
Study Problems 4 Foundations of Computational Math

1 Fall 2024

Problem 4.1

Suppose ‖v‖ν is a given vector norm on Rn. The vector norm induces a matrix norm ‖A‖α
on Rn×n by a maximization-based definition.

4.1.a Show that the vector and induced matrix norms satisfy for any A ∈ Rn×n:

∀v ∈ Rn, ‖Av‖ν ≤ ‖A‖α‖v‖ν

4.1.b Show that for any pair of matrices A ∈ Rn×n and B ∈ Rn×n the matrix norm
satisfies

‖AB‖α ≤ ‖A‖α‖B‖α

Problem 4.2

Suppose A ∈ Rn×n is a symmetric positive definite matrix.

4.2.a Show that A is nonsingular.

4.2.b Show that all of the eigenvalues of A are real and positive and that they have
corresponding real eigenvectors.

4.2.c Show that for any v1 ∈ Rn and v2 ∈ Rn, the function 〈v1, v2〉A = vT2 Av1 is an
inner product.

4.2.d It is known that if A is symmetric positive definite then it has a symmetric
positive definite square root, A1/2 ∈ Rn×n, such that A = A1/2A1/2 = A1/2AT/2 =(
A1/2

)2
. It is also known that an inner product induces a vector norm by ‖v‖2A =

〈v, v〉A = vTAv. Prove that ‖v‖A is a vector norm using an alternate approach
that relates ‖v‖A to ‖ṽ‖2 where ṽ is unique for each v ∈ Rn and then exploits
that it is known ‖ṽ‖2 is a vector norm, i.e. it satisfies the required properties.

Problem 4.3

Suppose A ∈ Rn×n is a symmetric positive definite matrix. Recall, that A has several well
known factorizations due to symmetry and positive definiteness.

1. A = AT implies that A = QΛQT where QTQ = QQT = I ∈ Rn×n and Λ =
diag(λ1, λ2, . . . , λn) ∈ Rn×n, i.e., Λ is a real diagonal matrix. (Schur Decomposition)
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2. If A is also positive definite then A = LDLT where L ∈ Rn×n is a unit lower triangular
matrix and D = diag(δ1, δ2, . . . , δn) ∈ Rn×n with δi > 0.

3. If A is also positive definite then A = L̃L̃T where L ∈ Rn×n is a nonsingular lower
triangular matrix with eTi L̃ei > 0. (Cholesky factorization).

4.3.a Show that if A is symmetric then ‖A‖2 = ρ(A) where ρ(A) is the spectral radius
of A. (Note there is no assumption of positive definite in this item.)

4.3.b Show if A is symmetric then that ‖A−1‖2 = 1/|λmin| where λmin is the eigenvalue
of A that has the minimal magnitude. (Note there is no assumption of positive
definite in this item.)

4.3.c Show that if C ∈ Rn×n is nonsingular then CCT is a symmetric positive definite
matrix.

4.3.d Show that if A is symmetric positive definite then it has a symmetric positive

definite square root, A1/2 ∈ Rn×n, such that A = A1/2A1/2 = A1/2AT/2 =
(
A1/2

)2
.

4.3.e Show that if A is symmetric positive definite with maximum and minimum
eigenvalues λmax and λmin then

∀w ∈ Rn, 0 < λmin ≤
wTAw

wTw
≤ λmax

Problem 4.4

Two matrices A ∈ Rn×n and B ∈ Rn×n are similar if there exists a nonsingular M ∈ Rn×n

such that
A = M−1BM.

4.4.a Show that A and B have the same eigenvalues.

4.4.b If (λ, v) is an eigenvalue and eigenvector pair of A what is an associated eigen-
value and eigenvector pair (λ̃, ṽ) of B?

4.4.c Suppose that A ∈ Rn×n and P ∈ Rn×n are both nonsingular matrices. Show
that G = I − P−1A and G̃ = I − AP−1 are similar matrices.

4.4.d Suppose that A ∈ Rn×n and P ∈ Rn×n are both symmetric positive matrices.
Show that G = I − P−1A, G̃ = I − AP−1 Ĝ = I − Â are all similar matrices,
where Â = C−1AC−T and P = CCT for some nonsingular C ∈ Rn×n.

Problem 4.5

Consider solving a linear system Ax = b where A is symmetric positive definite using steepest
descent.
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4.5.a

Suppose you use steepest descent without preconditioning. Show that the residuals, rk and
rk+1 are orthogonal for all k.

4.5.b

Suppose you use steepest descent with preconditioning. Are the residuals, rk and rk+1

orthogonal for all k? If not is there any vector from step k that is guaranteed to be orthogonal
to rk+1?

Problem 4.6

Let A = QΛQT be a symmetric positive definite matrix where Q is an orthogonal matrix
and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues
of A. Define

x̃ = QTx and b̃ = QT b

Ax = b and Λx̃ = b̃

Given x0 and x̃0, define the sequence xk as the sequence of vectors produced by steepest
descent applied to Ax = b and the sequence x̃k as the sequence of vectors produced by
steepest descent applied to Λx̃ = b̃.

Let e(k) = xk − x and ẽ(k) = x̃k − x̃. Show that if x̃0 = QTx0 then

‖e(k)‖2 = ‖ẽ(k)‖2, k > 0

‖rk‖2 = ‖r̃k‖2, k > 0.

Also, what is the relationship between the stepsizes αk and α̃k for the xk and x̃k iterations
respectively.

Problem 4.7

Let A ∈ Rn×k, x ∈ Rk, and b ∈ Rn with the columns of A linearly independent and consider
the linear least squares problem

min
x∈Rk
‖b− Ax‖2

4.7.a. Show that N = ATA ∈ Rk×k is a symmetric positive definite matrix
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4.7.b. Suppose that n and k are both very large and that A is very sparse, i.e., a
small number of nonzero elements much less than k is in each row. Show how
you would use CG without preconditioning to solve for the solution of the least
squares problem xmin in a computationally efficient manner. Comment on the
complexity of one step of your algorithm in terms of order of operations (you
need not worry about the multiplicative constant in the order expressions).

Problem 4.8

Let A ∈ Rn×n be a symmetric positive definite and define the A-norm using the A-inner
product

〈v1, v2〉A = vT2 Av1

‖v‖2A = 〈v, v〉A.

Consider the linear system Ax = b with solution x∗ = A−1b. Define the two functions from
Rn to R

E(x) = ‖x− x∗‖2A, f(x) =
1

2
xTAx− xT b

( 4.8.a) Show that E(x) and f(x) have the same unique minimizer x∗.

( 4.8.b) What are the gradients ∇E(x) and ∇f(x)?

4


