(X), i.e., UCUT = X, is given by

DϕH
(U,C)[∆] = (U⊥K,M) where M = UT∆U

K = UT
⊥∆UC−1

(7.8)

It is easily verified that (U⊥,M) is horizontal and Dϕ(U,C)[(U⊥K,M)] = ∆. More importantly,

notice that any SPD matrix can be written as the square of a unique SPD matrix, which is known as

its unique square root. That means the representation (U,C) ∈ F(X) can also be re-parameterized

as (U,C2) ∈ F(X) such that UC2UT = X and C ∈ S+
p,p. Then, the horizontal lift (7.8) is converted

to the expression in below.

Lemma 7.3.2. For any X = UC2UT ∈ N = S+
n,p where C ∈ S+

p,p, the horizontal lift of ∆ ∈ TXN

to (U,C2) ∈ F(X) is given by DϕH
(U,C)[∆] = (U⊥K,CHC) whereH = C−1UT∆UC−1

K = UT
⊥∆UC−2

(7.9)
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Unless otherwise specified, the horizontal tangent vector at (U,C2) in this chapter is denoted

as ξK,H := (U⊥K,CHC) with the U⊥ available from the context. Then, the horizontal lift can be

written as DϕH
(U,C2)[∆] = ξ

(K,H)
U,C2 where K and H are computed from (7.9). This special notation

is introduced for the following convenient observation.

Proposition 7.3.3. For any X = UC2UT ∈ N = S+
n,p and the horizontal lifted vector

DϕH
U,C2 [∆] = ξ

(K,H)
U,C2 = (U⊥K,RHR),

consider another representation (UQ,QTC2Q) ∈ F(X) on the fiber with a p × p orthogonal Q.

Then, the horizontal lift of the same ∆ to the different representation (UQ,QTC2Q) is given by

DϕH
UQ,QTC2Q[∆] = ξ

(KQ,QTHQ)

UQ,QTC2Q = (U⊥KQ,Q
TCHCQ), (7.10)

i.e., the parameterization K and H varies by Q in a consistent fashion.

Proof. This follows from 2 observations. First of all the U⊥ remains orthogonal to all UQ, which

simplifies the first component by setting Ũ⊥ = U⊥. Then, the unique SPD square root of QTC2Q

is given by C̃ := QTCQ. Let Ũ = UQ and applies (7.9) to get DϕH
(Ũ ,C̃2)

[∆] = ξ
(K̃,H̃)

(Ũ ,C̃2)
asH̃ = C̃−1ŨT∆Ũ C̃−1 = QTHQ

K̃ = ŨT
⊥∆Ũ C̃−2 = KQ

Recall that a spectral decomposition of X ∈ S+
n,p naturally yields a representation of X in the

fiber over it. For the spectral decomposition X = UΛ2UT where Λ is diagonal with the square root

of the eigenvalues in X, (7.9) and (7.10) characterizes all lifted vectors as DϕH
(U,Λ2)[∆] = ξ

K,H
U,Λ2 and

DϕH
(UQ,QTΛ2Q)

[∆] = ξ
KQ,QTHQ
UQ,QTΛ2Q.

7.3.2 Riemannian Metric Family Constructed by Designated Basis

Recall that a Riemannian metric at a point (U,C2) ∈ M is an inner product operator on the

tangent space T(U,C)M. As a linear space equipped with an inner product 〈·, ·〉, it yields the notion

of an orthonormal basis B = {Bi}di=1 ⊂ T(U,C)M such that

〈Bi, Bj〉 =

1, i = j

0, i 6= j
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where d is the dimension of the linear space. On the other hand, any designated linear independent

basis B = {Bi}di=1 defines an inner product operator

〈ξ, η〉 =

〈
d∑
i=1

xiBi,

d∑
i=1

yiBi

〉
:=

d∑
i=1

xiyi

where ξ =
∑d

i=1 xiBi and η =
∑d

i=1 yiBi are the unique linear decomposition in the basis B. Note

that any subspaces spanned by the distinct sub-bases from B are orthogonal to each other under

the induced inner product. For example, let H := col ({Bji}mi=1) and V := col ({Bki}ni=1) such that

{Bji}mi=1 ∩ {Bki}ni=1 = ∅. Then, any ξ ∈ H has the unique linear decomposition

ξ =
m∑
i=1

xjiBji +
∑
l 6=ji

0 ·Bl,

i.e., xi not in the {ji}mi=1 positions are all zeros. Similarly, the linear decomposition of η ha yi that

are zero if they are not in the {ki}ni=1 positions. Then ξ and η are orthogonal as

〈ξ, η〉 =
m∑
i=1

xji · 0 +
n∑
i=1

0 · yki +
∑

l 6=ji,l 6=ki

0 · 0 = 0.

According to this observation, any inner product in T(U,C2)M that is constructed from the bases

in V(U,C2) and H(U,C2) together makes them orthogonal to each other naturally. For theV(U,C2) = {(US,C2S − SC2) : S ∈ Skewp}

H(U,C2) = {(U⊥K,CHC) : K ∈ R(n−p)×p, H ∈ Symmp}
,

the parameterization S, K and H have designated bases for each subspaces. A more intuitive way

to see this basis is to recall the canonical metric on the Stiefel manifold

gStU (US1 + U⊥K1, US2 + U⊥K2) = tr(ST
1 S2) + tr(KT

1 K2), ∀US1 + U⊥K1, US2 + U⊥K2 ∈ TUStn,p.

It is clear that the subspaces {US : S ∈ Skewp} and {U⊥K : K ∈ R(n−p)×p} are orthogonal under

gSt. Then, let B
St,S
U = {USi}dSi=1 ⊂ {US : S ∈ Skewp}

BSt,K
U = {U⊥Ki}dKi=1 ⊂ {U⊥K : K ∈ R(n−p)×p}

be the respective dS and dK dimensional bases. They form an orthonormal basis in TUStn,p together

and, more importantly, they can be found in V(U,C2) and H(U,C2) respectivelyB
S
U,C2 := {(USi, C2Si − SiC2)}dSi=1 ⊂ V(U,C2)

BK
U,C2 := {(U⊥Ki,0)}dKi=1 ⊂ H(U,C2)

. (7.11)
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where {USi}dSi=1∪{U⊥Ki}dKi=1 is an orthonormal basis in TUStn,p under the canonical metric. Notice

that BS
U,C2 is already a basis that spans V(U,C2) but BK

U,C2 is not enough to cover the H(U,C2). The

remaining part is provided by the affine-invariant metric on the SPD manifold proposed in [14]

gS
+

C2 (CH1C,CH2C) = tr(HT
1 H2), ∀CH1C,CH2C ∈ TC2S+

p,p.

Similarly, one can find a basis in H(U,C2)

BH
U,C2 := {(0, CHiC)}dHi=1 ⊂ H(U,C2). (7.12)

where {CHiC}dHi=1 are the orthonormal basis in TC2S+
p,p under the affine-invariant metric.

Together, BS
U,C2 ∪ BK

U,C2 ∪ BH
U,C2 forms a linear independent basis in T(U,C2)M such that

V(U,C2) = col
(
BS

(U,C2)

)
and H(U,C2) = col

(
BK

(U,C2) ∪B
H
(U,C2)

)
. By rescaling the BH

(U,C2) basis

with a parameter α > 0, a parameterized metric is obtained as follows.

Proposition 7.3.4. Consider any (U,C2) ∈ M = Stn,p × S+
p,p, then a parameterized linear inde-

pendent basis of T(U,C2)M is given by

Bα-Hor
U,C2 := BS

(U,C2) ∪B
K
U,C2 ∪

1√
α
·BH

(U,C2), α > 0. (7.13)

It defines a Riemannian metric on M with

gα-Hor
(U,C2)

(
ξ1, ξ2

)
= gStU (US1 + U⊥K1, US2 + U⊥K2) + α · gS+

C2 (CH1C,CH2C)

=
1

2
tr(ST

1 S2) + tr(KT
1 K) + α · tr(HT

1 H2).
(7.14)

where ξi = (USi + U⊥Ki, CHiC + C2Si − SiC2), for i = 1, 2.

Proof. The fact that the proposed metric satisfies the properties of an inner product operator is

easily verified. This proof only points out that the orthonormal basis Bα-Hor
(U,C2) depends smoothly on

the foot (U,C2) varying on M, which makes the inner product it defines in (7.14) also smoothly

depending on the foot. A smoothly dependent inner product defined on all tangent space forms a

Riemannian metric.

The horizontal space (7.2) and the vertical space (7.5) are orthogonal under the proposed

Riemannian metric (7.14) by design. In order to show that the submersion ϕ : (U,C2) 7→ UC2UT is

Riemannian, it remains to show that the horizontal spaces on a fiber F(X) are isometric. Recall that

any point on F(X) ⊂M can be characterized by the spectral decomposition X = UΛ2UT and any
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special orthogonal Q as F(X) = {(UQ,QTΛ2Q) : Q ∈ SOp}. Consider any ξ1, ξ2 ∈ TXS+
n,p ⊂ Rn×n

and the lifted vectors ξ
K1,H1

(U,Λ2) and ξ
K2,H2

(U,Λ2) determined by (7.9). Then, the inner product between the

lifted vectors are given by

gα-Hor
(U,Λ2)

(
ξ
K1,H1

(U,Λ2), ξ
K2,H2

(U,Λ2)

)
= tr(KT

1 K2) + α tr(HT
1 H2).

For the vectors lifted to a different representation (UQ,QTΛ2Q), the inner product remains constant

according to (7.10) as

gα-Hor
(U,Λ2)

(
ξ
K1Q,QTH1Q
(UQ,QTΛ2Q), ξ

K2Q,QTH2Q
(UQ,QTΛ2Q)

)
= tr(QTKT

1 K2Q) + α tr(QTHT
1 QQ

TH2Q)

= tr(KT
1 K2) + α tr(HT

1 H2).

Proposition 7.3.5. The submersion ϕ : M → N , (U,C2) 7→ UC2UT is Riemannian given the

metric gα-Hor defined in (7.14).

It is important to note that the metric on the total space

gα-BS
(U,C2)((US1 + U⊥K1, CH1C), (US2 + U⊥K2, CH2C)) = tr(ST

1 S2) + tr(KT
1 K2) + tr(HT

1 H2)

proposed in [3] is not a member of the metric family in (7.14), not only due to the one-half scale in

the tr(S1, S2), but also due to the offset C2S − SC2 that results from US not being reduced from

RHR. Therefore, there are limited results on the Riemannian geodesic is derived in [3].

7.3.3 Riemannian Geodesic with Motions in Subspaces and Ellipsoids

Note that the choice of the Stiefel canonical metric and the SPD affine-invariant metric selected

for constructing the metric family (7.14) is not mandatory but it yields the geometric insight of

the induced Riemannian geodesic discussed in this section.

Consider two given Stiefel points U, V ∈ Stn,p that span p-dimensional subspaces in Rn, let

{γU (t) : t ∈ [0, 1]} ⊂ Stn,p be a smooth curve that connects U and V as γU (0) = U and γU (1) = V .

Then, this curve generates a curve of subspaces in forms of col(γU (t)) that connects the subspaces

spanned by U and V . Suppose the differential to the curve

d

dt
γU (t) =

[
U(t) U⊥(t)

] [S(t) −K(t)T

K(t) Ω(t)

]
,

then, its length and energy in the Grassmann manifold is given by
lcol(γU ) =

∫ 1

0

√
tr (K(t)TK(t))dt

Ecol(γU ) =

∫ 1

0
tr
(
K(t)TK(t)

)
dt
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In this setup, the curve that yields the minimal length in the Grassmann manifold is solved in [19]

as follows.

Lemma 7.3.6 ([19]). The curve {γU (t) : t ∈ [0, 1]} ⊂ Stn,p connecting two given U, V ∈ Stn,p that

yields minimal length and energy in the Grassmann manifold takes the form of

γU (t) =
[
U U⊥

]
exp

(
t ·
[
S −KT

K Ω

])
exp

(
t ·
[
−S 0
0 −Ω

])
In,p (7.15)

where S ∈ Skewp, Ω ∈ Skewn−p and K ∈ R(n−p)×p.

On the other hand, the Riemannian geodesic in the SPD manifold under the affine-invariant

metric is solved in [14] as follows.

Lemma 7.3.7 ([14]). The Riemannian geodesic {γC2(t) : t ∈ [0, 1]} ⊂ S+
p,p with initial velocity

γ̇C2(0) = CHC ∈ TC2S+
p,p under the affine-invariant metric is given by

γC2(t) = C exp(tH)C (7.16)

where H ∈ Symmp.

The curve (7.15) describes the minimal change in terms of subspaces in the Grassmann manifold

and the curve (7.16) describes the minimal change in terms of the ellipsoids in the SPD manifold.

Together, they form the horizontal Riemannian geodesic in M = Stn,p × S+
p,p as follows.

Theorem 7.3.8. The Riemannian geodesic γα-Hor(t) in (M, gα-Hor), α > 0 emanating from (U,C2) ∈

M along horizontal velocity d
dtγ(t)

∣∣
t=0

= (U⊥K,CHC) ∈ H(U,C2) is given by

γα-Hor(t) =

([
U U⊥

]
exp

(
t ·
[
S −KT

K Ω

])
exp

(
t ·
[
−S 0
0 −Ω

])
, C exp(tH)C

)
(7.17)

where S ∈ Skewp and Ω ∈ Skewn−p depends on the values of α > 0. In other words, the horizontal

Riemannian geodesic is the simple composition of the (7.15) and the (7.16).

Proof. Consider the energy functional of the any smooth curve τ(t) = (τU (t), τC2(t)) = (U(t), C(t)2)

with velocity.

d

dt
τ(t)

∣∣∣∣
t==

(U(t)S(t) + U⊥(t)K(t), C(t)H(t)C(t) + C(t)2S(t)− S(t)C2(t))

Then, its energy is given by

Eα(τ) =

∫ 1

0
gα-Hor
τ(s)

(
d

dt
τ(t)

∣∣∣∣
t=s

,
d

dt
τ(t)

∣∣∣∣
t=s

)
ds

=

∫ 1

0

1

2
tr
(
S(t)TS(t)

)
dt+

∫ 1

0
tr
(
K(t)TK(t)

)
dt+ α

∫ 1

0
tr
(
H(t)TH(t)

)
dt
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Notice that the first integral vanishes if the curve τ(t) stays horizontal, i.e., S(t) = 0,∀t ∈ [0, 1].

Then, the second integral is the energy functional in the Grassmann manifold of the curve τU (t),

which obtains its minimal energy when τU (t) takes the form in (7.15). The third integral is the

energy functional in the SPD manifold under the affine-invariant metric, which obtains its minimal

energy when τC2(t) takes the form in (7.16).

Finally, for a Riemannian submersion ϕ : M → N , a geodesic emanating with horizontal

velocity stays horizontal and it obtains the (local) minimal energy among all curves τ(t) ∈ M

connecting the same endpoints. As the two integral are independent with each other, the (local)

minimal energy is obtained with the composition of the (7.15) and the (7.16).

Note that how the parameter α > 0 determines the two skew symmetric matrices S ∈ Skewp

and Ω ∈ Skewn−p remains unknown and it is left as future work. Another useful property follows

from the Riemannian submersion is the fact that the horizontal Riemannian geodesic γα-Hor must

end up at some point on the fiber over its endpoint on N . It derives the following formulas and

bounds on the length of the lifted Riemannian geodesic.

Proposition 7.3.9. Let γα(t) be a minimal Riemannian geodesic that connects UΛ2UT and V Σ2V T

where Λ2 and Σ2 are diagonal matrices. Lift the geodesic horizontally so that γ̂α(0) = (U,Λ2) and

γ̂α(1) = (V Q,R2 = QTΣ2Q). The length of γα under metric gα is given by the length lU→V Q of the

Grassmann horizontal curve under the Stiefel metric (two well-known two metrics give the same

length) and the length lΛ2→R2 under the affine invariant metric as

lγα =
√
l2U→V Q + αl2

Λ2→R2 . (7.18)

The two components in (7.18) are curve lengths in the Stiefel manifold and the symmetric

positive definite (SPD) manifold respectively, which yields following the convenient bounds.

1. The length lU→V Q of the horizontal curve connecting U and V Q is bounded from below as

dGr(col(U), col(V )) ≤ dSt(U, V Q) ≤ lU→V Q

where dGr(col(U), col(V )) is the distance between col(U) and col(V ) in the Grassmann man-

ifold and dSt(U, V Q) is the distance between U and V Q in the Stiefel manifold.

2. The length lΛ2→C2 of the Riemannian geodesic connecting Λ2 and C2 in the SPD manifold is

determined by the generalized eigenvalues ωi(Λ
2, C2) of Λ2 and C2 as

lΛ2→C2 =

√√√√ k∑
i=1

log(ωi(Λ2, C2))2.
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Let C2 = QΣ2QT be a spectral decomposition and let Λ2 and Σ2 be ordered in the decreasing

order of magnitude, i.e., λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
k and so does σ2

i ’s, the sum of the squared

generalized eigenvalues are bounded as follows, assuming.

(a) The generalized eigenvalues are bounded as λi < ωi < σi, which yields

lΛ2→C2 ≥

√√√√ k∑
i=1

(log(λ2
i )− log(σ2

i ))
2

where the equal sign holds with C2 = Σ2.

(b) There exists a permutation P so that PTΣP reorders σ2
i ’s into {σ2

ij
}kj=1 and yields a

bound from above as

lΛ2→C2 ≤

√√√√ k∑
i=1

(log(λ2
i )− log(σ2

ij
))2 ≤

√
k(log(λ2

1)− log(σ2
k))

2

where the first equal sign holds when C2 = PTΣ2P and the second equal sign holds

when λ2
1 = λ2

2 = · · · = λ2
k and σ2

1 = σ2
2 = · · · = σ2

k.

Combining the two different bounds yields that the lower bound on FRPSD

dα(X,Y ) ≥
√
d2
St(U, V Q) + αl2

Λ2→C2

≥

√√√√d2
Gr(col(U), col(V )) + α

k∑
i=1

(log(λ2
i )− log(σ2

i ))
2

and the upper bounds

dα(X,Y ) ≤ lτQ∗ =
√
d2
Gr(col(U), col(V )) + αl2

Λ2→QT
∗ Σ2Q∗

≤

√√√√d2
Gr(col(U), col(V )) + α

k∑
i=1

(log(λ2
i )− log(σ2

ij
))2

≤
√
d2
Gr(col(U), col(V )) + kα(log(λ2

1)− log(σ2
k))

2

for X,Y ∈ S+
n,p with eigenvalues Λ2 and Σ2. The equal sign in the lower bound is obtained when

U and V are a canonical pair. The first equal sign in the upper bound is obtained when τQ∗ is the

geodesic. Based on these more accurate upper and lower bounds, the behavior of the Riemannian

geodesic γα as α goes to 0 or to infinite can be better described as follows.

Proposition 7.3.10. Let X = UΛ2UT, Y = V Σ2V T ∈ S+
n,p be two points on fixed rank manifold

where UTV is non-singular. Then the Riemannian geodesics γ̂α(t) with initial point ∀(U,Λ2) ∈

ϕ̂−1(X) lifted from the minimal Riemannian geodesic γα from X to Y converge to the special curve

γ̂0(t) =

([
U U⊥

]
exp

(
t

[
0 −KT

K 0

])
In,p, γC2(t)

)
:= (γ0

U (t), γ0
C2(t)) (7.19)
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as α→ 0.

Proof. For curve γ̂α-Hor with α = 0 or α > 0, consider the energy functional under the metric ĝα

Eα-Hor(γ̂
α) := EU (γ̂αU ) + αEC2(γ̂αC2), α ≥ 0

where EU and the EC2 are the energy functionals under Stiefel canonical metric and the affine-

invariant metric of the respective curves.

Notice that γα-Hor is the minimal Riemannian geodesic under gα-Hor, it has energy no larger

than the energy of γ0 under gα, i.e., Eα-Hor(γ
α) ≤ Eα-Hor(γ

0). It yields

lim sup
α→0

Eα-Hor(γ
α-Hor) ≤ lim

α→0
Eα-Hor(γ

0)

Then, lim
α→0

Eα-Hor(γ
0) = EU (γ0

U ) and EU (γα-Hor
U ) < Eα-Hor(γ

α-Hor). It further yields

lim sup
α→0

EU (γα-Hor
U ) ≤ EU (γ0

U ).

On the other hand, since the energy functional EU is also the path energy functional of curve

connecting U with fiber [V ] = {V Q : Q ∈ SOn}. By definition γU (t) is the unique minimal

Riemannian geodesic connecting U with [V ] under the canonical metric on Stiefel, i.e., EU (γ0
U ) ≤

EU (γα-Hor
U ) which further implies

EU (γ0
U ) ≤ lim inf

α→0
EU (γα-Hor

U ).

The bounds conclude that lim
α→0

EU (γα-Hor
U ) = EU (γ0

U ). Since EU (γ̄0
U ) is obtained only for the

unique minimal geodesic γ̄0
U , γα-Hor

U (t) converges to γ0
U (t) as α→ 0 for all t ≥ 0. γα-Hor

C2 (t)→ γ0
C2(t)

follows immediately as the γα-Hor
U (t) have fully characterized the endpoints of γα-Hor

C2 (t).

Proposition 7.3.11. Let X = UΛ2UT, Y = V Σ2V T ∈ S+
n,p be two points on fixed rank manifold

where UTV is nonsingular. Then the Riemannian geodesics γ̂α(t) with initial point ∀(U,Λ) ∈

ϕ̂−1(X) lifted from the minimal Riemannian geodesic γα from X to Y converge to the special curve

γ∞(t) =
(
γU (t),Λ1−tΣt

)
:= (γ∞U (t), γ∞C2(t)) (7.20)

where Λ and Σ has eigenvalues sorted by magnitude on the diagonals as α→∞.

Proof. Similar prove can be generated with the energy functional

Eα-Hor(γ
α-Hor) :=

1

α
EU (γ̂αU ) + ER(γ̂αR), α ∈ (0,∞]

and the lower bound of the EC2(γα-Hor
C2 ) ≥

∑p
i (log(λ2

i )− log(σ2
i )).
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CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

Motivated by the smoothly evolving geodesic problem on the special orthogonal group, this dis-

sertation closely investigates the differentiable geometry within the matrix exponential restricted

to the set of skew symmetric matrices. Multiple important notions are presented and developed

based upon the new geometric understanding on the set of skew symmetric matrices and the spe-

cial orthogonal group, including the nearby matrix logarithm, the co-manifold characterization and

the velocity-based Karcher mean on a Riemannian manifold. With the carefully designed and im-

plemented routines, numerical experiments have demonstrated the value of these studies of these

Riemannian objects. The major contributions of this dissertation are:

1. The characterization of the conjugate locus in the special orthogonal group;

This dissertation gives the first explicit characterization of the conjugate locus in the special

orthogonal group that is expressed in the set of skew symmetric matrices. While there is a

general characterization for the conjugate locus on the Lie group [21], the characterization

(2.21) reveals more structures specific to the special orthogonal group and helps develop other

novel results in this dissertation.

2. The nearby matrix logarithm on the special orthogonal group constructed on the

local diffeomorphism in the set of skew symmetric matrices;

The local diffeomorphisms with the inscribed ball construction given in (3.11) are the im-

mediate applications of the conjugate locus in the special orthogonal group. These local

diffeomorphisms not only clarify the definition of the nearby matrix logarithm that was pro-

posed before in a less rigorous description, but also extend its usage to skew symmetric

matrices beyond the principal branch of the matrix logarithm. The nearby matrix logarithm

redefined in Definition 3.4.1 and computed in Algorithm 3 or Algorithm 4, as the first

reliable toolset, is essential to those applications that work with the skew symmetric matrices

beyond the principal branch.

3. The smoothly evolving geodesic problem on SOn;

The smoothly evolving geodesic problem aims to recover the smooth structure in the Rie-

mannian exponential, which is lost in the Riemannian logarithm due to the shortest condition

on geodesics. Having this problem solved on SOn facilitates the introduction of additional

smooth structures on SOn for various applications, including the Karcher mean problem.
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4. The co-manifold characterization on Skewn;

The co-manifold characterization (4.8) and (4.10) on Skewn is a smooth structure developed

on the smoothly evolving geodesic problem. It is in a locally diffeomorphism with the special

orthogonal group and constructed by further restricting endpoints in the smoothly evolving

geodesic problem to vary along geodesics in SOn. This smooth structure is especially useful

for iterative algorithm as it guarantees that the moving along geodesics in SOn executed

within each step of an algorithm is equivalent with moving on a smooth structure in Skewn.

The algorithmic formulation on SOn can then be translated to an algorithmic formulation

on Skewn with smoothness maintained.

5. The velocity-based Karcher mean on SOn;

The velocity-based Karcher mean on a Riemannian manifold proposed in Definition 5.3.8

is the first generalization of the Karcher mean formulation that addresses the non-smooth

objective issues in the classic Karcher mean formulation on a Riemannian manifold. Having

this problem solved and reliably computed in Algorithm 6 significantly extends the appli-

cation of Karcher mean on SOn with widely separated data sets and with backgrounds with

smoothness constraints.

6. The endpoint geodesic problem on Stn,p;

This dissertation is the first study that address the issues of widely separated endpoints issues

in the current algorithms of computing endpoint geodesic problem on the Stiefel manifold.

It proposes a root-finding formulation on Skewn to solve this endpoint geodesic problem

and the resulting Newton algorithm implemented in Algorithm 7 have obtained superior

performance against the state-of-the-art algorithm proposed in [42].

7. The new Riemannian metric in the FRPSD manifold;

The FRPSD manifold has been studied in the literature. The Riemannian manifold proposed

in [36] have disireable and useful properties including completeness in the metric, but it is at

times too complicated in practice. The Riemannian manifold proposed in [23] is convenient to

use but not complete in the metric space. The work in [3] attempts to construct a Riemannian

metric that induces interpretable geodesics, e.g., in terms of a physics background, but it fails

at building a Riemannian submersion structure. This dissertation continues the work in

[3] and constructs a Riemannian submersion structure that induces meaningful Riemannian

geodesics in FRPSD.

8. Efficient implementations of low-level primitive associated to skew symmetric

matrices, special orthogonal matrices;

There are rich structures and primitives in the set of skew symmetric matrices and the special

orthogonal matrices that can be exploited to accelerate computations. The characterization of

these low level structures and primitives, e.g., (2.5) for Schur decompositions and the param-

eters in (2.14) and (2.16) for the differential, significantly accelerates the basic computation

like the matrix exponential and its differential in the scope of 2 ∼ 4.
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There are directions of the future research in both theoretical analysis and applications. For

theoretical analysis on the smoothly evolving geodesic problem, there are still unknown structures

of the co-manifold characterization it induces, especially at the conjugate locus. Having this smooth

structure studied and understood will lead to further algorithmic analysis and design on the co-

manifold characterization. In particular, the answer to the uniqueness of the velocity-based Karcher

mean problem, the better answer to the existence of the solution to the endpoint geodesic problem

and more depend on expending the knowledge of this co-manifold characterization. Also, there

are many Riemannian objects on the new Riemannian metric on the FRPSD manifold that are

not identified. For applications, the new velocity-based Karcher mean can be applied to problems

with smooth constraints or with separated data set that was poorly handled before. The faster

endpoint geodesic computation in Stn,p with reliable performance for further separated endpoints

is also useful in many applications.
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