
Study Homework Questions 1 Numerical Optimization

Fall 2023

Problem 1.1

Let H be a Hilbert space and let S be a subspace with dimension k and basis {φj}kj=1 so
that

∀ s ∈ S, s = φ1γ1 + . . .+ φkγk

for a unique c ∈ Rk with eTi c = γi.
Recall that the solution to the subspace approximation problem given by

∀ h ∈ H, h = hS + hS⊥

hS = φ1γ
∗
1 + · · ·+ φkγ

∗
k = argmin

s∈S
‖h− s‖2

c∗ =

γ
∗
1
...
γ∗k

 ∈ Rk, g =

〈h, φ1〉
...

〈h, φk〉

 ∈ Rk

Gc∗ = g

where G ∈ Rk×k is the Gram matrix defined by the basis vector {φ1, . . . , φk}.

(1.1.a) Show that the Gram matrix G is nonsingular.

(1.1.b) Under what circumstances can c∗ = 0 ∈ Rk?

(1.1.c) Suppose you want to find hS⊥ where S has dimension k but H is infinite
dimensional. Write the optimization problem that determines hS⊥ using explicit
functional constraints and explain how you would compute the answer.

Problem 1.2

(Luenberger, Optimization by Vector Space Methods, 1969, pp. 66-67.)
The angular velocity, ω(t), and angular position, θ(t), of a DC motor shaft driven by a

current source u(t) are governed by the differential equations

ω̇(t) = −ω(t) + u(t), ω(0) = 0 (1)

θ̇(t) = ω(t), θ(0) = 0 (2)
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where the initial condition [ω(0), θ(0)] = [0, 0] is an at rest position at 0 angle.
Assume u, ω, θ ∈ L2[0, 1] with

〈z, q〉 =

∫ 1

0

z(τ)q(τ)dτ, ‖z‖2 =

∫ 1

0

z2(τ)dτ.

The optimal control problem is to determine the current profile control action with min-
imum energy ‖u‖2 so that the system moves from its initial resting state [ω(0), θ(0)] = [0, 0]
to final resting state [ω(1), θ(1)] = [0, 1] in one second.

Recall, that the solution of the initial value problem

ḟ(t) = −αf(t) + g(t), f(0) = φ

is

f(t) = φe−αt +

∫ t

0

eα(τ−t) g(τ) dτ.

(1.2.a) Find expressions for ω(1) and θ(1) in terms of u(t).

(1.2.b) Show that the optimal control problem can be expressed as

min
u∈L2[0,1]

‖u‖2

subject to 〈y1, u〉=γ1 and 〈y2, u〉=γ2

for some functions y1(t), y2(t) ∈ L2[0, 1] and constants γ1, γ2 ∈ R.

(1.2.c) Find the optimal control u(t) using Hilbert space techniques discussed in the
notes.

Problem 1.3

Recall the ”chord” definition of a convex function f : R→ R

Definition 1.3.1. f : R→ R : x 7→ f(x) is convex on [a, b] if ∀x0, x1 ∈ [a, b]

f(θx1 + (1− θ)x0) ≤ `(θ; x0, x1)

`(θ; x0, x1) = θf(x1) + (1− θ)f(x0), 0 ≤ θ ≤ 1

`(x; x0, x1) = f(x0) + θ(f(x1)− f(x0)) = f(x0) + θ∆xf [x0, x1]

= f(x0) + (x− x0)f [x0, x1]

0 ≤ θ ≤ 1, ∆x = x1 − x0, x = x0 + φ∆x, f [x0, x1] =
f(x1)− f(x0)

x1 − x0
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Prove the following theorem:

Theorem 1.3.1.

1. If f ∈ C1 then the tangent condition

f(x) ≥ t(x, x0) = f(x0) + (x− x0)f ′(x0), ∀ x, x0 ∈ [a, b]

is equivalent to the chord condition given in Definition 1.3.1.

2. If f ∈ C1 and convex then

0 ≤ (x− y)(f ′(x)− f ′(y)), ∀ x, y ∈ [a, b]

3. If f ∈ C2 then the condition that f ′′(x) ≥ 0 ∀x ∈ [a, b] is equivalent to the tangent
condition above and the chord condition given in Definition 1.3.1.

Problem 1.4

Consider the minimization problem
min
x∈Rn

f(x)

where f(x) = 1
2
xTAx− xT b, A ∈ Rn×n is symmetric positive definite, and b ∈ Rn.

(1.4.a) Show that ∀0 ≤ β ≤ 1
βf(x) ≥ f(βx)

(1.4.b) Show that f(x) is a convex function.

Problem 1.5

Suppose A ∈ Rn×n is a symmetric positive semidefinite matrix and f(x) = 0.5xTAx−
xT b with b ∈ Rn and b ∈ R(A). Show that Steepest Descent will converge to an uncon-
strained minimizer of f(x) for any x0 such that Ax0 6= 0.

Hint: Find a smaller, symmetric positive definite linear system and use the
fact that steepest descent converges on a symmetric positive definite system.

Problem 1.6

(Problem 17 on page 259 of Luenberger and Ye 3rd Ed.)
Suppose the method of Steepest Descent is used to minimize

f(x) =
1

2
(x− x∗)TA(x− x∗)
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and the stepsize αk is not determined to minimize f(xk + αrk) as a function of the scalar α
but instead only satisfies

E(xk)− E(xk+1)

E(xk)
≥ β

E(xk)− Ē
E(xk)

where
f(xk) = E(xk) = 0.5‖xk − x∗‖2A

for some 0 < β < 1, where Ē is the value that corresponds to the best αk, i.e., the usual
minimizer. Find the best estimate for the convergence rate of the algorithm.

Problem 1.7

(Problem 21 on page 260 of Luenberger and Ye 3rd Ed.)
Let x ∈ R2 with elements ξ1 and ξ2. Consider the cost function

f(x) = ξ21 + ξ22 + ξ1ξ2 − 3ξ1.

(1.7.a) Find an unconstrained local minimizer.

(1.7.b) What is the rate of convergence for Steepest Descent applied to the uncon-
strained problem?

(1.7.c) Is the local minimizer also a global minimizer?

(1.7.d) Suppose the constraints ξ1 ≥ 0 and ξ2 ≥ 0 are added. Can a minimizer still be
determined? If so, what is it?

Problem 1.8

Let A ∈ Rn×n be a symmetric positive definite matrix, C ∈ Rn×n be a symmetric nonsingular
matrix, and b ∈ Rn be a vector. The matrix M = C2 is therefore symmetric positive definite.
Also, let Ã = C−1AC−1 and b̃ = C−1b.

The preconditioned Steepest Descent algorithm to solve Ax = b is:

A, M are symmetric positive definite
x0 arbitrary; r0 = b− Ax0; solve Mz0 = r0

do k = 0, 1, . . . until convergence

wk = Azk

αk =
zTk rk
zTk wk

xk+1 ← xk + zkαk
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rk+1 ← rk − wkαk
solve Mzk+1 = rk+1

end

The Steepest Descent algorithm to solve Ãx̃ = b̃ is:

Ã is symmetric positive definite

x̃0 arbitrary; r̃0 = b̃− Ãx̃0; ṽ0 = Ãr̃0

do k = 0, 1, . . . until convergence

α̃k =
r̃Tk r̃k
r̃Tk ṽk

x̃k+1 ← x̃k + r̃kα̃k
r̃k+1 ← r̃k − ṽkα̃k
ṽk+1 ← Ãr̃k+1

end

Show that given the appropriate consistency between initial guesses the preconditioned
steepest descent recurrences to solve Ax = b can be derived from the steepest descent
recurrences to solve Ãx̃ = b̃.

Problem 1.9

1.9.a

The following lemma is a classic result for convex and concave functions on R.

Lemma (Jensen’s Inequality). Suppose a function f : D ⊆ R→ R, scalars 0 ≤ λk ≤ 1 such
that

∑n
k=1 λk = 1, and scalars ξk ∈ D, k = 1, . . . , n are given.

If f(ξ) is convex on D then

f

(
n∑
k=1

λkξk

)
≤

n∑
k=1

λkf(ξk)

and f(ξ) is concave on D then

f

(
n∑
k=1

λkξk

)
≥

n∑
k=1

λkf(ξk).

Show that if 0 ≥ αk ∈ R and 0 < pk ∈ Z with
∑n

k=1 1/pk = 1, k = 1, . . . , n are given
then

n∏
k=1

αk ≤
n∑
k=1

1

pk
αpkk .

This is Generalized Young’s Inequality. Young’s Inequality is with n = 2.
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1.9.b

Use the Generalized Young’s Inequality to prove the inequality relating the arithmetic mean
to the geometric mean of positive real numbers 0 < ξk <∞, k = 1, . . . , n,(

n∏
k=1

ξk

)1/n

≤ 1

n

n∑
k=1

ξk.

Problem 1.10

Prove the following

Lemma (Hoelder’s Inequality). If a, b ∈ Rn and positive integers p and q satisfy p−1+q−1 =
1, equivalently p = q/(q − 1) or q = p/(p− 1), then

aT b ≤ |aT b| ≤ ‖a‖p‖b‖q.

Problem 1.11

Prove the following

Lemma (Minkowski’s Inequality). If x, y ∈ Rn and p > 0 is an integer

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
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