
Study Homework Questions 2 Numerical Optimization

Fall 2023

Problem 2.1

Let f(x) : R→ R be given by
f(x) = x4 − 5x2 + 4

and consider applying Newton’s method for optimization. Here Newton’s method refers to
the basic form where the step size is 1 and nothing is done to alter the Hessian to guarantee
positive definiteness. Note that f(x) is a scalar function of a scalar argument and has the
form
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(i) What are the values of x that are local minimizers or local maximizers of f(x).
Justify your answers.

(ii) Find the value β > 0 such that f(x) has negative curvature for −β < x < β, and
positive curvature outside the interval, i.e., for x < −β or x > β.

(iii) What happens to the Newton step at x = β?

(iv) Determine µ(x) : R→ R such that the step of Newton’s method applied to f(x)
can be written as xk+1 = µ(xk)xk.

(v) Find the value of α ∈ R such that β > α > 0 and Newton’s method cycles
and does not converge when x0 = α or x0 = −α. That is, −α = µ(α)α and
α = −µ(−α)α.

(vi) Show that if −α < x < α then

|µ(x)| < 1
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(vii) Show that if −α < x0 < α is the initial point for Newton’s method then there is
a constant 0 < γ < 1 (possibly dependent on x0 but independent of k) such that

|xk+1| < γ|xk|

and therefore xk → 0.

(viii) It can be shown that if x0 > σ > 0 where σ is the rightmost local minimizer of
f(x) then xk → σ for Newton’s method. Using this fact and those above, show
that it is possible to choose −β < x0 < −α so that xk → σ for Newton’s method.

(ix) Implement Newton’s method and demonstrate the convergence behavior deter-
mined above.

Problem 2.2

Consider solving the unconstrained minimization problem

min
x∈Rn

f(x)

where f : Rn → R using a Quasi-Newton method.

2.2.a

Suppose the Quasi-Newton method guarantees that the symmetric matrix Bk ∈ Rn×n used
to define the local quadratic model of f(x) is symmetric positive definite.

Show that one can only find a symmetric positive definite matrix Bk+1 that satisfies the
secant condition

Bk+1sk = yk

if sk and yk satisfy a simple constraint. (Hint: Consider the angle between sk and yk.)

2.2.b

Consider solving the minimization problem by Newton’s method (αk = 1) and BFGS using
the Hk update form. Suppose the problem size n is moderate so all linear systems are solved
using Cholesky factorization and there is no sparsity to exploit in any matrix operation.

i. Describe the computational complexity of one step of Newton’s method.

ii. Describe the computational complexity of one step of BFGS using the Hk update
form.

iii. Assuming the search for αk satisfying Wolfe’s conditions is not computationally
significant, discuss how much the number of iterations must be reduced to justify
using Newton’s method.

2



Problem 2.3

Let f(x) : Rn → R is a cost function for a minimization problem. Suppose the iteration
xk+1 = xk + αkpk is such that at every step αk satisfies the Wolfe conditions

f(xk+1) ≤ f(xk) + γ1αk∇fT
k pk

∇f(xk+1)
Tpk ≥ γ2∇f(xk)Tpk

0 < γ1 < γ2 < 1.

Consider an affine change of variable x = Sz+ c where S ∈ Rn×n is a nonsingular matrix
and c ∈ Rn and let

f̃(z) = f(x) = f(Sz + c)

(2.3.a) Determine the relationships between the gradients ∇f(x) and ∇f̃(z) and the
Hessians ∇2f(x) and ∇2f̃(z).

(2.3.b) Show that given the xk iterates satisfy the Wolfe conditions then so do the
iterates zk+1 = zk + α̃kp̃k.

Problem 2.4

Suppose xk+1 = φ(xk) defines an iteration on Rn. We know that f(xk+1) < f(xk) is not
sufficient for convergence to a local minimizer of a cost function f(x). Demonstrate this by
creating an example of a convex cost function f(x) : R2 → R that has a single stationary
point, x∗ = 0 ∈ R2, that is a global minimum and an iteration xk+1 = φ(xk) that guarantees
f(xk+1) < f(xk) but that does not converge to the minimum x∗. (In fact, you can generate
an example for which ‖xk − x∗‖ > γ > 0.)

Problem 2.5

The potential energy, E(r), of a diatomic molecule as a function of distance, r ∈ R, is given
by

E(r) =
B

r2
− zs2

r
where B > 0, s > 0, and z ≥ 1 are all real parameters. Find the distance r at which the
potential energy is a minimum.

Problem 2.6

Let f : R2 → R be the cost function

f(x) = ξ21 − 5ξ1ξ2 + ξ42 − 25ξ1 − 8ξ2 x =

(
ξ1
ξ2

)
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(2.6.a) Find ∇f(x) and ∇2f(x).

(2.6.b) Show that xT∗ = (20, 3) is the unique strict, i.e., nondegenerate, local minimizer
of f(x).

(2.6.c) Start with xT0 = (0, 0) and iterate using the Steepest Descent method with
fixed stepsize αk = α. Try different α values and determine how many steps are
required to get x∗ to approximately six digits in each component.

(2.6.d) As mentioned in class, in the limit the behavior of Steepeset Descent converging
to a nondegenerate minimizer is governed by reasoning with the local quadratic
models in the neighborhood of the minimizer. Consider solving the problem
again with the same initial condition but with the change of variables ξ2 = 7ζ,
i.e., f(ξ1, ξ2) = f(ξ1, ζ/7)) allows you to reuse the code already written. Note
that you will have to modify ∇f(x) and ∇2f(x). You should also consider a
different value of α for the rescaled problem. Explain why the behavior of the
rescaled iteration is better than the original scaling.

Problem 2.7

For each of the following cost functions find all minimizers, if they exist and, if they do not,
show why.

1. The cost function f : R3 → R

f(x) = 2ξ21 + 3ξ22 + 4ξ23 − 8ξ1 − 12ξ2 − 24ξ3 + 110, x =

ξ1ξ2
ξ3


2. The cost function f : R2 → R

f(x) = (4ξ21 − ξ2)2 x =

(
ξ1
ξ2

)
3. The cost function f : R3 → R

f(x) = ξ41 − 3ξ21 + ξ22 + 2ξ2ξ3 + 2ξ23 x =

ξ1ξ2
ξ3


4. The cost function f : R2 → R

f(x) = 2ξ32 − 6ξ22 + 3ξ21ξ2 x =

(
ξ1
ξ2

)
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5. The cost function f : R2 → R

f(x) = ξ41 + 2ξ21ξ2 + ξ22 − 4ξ21 − 8ξ1 − 8ξ2 x =

(
ξ1
ξ2

)
6. The cost function f : R2 → R

f(x) = (ξ1 − 2ξ2)
4 + 64ξ1ξ2 x =

(
ξ1
ξ2

)
7. The cost function f : R2 → R

f(x) = 2ξ21 + 3ξ22 − 2ξ1ξ2 + 2ξ1 − 3ξ2 x =

(
ξ1
ξ2

)
8. The cost function f : R2 → R

f(x) = ξ21 + 4ξ1ξ2 + ξ22 + ξ1 − ξ2 x =

(
ξ1
ξ2

)
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