
Study Problems 1 Applied Linear Algebra 2 Spring 2024

Problem 1.1

Consider the vector space R4

1.1.a. Specify a subspace of R4 with dimension 2 by giving a basis for the subspace.

1.1.b. Show that the basis for a subspace is not unique by giving another basis for the
same subspace given in (1.1.a).

Problem 1.2

This problem considers three basic vector norms: ‖.‖1,‖.‖2,‖.‖∞.

1.2.a. Prove that ‖.‖1 is a vector norm.

1.2.b. Prove that ‖.‖∞ is a vector norm.

1.2.c. Consider ‖.‖2.
(i) Show that ‖.‖2 is definite.

(ii) Show that ‖.‖2 is homogeneous.

(iii) Show that for ‖.‖2 the triangle inequality follows from the Cauchy inequality
|xHy| ≤ ‖x‖2‖y‖2.

(iv) Assume you have two vectors x and y such that ‖x‖2 = ‖y‖2 = 1 and xHy =
|xHy|, prove the Cauchy inequality holds for x and y.

(v) Assume you have two arbitrary vectors x̃ and ỹ. Show that there exists x and y
that satisfy the conditions of part (iv ) and x̃ = αx and ỹ = βy where α and β
are scalars.

(vi) Show the Cauchy inequality holds for two arbitrary vectors x̃ and ỹ.

Problem 1.3

Let y ∈ Rm and ‖y‖ be any vector norm defined on Rm. Let x ∈ Rn and A be an m × n
matrix with m > n.

1.3.a. Show that the function f(x) = ‖Ax‖ is a vector norm on Rn if and only if A
has full column rank, i.e., rank(A) = n.

1.3.b. Suppose we choose f(x) from part (1.3.a) to be f(x) = ‖Ax‖2. What condition
on A guarantees that f(x) = ‖x‖2 for any vector x ∈ Rn?
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Problem 1.4

1.4.a. Let A ∈ Rn×n and B ∈ Rn×n be nonsingular matrices. Show (AB)−1 = B−1A−1.

1.4.b. Suppose A ∈ Rm×n with m > n and let M ∈ Rn×n be a nonsingular square
matrix. Show that R(A) = R(AM) where R()̇ denotes the range of a matrix.

Problem 1.5

Consider the matrix

L =


λ11 0 0 0
λ21 λ22 0 0
λ31 λ32 λ33 0
λ41 λ42 λ43 λ44


Suppose that λ11 6= 0, λ33 6= 0, λ44 6= 0 but λ22 = 0.

1.5.a. Show that L is singular.

1.5.b. Determine a basis for the nullspace N (L).

Problem 1.6

Suppose that u ∈ Rm and v ∈ Rn and let E = uvT .

1.6.a. Show that ‖E‖F = ‖E‖2 = ‖u‖2‖v‖2.

1.6.b. Show that ‖E‖∞ = ‖u‖∞‖v‖1.

Problem 1.7

Show that for any vector norm on C,

∀ x, y ∈ C ‖x− y‖ ≥ | ‖x‖ − ‖y‖ |

Problem 1.8

Let S1 ⊂ Rn and S2 ⊂ Rn be two subspaces of Rn.

1.8.a. Suppose x1 ∈ S1, x1 /∈ S1 ∩ S2. x2 ∈ S2, and x2 /∈ S1 ∩ S2. Show that x1 and
x2 are linearly independent.

1.8.b. Suppose x1 ∈ S1, x1 /∈ S1 ∩ S2. x2 ∈ S2, and x2 /∈ S1 ∩ S2. Also, suppose that
x3 ∈ S1∩S2 and x3 6= 0, i.e., the intersection is not empty. Show that x1, x2 and
x3 are linearly independent.
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Problem 1.9

Suppose A ∈ Rm×n, m ≥ n and rank(A) = p ≤ n. Show that there exists X ∈ Rm×p and
Y ∈ R×p such that rank(X) = rank(Y ) = p and

A = XY T

Problem 1.10

Let n = 4 and consider the lower triangular system Lx = f of the form
1 0 0 0
λ21 1 0 0
λ31 λ32 1 0
λ41 λ42 λ43 1



ξ1
ξ2
ξ3
ξ4

 =


φ1

φ2

φ3

φ4


Recall, that the column-oriented algorithm can be derived from a factorization L = L1L2L3

where Li was an elementary unit lower triangular matrix associated with the i-th column of
L.

Show that the row-oriented algorithm can be derived from a factorization of L of the
form

L = R2R3R4

where Ri is associated with the i-th row of L.

Problem 1.11

Recall that any unit lower triangular matrix L ∈ Rn×n can be written in factored form as

L = M1M2 · · ·Mn−1 (1)

where Mi = I + lie
T
i is an elementary unit lower triangular matrix (column form). Given

the ordering of the elementary matrices, this factorization did not require any computation.
Consider a simpler elementary unit lower triangular matrix (element form) that differs

from the identity in one off-diagonal element in the strict lower triangular part, i.e.,

Eij = I + λijeie
T
j

where i 6= j.

1.11.a. Show that computing the product of two element form elementary matrices is
simply superposition of the elements into the product given by

EijErs = I + λijeie
T
j + λrsere

T
s

whenever j 6= r.
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1.11.b. Show that if j 6= r and i 6= s then computing EijErs with requires no compu-
tation and

EijErs = ErsEij

i.e., the matrices commute.

1.11.c. Write a column form elementary matrix Mi in terms of element form elemen-
tary matrices. Does the order of the Eji matter in this product?

1.11.d. Show how it follows that the factorization of (1) is easily expressed in terms
of element form elementary matrices.

1.11.e. Show that the expression from part (1.11.d) can be rearranged to form L =
R2 . . . Rn where Ri = I + eir

T
i is an elementary unit lower triangular matrix in

row form.

Problem 1.12

Consider the matrix-vector product x = Lb where L is an n×n unit lower triangular matrix
with all of its nonzero elements equal to 1. For example, if n = 4 then

x = Lb
ξ1
ξ2
ξ3
ξ4

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1



β1
β2
β3
β4


The vector x is called the scan of b. Show that, given the vector b, the vector x can be

computed in O(n) computations rather than the O(n2) typically required by a matrix vector
product. Express your solution in terms of matrices and vectors.

Problem 1.13

We have the following theorem relating inner products and norms.

Theorem 1. Let V be a real vector space with a norm ‖v‖.

1. If the norm ‖v‖ satisfies the parallelogram law

∀x, y ∈ V , ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (2)

for every pair of vectors x ∈ V and y ∈ V then the function

f(x, y) =
1

4
‖x+ y‖2 − 1

4
‖x− y‖2

is an inner product on V and f(x, x) = ‖x‖2.
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2. If ‖v‖ does not satisfy the parallelogram law (2) for every pair of vectors x ∈ V and
y ∈ V then it is not generated by an inner product.

Consider V = R2.

1. Show that the vector p-norm with p = 1, ‖v‖1 is not generated by an inner product.

2. Show that the vector p-norm with p = 3, ‖v‖3 is not generated by an inner product.

3. Does this imply that the these two vector norms are not generated by an inner product
for any V = Rn?

Problem 1.14

Theorem 2. If V is a real vector space with a norm ‖v‖ that satisfies the parallelogram law

∀x, y ∈ V , ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (3)

then the function

f(x, y) =
1

4
‖x+ y‖2 − 1

4
‖x− y‖2

is an inner product on V and f(x, x) = ‖x‖2.

This problem proves this theorem by a series of lemmas. Prove each of the following
lemmas and then prove the theorem.

Lemma 3. ∀x ∈ V
f(x, x) = ‖x‖2

Lemma 4. ∀x, y ∈ V f(x, x) is definite and f(x, y) = f(y, x), i.e., (f is symmetric)

Lemma 5. The following two “cosine laws” hold ∀x, y ∈ V:

2f(x, y) = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 (4)

2f(x, y) = −‖x− y‖2 + ‖x‖2 + ‖y‖2 (5)

Lemma 6. ∀x, y ∈ V:

|f(x, y)| ≤ ‖x‖‖y‖ (6)

f(x, y) = γ‖x‖‖y‖, sign(γ) = sign(f(x, y)), 0 ≤ |γ| ≤ 1 (7)

Lemma 7. ∀x, y, z ∈ V:

f(x+ z, y) = f(x, y) + f(z, y)

Lemma 8. ∀x, y ∈ V , α ∈ R
f(αx, y) = αf(x, y)
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Problem 1.15

Definition 0.1. M ∈ Rn×n is a symmetric positive semidefinite matrix if M = MT and for
any x ∈ Rn M satisfies

xTMx ≥ 0.

M is symmetric positive definite matrix if for any x 6= 0 ∈ Rn

xTMx > 0

with equality only if x = 0.

1.15.a. Show that any eigenvalue λ of a symmetric positive semidefinite satisfies λ ≥ 0.

1.15.b. Show that any eigenvalue λ of a symmetric positive definite satisfies λ > 0.

1.15.c. Let A ∈ Rm×n with m ≥ n be a given matrix. Show that ATA ∈ Rn×n is a
symmetric positive semidefinite matrix.

1.15.d. Let A ∈ Rm×n with m ≥ n be a given matrix. Give a condition on A that
guarantees that ATA ∈ Rn×n is a symmetric positive definite matrix.
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