
Graded Homework 2 Numerical Optimization Fall 2023

The solutions are due by 11:59PM on Sunday October 22, 2023

Written Exercises

Problem 2.1

Consider solving a linear system Ax = b where A is symmetric positive definite using steepest
descent.

2.1.a

Suppose you use steepest descent without preconditioning. Show that the residuals, rk and
rk+1 are orthogonal for all k.

2.1.b

Suppose you use steepest descent with preconditioning. Are the residuals, rk and rk+1

orthogonal for all k? If not is there any vector from step k that is guaranteed to be orthogonal
to rk+1?

Problem 2.2

Let A = QΛQT be a symmetric positive definite matrix where Q is an orthogonal matrix
and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues
of A. Define

x̃ = QTx and b̃ = QT b

Ax = b and Λx̃ = b̃

Given x0 and x̃0, define the sequence xk as the sequence of vectors produced by steepest
descent applied to Ax = b and the sequence x̃k as the sequence of vectors produced by
steepest descent applied to Λx̃ = b̃.

Let ek = xk − x and ẽk = x̃k − x̃. Show that if x̃0 = QTx0 then

‖ek‖2 = ‖ẽk‖2, k > 0
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Problem 2.3

2.3.a

Let the cost function f : R2 → R be defined by

f(x) = xTd+ xTx, where d =

(
δ1
δ2

)
where δ1 > 0, δ2 > 0 and µ = ‖d‖2 > 1. Consider the problem

min
x∈R2

f(x).

(i) Find a minimizer x∗. Is it unique?

(ii) Write the iteration that defines applying the steepest descent algorithm to solve
the minimization problem.

(iii) How would you set the stepsize αk and why?

(iv) Will your choice of αk yield an algorithm that converges in a finite number of
steps?

2.3.b

Now suppose the minimization problem is constrained so that we are only interested in
x ∈ R2 on the circle of radius 1, i.e., the unit circle

S1 = {x ∈ R2 | xTx = 1}

Specifically, we want to solve
min
x∈S1

f(x)

(i) Show that this problem can be viewed as an unconstrained minimization problem
on R by writing the cost function over S1 as a function of a real variable θ.

(ii) Write the iteration that defines applying the steepest descent algorithm to solve
the minimization problem over R.

(iii) How would you set the stepsize αk and why?

(iv) Will your choice of αk yield an algorithm that converges in a finite number of
steps when started at an initial guess θ0 = 0?
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Problem 2.4

For each of the two cost functions on R2, i.e., xT = (ξ1, ξ2), determine the gradient, the
Hessian and the stationary points. Identify which stationary points are minima, maxima or
neither.

(2.4.a) f(x) = 8ξ1 + 12ξ2 + ξ21 − 2ξ22

(2.4.b) f(x) = 100(ξ2 − ξ21)2 + (1− ξ1)2

Problem 2.5

Let f(x) : Rn → R be a convex function. Let the set Γ be the set of global minimizers of f .
Show that Γ must be a convex set.

Programming Exercise

Problem 2.6

2.6.a Coding Task

Implement a general descent method that can:

• choose the direction vector as a general descent direction or more specifically, as the
residual at the current iterate xk, or as a direction that is intentionally taken to be
different from the residual;

• choose the optimal local stepsize, α∗k, for the given direction vector, or select αk = α̃
as a constant satisfying a convergence sufficient condition, or select αk based on other
specified criteria given below.

Your code should be organized so that it can be used as the basis for a general descent
optimization code for unconstrained nonlinear optimization. For this assignment, it should
be capable of running

1. steepest descent (SD);

2. Richardson’s stationary method (RS) satisfying α < 2/λmax;

3. a descent method (SDslow) with the direction vector taken as the residual but with the
stepsize αk = σα∗k where σ is constant and such that convergence is still guaranteed.

4. Conjugate Gradient without preconditioning;
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5. The Barzilai and Borwein two-step methods described in the paper posted on the class
webpage – the two methods differ only in the two choices of stepsize used; (It is strongly
recommended you read the paper carefully before doing this assignment.)

6. and the Gauss-Southwell method (described below).

2.6.b Empirical Tasks

• Use the general descent code with the appropriate choices to compare all of the meth-
ods when applied to strictly convex and convex quadratic unconstrained optimization
problems.

• In general, you are to highlight the strengths and weaknesses of the methods and their
relative performances.

• A more specific goal is to empirically verify convergence rate bounds, orthogonality of
successive residuals for SD, all residuals for CG, A-orthogonality for CG, and the effect
of the condition number and distribution of the eigenvalues on the performance of the
methods.

• Most of your experiments can be run in the eigencoordinate system but you should
provide some evidence that the convergence behavior in the original coordinate system
are the same when they should be.

• You should also consider local behavior of the residual and error, i.e., what happens
on each step and relate it to the the size of the components of the error or residual
in each eigendirection. Pay particular attention to the difference between SD and RS
single step differences, e.g., you can save iterates from, say, RS and then examine what
happens when you take one step of, say, SD staring from the saved RS iterates.

• The RS method requires that the constant stepsize α satisfy α < 2/λmax so that the
iteration will converge for all x0. However, violating this condition does not mean
that the iteration diverges for all x0. Create an example where, in exact arith-
metic, the iteration will converge even though α > 2/λmax and explain the reasoning
behind your construction. Does numerical noise due to arithmetic, and perhaps sim-
ulated here by random perturbations to the iterates or associated vectors, effect the
conclusion?

2.6.c Gauss-Southwell Method

The Gauss-Southwell method is a coordinate descent method where the direction vector is
dk = sign(eTi rk)ei where ei is the i−th standard basis vector and i is the index of a component
of rk that has maximal magnitude, i.e.,

|rTk ei| ≥ |rTk ej|, 1 ≤ j ≤ n
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where αk minimizes f(xk + αdk) as a function of the scalar α. This implies

(rTk ei)
2 ≥ (rTk ej)

2, 1 ≤ j ≤ n.

Given the constraints

dTk gk < 0

(dTk gk)2 ≥ β(dTk dk)(gTkA
−1gk)

where gk = ∇f(xk) = −rk and 0 < β ≤ 1, it can be shown that

E(xk+1) ≤
{

1− 1

n− 1

λmin

λmax

}
E(xk)

where
f(xk) = E(xk) = 0.5‖xk − x∗‖2A.

Note that this is an example of a more general constraint on the angle between the direction
vector and the residual being used to choose the direction vector on a give step.

2.6.d Comments on Test Problems

As noted, the behavior of the algorithms can be demonstrated with respect to convergence,
rates etc. in the eigencoordinate system (see the study questions and class notes). So you
can work with the system Λx̃ = b̃ and manipulate the choice of the positive diagonal matrix
Λ for strictly convex problems and nonnegative diagonal matrix Λ for convex problem that
may have more than one minimizer. You should, as with the first graded homework, use
a combination of a few specific problems to demonstrate results but you should also work
with large numbers of randomly generated problems from various classes depending on the
assumptions you are exploring.

Of course, given a diagonal matrix Λ it is easy to generate a symmetric postive definite A
or positive semidefinite A by generating an orthogonal matrix Q ∈ Rn×n as discussed in first
graded homework assignment. For such a matrix you can verify the invariance of the behavior
for the algorithm in the eigencoordinates and in the coordinates associated with A. You can
also generate symmetric positive definite matrics for which you do not initially specify the
eigendecomposition by generating a random lower triangular matrix L ∈ Rn×n with positive
diagonal elements then forming A = LLT . This allows you to easily determine the true
solution for any righthand side vector b (as you can also with the eigendecomposition). You
can use any library, e.g., Matlab, to compute the eigendecompostion for A = LLT for your
analysis.
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