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1 Statement of the problem

Linear systems are some of the most commonly encountered problems in applied
math. They are represented in matrix form by Ax = b where x and b are vectors.
Solving these systems with traditional Gauss-Jordan elimination is O(n3), but if
A is well structured it can be done much quicker. In this paper we examine the
LU -factorization of a banded matrix and the speed of solving a system with the
factorization.

2 Description of the Mathematics

We are told in the problem that the matrix we have is diagonally dominant and 0
except on a 5 specific diagonals, i.e. A is of the form



b1 c1 0∗ 0∗ d1 0 0 0 · · · 0 0 0 0 0
a1 b2 c2 0∗ 0 d2 0 0 · · · 0 0 0 0 0
0∗ a2 b3 c3 0 0 d3 0 · · · 0 0 0 0 0
0∗ 0∗ a3 b4 c4 0 0 d4 · · · 0 0 0 0 0
e1 0 0 a3 b4 c4 0 0 · · · 0 0 0 0 0
0 e2 0 0 a3 b4 c4 0 · · · 0 0 0 0 0
0 0 e3 0 0 a3 b4 c4 · · · 0 0 0 0 0
0 0 0 e4 0 0 a4 b5 · · · 0 0 0 0 0
...

...
...

...
...

...
...

... . . . ...
...

...
...

...
0 0 0 0 0 0 0 0 · · · cn−5 0 0 dn−5 0
0 0 0 0 0 0 0 0 · · · bn−4 cn−4 0 0 dn−4

0 0 0 0 0 0 0 0 · · · an−4 bn−3 cn−3 0 0
0 0 0 0 0 0 0 0 · · · 0 an−3 bn−2 cn−2 0
0 0 0 0 0 0 0 0 · · · 0 0 an−2 bn−1 cn−1

0 0 0 0 0 0 0 0 · · · en−4 0 0 an−1 bn



.

Because of the large number of 0s, A can be more easily represented as a vector of
its 5 non-zero diagonals as shown below:

d1 d2 d3 · · · dn−5 dn−4 0 0 0 0
c1 c2 c3 · · · cn−5 cn−4 cn−3 cn−2 cn−1 0
b1 b2 b3 · · · bn−5 bn−4 bn−3 bn−2 bn−1 bn
a1 a2 a3 · · · an−5 an−4 an−3 an−2 an−1 0
e1 e2 e3 · · · en−5 en−4 0 0 0 0

 .

Because A is banded, we know that L and U will also be banded. However they will
not have the same structure of 0s between diagonals and will be densely banded.
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They are each guaranteed only 3 0s near the beginning, in the entries marked * in
the matrix above. This is simply because of how L and U are generated: There is
nothing to eliminate in those entries on L, and there is nothing above them to fill
them in in U .

Representing L and U as only their bands, we can represent them together in
a matrix reminiscent of the one for A. In the following matrix, the first 5 rows
correspond to the diagonals of U and the bottom 4 correspond to L. We only need
4 diagonals for L because its major diagonal will be all ones.

d1 d2 d3 · · · dn−5 dn−4 0 0 0 0
0 z∗2 z∗3 · · · z∗n−5 z∗n−4 z∗n−3 0 0 0
0 0 y∗3 · · · y∗n−5 y∗n−4 y∗n−3 y∗n−2 0 0
c∗1 c∗2 c∗3 · · · c∗n−5 c∗n−4 c∗n−3 c∗n−2 c∗n−1 0
b∗1 b∗2 b∗3 · · · b∗n−5 b∗n−4 b∗n−3 b∗n−2 b∗n−1 b∗n
a∗1 a∗2 a∗3 · · · a∗n−5 a∗n−4 a∗n−3 a∗n−2 a∗n−1 0
0 0 x∗

3 · · · x∗
n−5 x∗

n−4 x∗
n−3 x∗

n−2 0 0
0 w∗

2 w∗
3 · · · w∗

n−5 w∗
n−4 w∗

n−3 0 0 0
e∗1 e∗2 e∗3 · · · e∗n−5 e∗n−4 0 0 0 0


.

In this representation, we have a constant 26 0s that would not need to be stored
if the diagonal elements were stored in separate vectors. However, the computation
convenience of the matrix form outweighs the storage space cost because the 0s will
only make up a tiny fraction of the total entries in the matrix. It is a nx9 matrix,
and n must be greater than or equal to 8 for A to have the full structure we expect
so the zeros will make up at most 26

72
≈ 36% of the matrix. The fraction of the

matrix that is zero is always 26
9n

≈ 3
n
, so if n is at least 30 the zeros will make up less

than 10% of the storage space.
Finding L and U can also in linear time. Because there are at most only 4

nonzero elements below the diagonal, and at most 4 nonzero elements to the right of
the diagonal, advancing to the next step only takes roughly 20 operations: at stage
i only the 4x5 section of the matrix starting directly below bi needs to be updated.
This must be repeated n− 1 times; once for each row beyond the first.

This also allows for quickly solving systems of the form Lv = f or Uv = f
with the L or U output from the system. Generally solving these systems is O(n2),
but because of the banded structure in L and U they can be done in O(4n) and
O(5n) computations respectively. They are each based off a simple 4-term linear
recurrence. For LV = f , this recurrence is

vi = fi − a∗i−1fi−1 − x∗
i−2fi−2 − w∗

i−3fi−3 − c∗i−4fi−4,

where we are exploiting the fact that L is unit diagonal. The recurrence is started
off with

v1 = f1

v2 = f2 − a∗1f1

v3 = f3 − a∗2f2

v4 = f4 − a∗3f3

because of the three zeros from A that are guaranteed to not be filled in. The
recurrence for Uv = f is very similar but is started of at the end with vn = fn/b

∗
n and

requires dividing by b∗i because U is not unit diagonal. This is why our assumption
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that A was diagonal dominant was important: If not, the bi values can become very
small and cause instability when dividing. If we do not have a diagonally dominant
matrix, we can avoid some stability issues by implementing partial pivoting where
we interchange rows to ensure sufficiently large diagonal values. Specifically, at each
step i we search through the ith column to find the row with the largest value in
that column, then interchange that row with the ith row before finding the Schur
complement and proceeding. Searching the column requires only 4 comparisons, but
by permuting the L and U matrices we lose their banded structure. There will still
only be at most 4 or 5 non-zero elements in any column, but since we no longer
know where they are we cannot use the same solving algorithm as before. The 6
zeros that remained from As 0-diagonals are also no longer preserved in the L and U
factors. Additionally, we no longer have a guarantee that the updates will be limited
to a 4x5 section in the corner of the matrix because exchanging the row exchange
introduces the non-zeros from the later diagonal elements to earlier rows so we lose
most of the structure of A. This is illustrated below for an 8x8 matrix. We assume
ei > bi and apply partial pivoting to demonstrate the structure lost in the first few
steps applying immediate update.

A0 =



b1 c1 0∗ 0∗ d1 0 0 0
a1 b2 c2 0∗ 0 d2 0 0
0∗ a2 b3 c3 0 0 d3 0
0∗ 0∗ a3 b4 c4 0 0 d4
e1 0 0 a3 b4 c4 0 0
0 e2 0 0 a3 b4 c4 0
0 0 e3 0 0 a3 b4 c4
0 0 0 e4 0 0 a4 b5


P1A0 =



e1 0 0 a3 b4 c4 0 0
a1 b2 c2 0∗ 0 d2 0 0
0∗ a2 b3 c3 0 0 d3 0
0∗ 0∗ a3 b4 c4 0 0 d4
b1 c1 0∗ 0∗ d1 0 0 0
0 e2 0 0 a3 b4 c4 0
0 0 e3 0 0 a3 b4 c4
0 0 0 e4 0 0 a4 b5



M−1
1 P1A0 =



e1 0 0 a3 b4 c4 0 0
a∗1 b2 c2 z∗2 w∗

2 d∗2 0 0
0 a2 b3 c3 0 0 d3 0
0 0 a3 b4 c4 0 0 d4
b∗1 c1 0 a∗4 b∗5 c∗5 0 0
0 e2 0 0 a3 b4 c4 0
0 0 e3 0 0 a3 b4 c4
0 0 0 e4 0 0 a4 b5


P2M

−1
1 P1A0 =



e1 0 0 a3 b4 c4 0 0
0 e2 0 0 a3 b4 c4 0
0 a2 b3 c3 0 0 d3 0
0 0 a3 b4 c4 0 0 d4
b∗1 c1 0 a∗4 b∗5 c∗5 0 0
0 e2 0 0 a3 b4 c4 0
a∗1 b2 c2 z∗2 w∗

2 d∗2 0 0
0 0 e3 0 0 a3 b4 c4
0 0 0 e4 0 0 a4 b5


At this point, we can already clearly see that the useful structure of L and U is lost
outside of the limit of the number of non-zero entries per column. The recurrence
will not be as basic as before, and so solving the Lv or Uv systems will be less
efficient.

3 Description of the Algorithm and Implementation

The algorithms are implemented directly into Scala methods. The main factorization
method takes the diagonals of A as arguments and outputs the matrix of diagonals
of in the structure described above as a 2-dimensional array. Arrays are used for all
data structures because they are mutable and so allow for immediate update to the
parameters without needing to store a separate output structure. This means the
original data of the matrix will be overwritten. The same implementation is used
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for the L and U system solver: the input array is overwritten as the system is solved
to minimize storage requirements.

4 Description of the Experimental Design and Results

The triangular system solvers are test by randomly generating vectors to serve as
their diagonals along with another randomly generated vector x. The matrix prod-
uct Lx = v or Ux = v is computed, then the system solver is used to compute x̃
and compare it to x. To test the factorization method 5 vectors are randomly gener-
ated of specified lengths to represent the diagonals. To ensure diagonal dominance
the entries for the main diagonal are randomly generated between the sum of the
other entries of the column and three times their sum. Similarly to the method for
testing the system solvers, a randomly generated vector x is multiplied by A to get
Ax = v. Then A is factorized into LA and UA which are used to solve the system
LAb = v and UAx̃ = b to compare the computed x̃ with the original x. Because
of limitations in the method for generating the diagonals, only matrices larger than
8x8 are considered in the error analysis. Accuracy on these systems is tested for
both The accuracy for smaller systems was verified with simple matrices, but on a
small sample space. After accuracy was verified, the methods were timed to verify
the expected execution time and complexity order.

5 Results

The results of the accuracy test for solving the Lv = f and Uv = f systems with
matrices of size 9x9 to 100x100 are plotted below in Figure 1. Note that a logarithmic
scale is required for this plot because of massive stability issues.

Figure 1

Lower System Solver Error Upper System Solver Error

These stability issues are likely the result of catastrophic cancellation from adding
numbers that are close in magnitude but opposite in sign. The matrices used to test
the system solvers also did not have the same diagonally dominant structure as
the matrices that would be factorized. The problem gets exponentially worse as n
increases To help alleviate some of these issues, the accuracy was tested again with
matrices that had all elements guaranteed to be positive. This time, matrices with
sizes up to 300x300 were plotted.
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Figure 2

Positive Lower System Solver Error Positive Upper System Solver Error

We observe that the Upper triangular system is much more stable than the lower
triangular, but both are accurate within 10−10 for matrices smaller than 100x100.
The additional stability for the upper triangular system likely comes from the di-
agonal elements being non-unit: needing to divide by an element scales everything
to be smaller, including the error. Repeated over 300 times causes the significant
improvement in terms of error we observe.

In solving the system with a banded matrix as plotted in Figure 3, we have a
very unexpected result: Error seems to decrease with matrix size and then level
off. Additionally, no logarithmic scale is needed to view the error terms. However,
they are also unfortunately very high, on the order of 10−5 even for small matrices.
Compared with the lower triangular system solver, the order is very small. This is
likely attributed to the structure of A providing additional structure to L and U
that makes them more accurate. Additionally we note that adding a requirement
that all entries of A be positive does not improve accuracy. This means that the
errors in the general case are significantly lower than solving Lv = f or Uv = f
with randomly generated triangular matrices, providing further evidence that the
diagonal dominance of A is responsible for additional that adds stability to those
computations

Figure 3

Banded Factorization System Solver
Error

Positive Banded Factorization System
Solver Error

In all cases we expect a linear relation between matrix size and computation
time. With a few outliers, that is what we observe for the triangular system solvers
in Figure 4.

The outliers in the lower system solver around 135x135 systems make it appear
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Figure 4

Lower System Solver Computation
Time

Upper System Solver Computation
Time

to almost be a constant time, but the computation time does increase gradually
with system size. The trend is more clear in the upper system solver, which has a
less significant outlier problem.

When computing the computation time for the factorization speed, we once again
have a surprising result: Time is constant across matrix size.

Figure 5: LU Factorization Computation Time

This is not simply the result of the scale making a slight linear trend appear
constant due to scaling on the graph from outliers: outside of small amounts noise,
there is no increase in computation time between matrices with sizes that are roughly
300x300 and size 1000x1000. The only possible explanation for this is optimizer
improvement, but even that is unlikely to show that significant of a performance
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improvement.
To verify that all of these are indeed linear relations, we plot the time scaled

by the size of the matrix. If the relationships are linear, this will be a constant.
Additionally, we consider only matrices that are larger than 150x150 to minimize
effects from compiler performance. These are plotted in Figure 6

Figure 6

Lower System Solver Computation
Time

Upper System Solver Computation
Time

LU Factorization Computation Time

As expected, we see that the system solvers are basically constant with some
noise. Meanwhile, the factorization method is steadily decreasing and much less
noisy than the system solvers.
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