
Graded Homework 2 Numerical Optimization Fall 2023

The solutions are due by 11:59PM on Sunday November 12, 2023

Programming Exercise

Codes

You are to add an inexact Newton method (that includes an option for Steepest Descent)
and a Quasi-Newton method to your codes and empirically explore the performance of the
three methods compared to each other and to overall quality of efficiency and effectiveness.

Comments on Codes

• For the inexact Newton method you should used the Truncated CG approach by mod-
ifying your CG code produced for earlier homework assignments.

• For the Quasi-Newton method you may choose out of the main versions presented in
the notes and references

1. Standard BFGS with a constant guard on the positivity of the curvature condition,
i.e., Powell’s form.

2. Cautious BFGS of Li and Fukishima

3. Damped BFGS

• For the Quasi-Newton you may use either the Hk form or the Bk form for your codes
but the Hk form is recommended for this assignment.

• For the line search termination you must implement

1. The Wolfe conditions (strong or standard);

2. The Armijo-Goldstein conditions (backtracking or interpolation). However, make
sure you take the appropriate action to make sure the codes work given your
choice.

• Be careful of the numerical problems in the Armijo-Goldstein test and for either ter-
mination you should switch to a fixed αk. This should be 1 for these methods but you
can explore the effect of taking αk = α < 1 for k > k0.

• For the initial step size selection you must implement the either of the two methods
on slides 30 and 31 of Set 9 of the class notes, and both of the BB initial stepsizes on
slide 32.

1

• You may find it most convenient to put all of this in one code with appropriate condition
execution of the choice of approach in each section. Your codes for the strictly convex
quadratic optimization provides the appropriate high level control.

Tasks

Your overall task is to evaluate and compare the performance of the three codes with respect
to the different choices listed above. More specifcally,

1. When collecting performance information make sure it includes for each step the value
of the cost function f(xk), a norm of the gradient ∇f(xk) (which can be compared to

the norm of the initial gradient or unit roundoff), initial step size α
(0)
k , final step size

initial step size αk, number of function and gradient evaluations, number of matrix
vector products, number of inner products (for the Truncated CG iteration for exam-
ple), number of vector additions (for the Truncated CG iteration for example), and
any other major primitive in the iteration. For each of these you should have a floating
point operation count parameterized in terms of problem size and any other relevant
parameter.

2. When analyzing and comparing the performance the primitive counts and their com-
plexities can be used to report the total number of floating point operations for each
step, the total used up to any step, and the final total when the iteration is termi-
nated. This can be used to provide a machine-independent performance comparison
of methods when run on the same problem from the same initial x(k). In fact, plotting
information such as the norm of the gradient vs number of floating point operations
used rather than time is an excellent way to augment other plots that use iterations
as the independent variable.

3. You should assess the performance of each method with respect to the different choices
of

• initial step size;

• line search termination criteria;

• termination of the overall iteration.

4. You should use the performance information of each method to compare the meth-
ods for efficiency in terms of totall floating point operations vs the quality of the
solution, i.e., norm of the gradient (absolute and relative to size of the initial gradi-
ent and the cost function at the final iterate, e.g., ‖∇f(xk)‖, ‖∇f(xk)‖/‖∇f(x0)‖,
‖∇f(xk)‖/|f(xk)|.

5. You are free to make use of the benchmark problems and any other problems from the
notes, reference papers posted, or other optimization texts, in particular Nocedal and
Wright’s textbook and Beck’s Introduction to Nonlinear Optimization. It is a good

2

idea to run some strictly convex quadratic problems for which you have already used
your earlier codes. Strictly convex but not necessarily quadratic are another good class
of problem since they have a unique global minimizer.

6. Note that for Steepest Descent it is often useful to scale the problem with a matrix
that is simpler than the Hessian inverse, i.e., Newton’s method, or an inexact form.
For example, using a diagonal matrix Dk can improve things. So the line search would
be run f(xk−αDk∇fk) and the step would then be xk+1 = xk−αkDk∇fk where Dk is
a positive diagonal matrix. If the Hessian ∇2f(xk) has positive diagonal elements then
Dk can be set to the matrix with elements (eTj ∇2f(xk)ej)

−1. For example, consider
f(x) = 1000ξ21 + 40ξ1ξ2 + ξ22 over R2 with an without Dk = diag(1/1000, 1). This is a
convex quadratic problem.

7. Also note that Newton’s method can often be a nice scaling, if computationally af-
fordable, to accelerate Steepest Descent. For example, consider using Steepest Descent
with Armijo-Goldstein backtracking on the cost function f(x) = 100ξ41 + 0.01ξ42 and
Newton’s method. Clearly this is a poorly scaled problem. Note that the Hessian for
this problem is not always positive definite and does not satisfy a Lipschitz condition.
Nevertheless, Newton works.

8. Another problem discussed by Beck is f(x) =
√
ξ21 + 1 +

√
ξ22 + 1. The Hessian is

always positive definite but does not have a lower bound on its minimum eigenvalue.
Consider the behavior of Newton’s method starting at, say x0 = (ξ

(0)
1 , ξ

(0)
2)T = (1, 1)T ,

and compare it to Steepest Descent with Armijo-Goldstein with backtracking.

9. The Rosenbrock function is a classic benchmark that has extreme level contours and
can cause difficulties:

f(ξ1, ξ2) = 100(ξ2 − ξ21)2 + (1− ξ1)2

with x∗ = (1, 1) (you should verify this). Steepest Descent, Newton and BFGS methods
will have significantly different behavior.

3

