Study Problems 1 Applied Linear Algebra 2 Spring 2024

Problem 1.1

Consider the vector space \mathbb{R}^4

- **1.1.a.** Specify a subspace of \mathbb{R}^4 with dimension 2 by giving a basis for the subspace.
- **1.1.b**. Show that the basis for a subspace is not unique by giving another basis for the same subspace given in (1.1.a).

Problem 1.2

This problem considers three basic vector norms: $\|.\|_1, \|.\|_2, \|.\|_{\infty}$.

- **1.2.a.** Prove that $\|.\|_1$ is a vector norm.
- **1.2.b.** Prove that $\|.\|_{\infty}$ is a vector norm.

1.2.c. Consider $\|.\|_2$.

- (i) Show that $\|.\|_2$ is definite.
- (ii) Show that $\|.\|_2$ is homogeneous.
- (iii) Show that for $\|.\|_2$ the triangle inequality follows from the Cauchy inequality $|x^H y| \le \|x\|_2 \|y\|_2$.
- (iv) Assume you have two vectors x and y such that $||x||_2 = ||y||_2 = 1$ and $x^H y = |x^H y|$, prove the Cauchy inequality holds for x and y.
- (v) Assume you have two arbitrary vectors \tilde{x} and \tilde{y} . Show that there exists x and y that satisfy the conditions of part (iv) and $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ where α and β are scalars.
- (vi) Show the Cauchy inequality holds for two arbitrary vectors \tilde{x} and \tilde{y} .

Problem 1.3

Let $y \in \mathbb{R}^m$ and ||y|| be any vector norm defined on \mathbb{R}^m . Let $x \in \mathbb{R}^n$ and A be an $m \times n$ matrix with m > n.

- **1.3.a.** Show that the function f(x) = ||Ax|| is a vector norm on \mathbb{R}^n if and only if A has full column rank, i.e., rank(A) = n.
- **1.3.b.** Suppose we choose f(x) from part (1.3.a) to be $f(x) = ||Ax||_2$. What condition on A guarantees that $f(x) = ||x||_2$ for any vector $x \in \mathbb{R}^n$?

Problem 1.4

1.4.a. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be nonsingular matrices. Show $(AB)^{-1} = B^{-1}A^{-1}$.

1.4.b. Suppose $A \in \mathbb{R}^{m \times n}$ with m > n and let $M \in \mathbb{R}^{n \times n}$ be a nonsingular square matrix. Show that $\mathcal{R}(A) = \mathcal{R}(AM)$ where $\mathcal{R}(\cdot)$ denotes the range of a matrix.

Problem 1.5

Consider the matrix

$$L = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ \lambda_{21} & \lambda_{22} & 0 & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix}$$

Suppose that $\lambda_{11} \neq 0$, $\lambda_{33} \neq 0$, $\lambda_{44} \neq 0$ but $\lambda_{22} = 0$.

1.5.a. Show that L is singular.

1.5.b. Determine a basis for the nullspace $\mathcal{N}(L)$.

Problem 1.6

Suppose that $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ and let $E = uv^T$.

1.6.a. Show that $||E||_F = ||E||_2 = ||u||_2 ||v||_2$.

1.6.b. Show that $||E||_{\infty} = ||u||_{\infty} ||v||_{1}$.

Problem 1.7

Show that for any vector norm on \mathbb{C} ,

```
\forall x, y \in \mathbb{C} \quad \|x - y\| \ge | \quad \|x\| - \|y\| \quad |
```

Problem 1.8

Let $\mathcal{S}_1 \subset \mathbb{R}^n$ and $\mathcal{S}_2 \subset \mathbb{R}^n$ be two subspaces of \mathbb{R}^n .

- **1.8.a.** Suppose $x_1 \in S_1$, $x_1 \notin S_1 \cap S_2$. $x_2 \in S_2$, and $x_2 \notin S_1 \cap S_2$. Show that x_1 and x_2 are linearly independent.
- **1.8.b.** Suppose $x_1 \in S_1$, $x_1 \notin S_1 \cap S_2$. $x_2 \in S_2$, and $x_2 \notin S_1 \cap S_2$. Also, suppose that $x_3 \in S_1 \cap S_2$ and $x_3 \neq 0$, i.e., the intersection is not empty. Show that x_1 , x_2 and x_3 are linearly independent.

Problem 1.9

Suppose $A \in \mathbb{R}^{m \times n}$, $m \ge n$ and $rank(A) = p \le n$. Show that there exists $X \in \mathbb{R}^{m \times p}$ and $Y \in \mathbb{R}^{\times p}$ such that rank(X) = rank(Y) = p and

$$A = XY^{T}$$

Problem 1.10

Let n = 4 and consider the lower triangular system Lx = f of the form

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ \lambda_{21} & 1 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 1 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix}$$

Recall, that the column-oriented algorithm can be derived from a factorization $L = L_1 L_2 L_3$ where L_i was an elementary unit lower triangular matrix associated with the *i*-th column of L.

Show that the row-oriented algorithm can be derived from a factorization of L of the form

$$L = R_2 R_3 R_4$$

where R_i is associated with the *i*-th row of L.

Problem 1.11

Recall that any unit lower triangular matrix $L \in \mathbb{R}^{n \times n}$ can be written in factored form as

$$L = M_1 M_2 \cdots M_{n-1} \tag{1}$$

where $M_i = I + l_i e_i^T$ is an elementary unit lower triangular matrix (column form). Given the ordering of the elementary matrices, this factorization did not require any computation.

Consider a simpler elementary unit lower triangular matrix (element form) that differs from the identity in **one off-diagonal element** in the strict lower triangular part, i.e.,

$$E_{ij} = I + \lambda_{ij} e_i e_j^T$$

where $i \neq j$.

1.11.a. Show that computing the product of two element form elementary matrices is simply superposition of the elements into the product given by

$$E_{ij}E_{rs} = I + \lambda_{ij}e_ie_j^T + \lambda_{rs}e_re_s^T$$

whenever $j \neq r$.

1.11.b. Show that if $j \neq r$ and $i \neq s$ then computing $E_{ij}E_{rs}$ with requires no computation and

$$E_{ij}E_{rs} = E_{rs}E_{ij}$$

i.e., the matrices commute.

- **1.11.c.** Write a column form elementary matrix M_i in terms of element form elementary matrices. Does the order of the E_{ji} matter in this product?
- **1.11.d.** Show how it follows that the factorization of (1) is easily expressed in terms of element form elementary matrices.
- **1.11.e.** Show that the expression from part (1.11.d) can be rearranged to form $L = R_2 \dots R_n$ where $R_i = I + e_i r_i^T$ is an elementary unit lower triangular matrix in row form.

Problem 1.12

Consider the matrix-vector product x = Lb where L is an $n \times n$ unit lower triangular matrix with **all** of its nonzero elements equal to 1. For example, if n = 4 then

$$\begin{aligned} x &= Lb \\ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} \end{aligned}$$

The vector x is called the scan of b. Show that, given the vector b, the vector x can be computed in O(n) computations rather than the $O(n^2)$ typically required by a matrix vector product. Express your solution in terms of matrices and vectors.

Problem 1.13

We have the following theorem relating inner products and norms.

Theorem 1. Let \mathcal{V} be a real vector space with a norm ||v||.

1. If the norm ||v|| satisfies the parallelogram law

$$\forall x, \ y \in \mathcal{V}, \ \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$$
(2)

for every pair of vectors $x \in \mathcal{V}$ and $y \in \mathcal{V}$ then the function

$$f(x,y) = \frac{1}{4} \|x+y\|^2 - \frac{1}{4} \|x-y\|^2$$

is an inner product on \mathcal{V} and $f(x, x) = ||x||^2$.

2. If ||v|| does not satisfy the parallelogram law (2) for every pair of vectors $x \in \mathcal{V}$ and $y \in \mathcal{V}$ then it is **not** generated by an inner product.

Consider $\mathcal{V} = \mathbb{R}^2$.

- 1. Show that the vector p-norm with p = 1, $||v||_1$ is not generated by an inner product.
- 2. Show that the vector p-norm with p = 3, $||v||_3$ is not generated by an inner product.
- 3. Does this imply that the these two vector norms are not generated by an inner product for any $\mathcal{V} = \mathbb{R}^n$?

Problem 1.14

Theorem 2. If \mathcal{V} is a real vector space with a norm ||v|| that satisfies the parallelogram law

$$\forall x, \ y \in \mathcal{V}, \ \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$$
(3)

then the function

$$f(x,y) = \frac{1}{4} \|x+y\|^2 - \frac{1}{4} \|x-y\|^2$$

is an inner product on \mathcal{V} and $f(x, x) = ||x||^2$.

This problem proves this theorem by a series of lemmas. Prove each of the following lemmas and then prove the theorem.

Lemma 3. $\forall x \in \mathcal{V}$

$$f(x,x) = ||x||^2$$

Lemma 4. $\forall x, y \in \mathcal{V} f(x, x)$ is definite and f(x, y) = f(y, x), i.e., (f is symmetric)

Lemma 5. The following two "cosine laws" hold $\forall x, y \in \mathcal{V}$:

$$2f(x,y) = \|x+y\|^2 - \|x\|^2 - \|y\|^2$$
(4)

$$2f(x,y) = -\|x-y\|^2 + \|x\|^2 + \|y\|^2$$
(5)

Lemma 6. $\forall x, y \in \mathcal{V}$:

$$|f(x,y)| \le ||x|| ||y|| \tag{6}$$

$$f(x,y) = \gamma \|x\| \|y\|, \quad sign(\gamma) = sign(f(x,y)), \quad 0 \le |\gamma| \le 1$$

$$\tag{7}$$

Lemma 7. $\forall x, y, z \in \mathcal{V}$:

$$f(x+z,y) = f(x,y) + f(z,y)$$

Lemma 8. $\forall x, y \in \mathcal{V}, \alpha \in \mathbb{R}$

$$f(\alpha x, y) = \alpha f(x, y)$$

Problem 1.15

Definition 0.1. $M \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix if $M = M^T$ and for any $x \in \mathbb{R}^n$ M satisfies

$$x^T M x \ge 0.$$

M is symmetric positive definite matrix if for any $x \neq 0 \in \mathbb{R}^n$

$$x^T M x > 0$$

with equality only if x = 0.

- **1.15.a**. Show that any eigenvalue λ of a symmetric positive semidefinite satisfies $\lambda \geq 0$.
- **1.15.b.** Show that any eigenvalue λ of a symmetric positive definite satisfies $\lambda > 0$.
- **1.15.c.** Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ be a given matrix. Show that $A^T A \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix.
- **1.15.d.** Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ be a given matrix. Give a condition on A that guarantees that $A^T A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix.