Study Homework Questions 1 Numerical Optimization Fall 2023

Problem 1.1

Let \mathcal{H} be a Hilbert space and let \mathcal{S} be a subspace with dimension k and basis $\left\{\phi_{j}\right\}_{j=1}^{k}$ so that

$$
\forall s \in \mathcal{S}, \quad s=\phi_{1} \gamma_{1}+\ldots+\phi_{k} \gamma_{k}
$$

for a unique $c \in \mathbb{R}^{k}$ with $e_{i}^{T} c=\gamma_{i}$.
Recall that the solution to the subspace approximation problem given by

$$
\begin{gathered}
\forall h \in \mathcal{H}, \quad h=h_{\mathcal{S}}+h_{\mathcal{S}^{\perp}} \\
h_{\mathcal{S}}=\phi_{1} \gamma_{1}^{*}+\cdots+\phi_{k} \gamma_{k}^{*}=\underset{s \in \mathcal{S}}{\operatorname{argmin}}\|h-s\|^{2} \\
c^{*}=\left(\begin{array}{c}
\gamma_{1}^{*} \\
\vdots \\
\gamma_{k}^{*}
\end{array}\right) \in \mathbb{R}^{k}, \quad g=\left(\begin{array}{c}
\left\langle h, \phi_{1}\right\rangle \\
\vdots \\
\left\langle h, \phi_{k}\right\rangle
\end{array}\right) \in \mathbb{R}^{k} \\
G c^{*}=g
\end{gathered}
$$

where $G \in \mathbb{R}^{k \times k}$ is the Gram matrix defined by the basis vector $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$.
(1.1.a) Show that the Gram matrix G is nonsingular.
(1.1.b) Under what circumstances can $c^{*}=0 \in \mathbb{R}^{k}$?
(1.1.c) Suppose you want to find $h_{\mathcal{S}^{\perp}}$ where \mathcal{S} has dimension k but \mathcal{H} is infinite dimensional. Write the optimization problem that determines $h_{\mathcal{S}^{\perp}}$ using explicit functional constraints and explain how you would compute the answer.

Problem 1.2

(Luenberger, Optimization by Vector Space Methods, 1969, pp. 66-67.)
The angular velocity, $\omega(t)$, and angular position, $\theta(t)$, of a DC motor shaft driven by a current source $u(t)$ are governed by the differential equations

$$
\begin{gather*}
\dot{\omega}(t)=-\omega(t)+u(t), \quad \omega(0)=0 \tag{1}\\
\dot{\theta}(t)=\omega(t), \quad \theta(0)=0 \tag{2}
\end{gather*}
$$

where the initial condition $[\omega(0), \theta(0)]=[0,0]$ is an at rest position at 0 angle.
Assume $u, \omega, \theta \in \mathcal{L}^{2}[0,1]$ with

$$
\langle z, q\rangle=\int_{0}^{1} z(\tau) q(\tau) d \tau, \quad\|z\|^{2}=\int_{0}^{1} z^{2}(\tau) d \tau
$$

The optimal control problem is to determine the current profile control action with minimum energy $\|u\|^{2}$ so that the system moves from its initial resting state $[\omega(0), \theta(0)]=[0,0]$ to final resting state $[\omega(1), \theta(1)]=[0,1]$ in one second.

Recall, that the solution of the initial value problem

$$
\dot{f}(t)=-\alpha f(t)+g(t), \quad f(0)=\phi
$$

is

$$
f(t)=\phi e^{-\alpha t}+\int_{0}^{t} e^{\alpha(\tau-t)} g(\tau) d \tau
$$

(1.2.a) Find expressions for $\omega(1)$ and $\theta(1)$ in terms of $u(t)$.
(1.2.b) Show that the optimal control problem can be expressed as

$$
\min _{u \in \mathcal{L}^{2}[0,1]}\|u\|^{2}
$$

subject to $\left\langle y_{1}, u\right\rangle_{=} \gamma_{1}$ and $\left\langle y_{2}, u\right\rangle_{=} \gamma_{2}$
for some functions $y_{1}(t), y_{2}(t) \in \mathcal{L}^{2}[0,1]$ and constants $\gamma_{1}, \gamma_{2} \in \mathbb{R}$.
(1.2.c) Find the optimal control $u(t)$ using Hilbert space techniques discussed in the notes.

Problem 1.3

Recall the "chord" definition of a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$
Definition 1.3.1. $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$ is convex on $[a, b]$ if $\forall x_{0}, x_{1} \in[a, b]$

$$
\begin{gathered}
f\left(\theta x_{1}+(1-\theta) x_{0}\right) \leq \ell\left(\theta ; x_{0}, x_{1}\right) \\
\ell\left(\theta ; x_{0}, x_{1}\right)=\theta f\left(x_{1}\right)+(1-\theta) f\left(x_{0}\right), \quad 0 \leq \theta \leq 1 \\
\ell\left(x ; x_{0}, x_{1}\right)=f\left(x_{0}\right)+\theta\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)=f\left(x_{0}\right)+\theta \Delta x f\left[x_{0}, x_{1}\right] \\
=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] \\
0 \leq \theta \leq 1, \Delta x=x_{1}-x_{0}, x=x_{0}+\phi \Delta x, f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
\end{gathered}
$$

Prove the following theorem:

Theorem 1.3.1.

1. If $f \in \mathcal{C}^{1}$ then the tangent condition

$$
f(x) \geq t\left(x, x_{0}\right)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right), \quad \forall x, x_{0} \in[a, b]
$$

is equivalent to the chord condition given in Definition 1.3.1.
2. If $f \in \mathcal{C}^{1}$ and convex then

$$
0 \leq(x-y)\left(f^{\prime}(x)-f^{\prime}(y)\right), \quad \forall x, y \in[a, b]
$$

3. If $f \in \mathcal{C}^{2}$ then the condition that $f^{\prime \prime}(x) \geq 0 \forall x \in[a, b]$ is equivalent to the tangent condition above and the chord condition given in Definition 1.3.1.

Problem 1.4

Consider the minimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f(x)=\frac{1}{2} x^{T} A x-x^{T} b, A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, and $b \in \mathbb{R}^{n}$.
(1.4.a) Show that $\forall 0 \leq \beta \leq 1$

$$
\beta f(x) \geq f(\beta x)
$$

(1.4.b) Show that $f(x)$ is a convex function.

Problem 1.5

Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix and $f(x)=0.5 x^{T} A x-$ $x^{T} b$ with $b \in \mathbb{R}^{n}$ and $b \in \mathcal{R}(A)$. Show that Steepest Descent will converge to an unconstrained minimizer of $f(x)$ for any x_{0} such that $A x_{0} \neq 0$.

Hint: Find a smaller, symmetric positive definite linear system and use the fact that steepest descent converges on a symmetric positive definite system.

Problem 1.6

(Problem 17 on page 259 of Luenberger and Ye 3rd Ed.)
Suppose the method of Steepest Descent is used to minimize

$$
f(x)=\frac{1}{2}\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)
$$

and the stepsize α_{k} is not determined to minimize $f\left(x_{k}+\alpha r_{k}\right)$ as a function of the scalar α but instead only satisfies

$$
\frac{E\left(x_{k}\right)-E\left(x_{k+1}\right)}{E\left(x_{k}\right)} \geq \beta \frac{E\left(x_{k}\right)-\bar{E}}{E\left(x_{k}\right)}
$$

where

$$
f\left(x_{k}\right)=E\left(x_{k}\right)=0.5\left\|x_{k}-x_{*}\right\|_{A}^{2}
$$

for some $0<\beta<1$, where \bar{E} is the value that corresponds to the best α_{k}, i.e., the usual minimizer. Find the best estimate for the convergence rate of the algorithm.

Problem 1.7

(Problem 21 on page 260 of Luenberger and Ye 3rd Ed.)
Let $x \in \mathbb{R}^{2}$ with elements ξ_{1} and ξ_{2}. Consider the cost function

$$
f(x)=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{1} \xi_{2}-3 \xi_{1}
$$

(1.7.a) Find an unconstrained local minimizer.
(1.7.b) What is the rate of convergence for Steepest Descent applied to the unconstrained problem?
(1.7.c) Is the local minimizer also a global minimizer?
(1.7.d) Suppose the constraints $\xi_{1} \geq 0$ and $\xi_{2} \geq 0$ are added. Can a minimizer still be determined? If so, what is it?

Problem 1.8

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix, $C \in \mathbb{R}^{n \times n}$ be a symmetric nonsingular matrix, and $b \in \mathbb{R}^{n}$ be a vector. The matrix $M=C^{2}$ is therefore symmetric positive definite. Also, let $\tilde{A}=C^{-1} A C^{-1}$ and $\tilde{b}=C^{-1} b$.

The preconditioned Steepest Descent algorithm to solve $A x=b$ is:
A, M are symmetric positive definite
x_{0} arbitrary; $r_{0}=b-A x_{0}$; solve $M z_{0}=r_{0}$
do $k=0,1, \ldots$ until convergence

$$
\begin{aligned}
& w_{k}=A z_{k} \\
& \alpha_{k}=\frac{z_{k}^{T} r_{k}}{z_{k}^{T} w_{k}} \\
& x_{k+1} \leftarrow x_{k}+z_{k} \alpha_{k}
\end{aligned}
$$

$$
\begin{aligned}
& r_{k+1} \leftarrow r_{k}-w_{k} \alpha_{k} \\
& \text { solve } M z_{k+1}=r_{k+1}
\end{aligned}
$$

end
The Steepest Descent algorithm to solve $\tilde{A} \tilde{x}=\tilde{b}$ is:
\tilde{A} is symmetric positive definite
\tilde{x}_{0} arbitrary; $\tilde{r}_{0}=\tilde{b}-\tilde{A} \tilde{x}_{0} ; \tilde{v}_{0}=\tilde{A} \tilde{r}_{0}$
do $k=0,1, \ldots$ until convergence

$$
\begin{aligned}
& \tilde{\alpha}_{k}=\frac{\tilde{r}_{k}^{T} \tilde{r}_{k}}{\tilde{r}_{k}^{T} \tilde{v}_{k}} \\
& \tilde{x}_{k+1} \leftarrow \tilde{x}_{k}+\tilde{r}_{k} \tilde{\alpha}_{k} \\
& \tilde{r}_{k+1} \leftarrow \tilde{r}_{k}-\tilde{v}_{k} \tilde{\alpha}_{k} \\
& \tilde{v}_{k+1} \leftarrow \tilde{A} \tilde{r}_{k+1}
\end{aligned}
$$

end
Show that given the appropriate consistency between initial guesses the preconditioned steepest descent recurrences to solve $A x=b$ can be derived from the steepest descent recurrences to solve $\tilde{A} \tilde{x}=\tilde{b}$.

Problem 1.9

1.9.a

The following lemma is a classic result for convex and concave functions on \mathbb{R}.
Lemma (Jensen's Inequality). Suppose a function $f: \mathcal{D} \subseteq \mathbb{R} \rightarrow \mathbb{R}$, scalars $0 \leq \lambda_{k} \leq 1$ such that $\sum_{k=1}^{n} \lambda_{k}=1$, and scalars $\xi_{k} \in \mathcal{D}, k=1, \ldots, n$ are given.

If $f(\xi)$ is convex on \mathcal{D} then

$$
f\left(\sum_{k=1}^{n} \lambda_{k} \xi_{k}\right) \leq \sum_{k=1}^{n} \lambda_{k} f\left(\xi_{k}\right)
$$

and $f(\xi)$ is concave on \mathcal{D} then

$$
f\left(\sum_{k=1}^{n} \lambda_{k} \xi_{k}\right) \geq \sum_{k=1}^{n} \lambda_{k} f\left(\xi_{k}\right) .
$$

Show that if $0 \geq \alpha_{k} \in \mathcal{R}$ and $0<p_{k} \in \mathcal{Z}$ with $\sum_{k=1}^{n} 1 / p_{k}=1, k=1, \ldots, n$ are given then

$$
\prod_{k=1}^{n} \alpha_{k} \leq \sum_{k=1}^{n} \frac{1}{p_{k}} \alpha_{k}^{p_{k}}
$$

This is Generalized Young's Inequality. Young's Inequality is with $n=2$.

1.9.b

Use the Generalized Young's Inequality to prove the inequality relating the arithmetic mean to the geometric mean of positive real numbers $0<\xi_{k}<\infty, k=1, \ldots, n$,

$$
\left(\prod_{k=1}^{n} \xi_{k}\right)^{1 / n} \leq \frac{1}{n} \sum_{k=1}^{n} \xi_{k}
$$

Problem 1.10

Prove the following
Lemma (Hoelder's Inequality). If $a, b \in \mathbb{R}^{n}$ and positive integers p and q satisfy $p^{-1}+q^{-1}=$ 1 , equivalently $p=q /(q-1)$ or $q=p /(p-1)$, then

$$
a^{T} b \leq\left|a^{T} b\right| \leq\|a\|_{p}\|b\|_{q} .
$$

Problem 1.11

Prove the following
Lemma (Minkowski's Inequality). If $x, y \in \mathbb{R}^{n}$ and $p>0$ is an integer

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} .
$$

