
Programming Assignment 2 Applied Linear Algebra 2

Spring 2024

The solutions are due on Canvas by 11:59 PM on Friday, February 16, 2024

General Task

This programming assignment implements and empirically evaluates the transformation of
a full-rank matrix A ∈ Rn×n with n ≥ n to an upper triangular form, i.e.,

T−1L A→
(
U
0

)
where U ∈ Rn×n and nonsingular. You must produce code to use Gauss transformations and
row permutations to achieve this transformation

PrA = LU

where Pr ∈ Rn×n is a permutation matrix that interchanges rows, columns, L ∈ Rn×n is a
unit lower triangular matrix, and U ∈ Rn×n is a nonsingular upper triangular matrix.

This assignment empirically evaluates the predictions you make about the structure of the
factors and the general performance of the method across a large set of randomly generated
problems and selected specific problems.

The Codes

1. Implement a code that computes the LU factorization of a matrix A without pivoting
first and then add partial pivoting (rows). You should use the immediate update form
of algorithm based on rank-one updates. The final code should be capable of performing
these two tasks, based on a user selection parameter. Your code should also detect
situations where the factorization may not proceed and exit gracefully. Clearly, this is
the case when the candidate pivot set contains no acceptable value. In exact arithmetic
this means they are all 0. Your code should also allow the detection of a set of candidate
pivots that are all “too small” and warn the user. Your factorization routine, which
must be a separate routine from the driver/tester routine, should accept the matrix A
stored in a simple 2-dimensional array-like data structure and other relevant parameters
such as n and a flag indicating what form of the factorization should be attempted,
e.g., no pivoting or partial pivoting. The routine should return the matrices L and
U stored within the array that contained A on input, i.e., you should implement the
in-place algorithm strategy described in the class notes and lectures. You should also
keep a copy of A in an additional data structure for correctness checking. The 1 values
on the diagonal of L, the 0 values in the upper triangular portion of L and the 0 values
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in the lower triangular portion of U should not be stored at any point in the code. The
routine should also return the permutation matrix Pr when partial pivoting is used.
This permutation matrix should not be stored as as a full matrix within any array.
The matrix or equivalently the set of elementary permutations that are its factors, can
be represented by at most n integers.

2. Your code should be based on subroutines similar to the ones discussed below.

3. You will also need various test routines designed to evaluate and validate the correctness
of the code and accomplish the tasks described below. You may code in Matlab, Python
(as long as you write basic code that exposes data structure details and vector or scalar
loop constructs) or any compiled and typed language you wish although C, C++, Julia,
and Fortran are preferred. In all cases, however, you may not use standard libraries
such as LAPACK or built-in matrix routines for pieces of your routines implementing
the computations described above. (They may be used for the validation codes.)

4. For both the factorization, triangular solutions and testing codes you should make use
of your solutions to programming assignment 1. If you were unable to get any of them
working reliably then you are free to use or convert my solutions. The testing drivers
from my solution should also be adatped or used to inspire your test driver’s design
for this assignment.

Suggested Subroutines for the factorization:

1. FindPivot This routine shoud determine the position of the desired pivot element
based on the row partial pivoting scheme when it is used. Note it is also possible to
determine the pivot element for step i + 1 in the rank-one update routine when it is
producing the updated active part of the matrix (i.e., the i-th Schur complement) on
step i. In which case, this routine would only be used to find the first pivot element,
i.e., since there is no step 0 rank-one update.

2. Permutation: This routine takes the desired pivot element’s indices, defines the
appropriate elementary permutations Pri , stores their parameters appropriately, and
applies them to the current active portion of the matrix.

3. FormGauss: This routine examines the appropriate part of the permuted active
part of the matrix and determines the parameters determining Mi. You may find it
convenient to return the parameters in a work vector and then place the values in the
appropriate positions of the array in which A is being transformed and the elements
of L and U are created.

4. ApplyGauss: This routine applies M−1
i to the active part of the matrix. It is

recommended but not required that this routine also determine the next
pivot element in the updated active part when row partial pivoting is used.
If this is not done then you can use the separate pivot search routine mentioned above
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after the update is done to begin the next step. The index ri+1 should be returned to
the calling routine for use in the next step of elimination. Note that you should be
able to determine the index in the same pass through the active part of the matrix
that performs the rank-1 update defined by M−1

i , i.e., you should not update the
matrix on one pass through and then make a second pass over the candidate pivot set
to determine the i + 1 pivot element. Clearly, this step should be surpressed when
applying M−1

n−1 since there is no following step n.

Routines to support the evaluation of the factorization:

1. Implement a routine that accepts as input the 1-dimensional array specifying Pr and
applies it to a matrix stored in a 2-dimensional arrays and returns the result in a
separate 2-dimensional array, i.e., A2 ← PrA1. This matrix of course will be a subarray
of the array used to produced L and U .

2. Implement (or use your code from Program 1) a matrix multiplicaiton routine that
accepts as input the 2-dimensional array containing the information specifying the L
and U matrices and returns in a separate 2-dimensional array the product M = LU
or the product M = |L||U | based on user selection indicated by an input flag. (This
second function requires an addition to your routines from Program 1 if you use them.)
Note that these matrix multiplications must use the information specifying L and U
within the data structure. It must not expand them into separate arrays that include
the 1 and 0 values that are not stored in the input array.

3. The test routines should include the computation of ‖W‖ where W is a matrix. The
norms used should be finite in computation, i.e., ‖W‖1, ‖W‖∞, or ‖W‖F . You may
use library routines to compute ‖W‖2 if you wish but you are definitely not expected
to generate the code for the 2-norm.

Library Codes

You may use libaries and external routines in your test drivers to generate solutions for
comparisons, to generate historgrams, graphs and any other useful summary display mecha-
nisms. Make sure when using library routines as part of your empirical analysis, you carefully
check, e.g., the Pr, L and U generated by your routines and those generated by the library,
e.g., MATLAB. These factors are not unique given that pivoting choices are not unique in
general. So they may not match. The products LU however should match the matrices PA
generated by your routine and a library respectively.

Metrics

There are several important metrics to use when assessing the code’s correctness. These
metrics should be computed in double precision espeicially if you have run your routines in
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single precision. (The ability to run in both is not required for this assignment but is easily
done if you use a compiled and typed language.)

Some suggestions follow:

1. When comparing matrices use more than one matrix norm, e.g., the finitely computable
ones, ‖M‖1, ‖M‖∞ and ‖M‖F .

2. Check the factorization accuracy

‖PrA− LU‖
‖A‖

where ‖A‖ ≥ 1, i.e., relative error for large A.

3. If the solution is known by design of the problem check

‖x− x̃‖
‖x‖

where x̃ is the computed solution and ‖x‖ ≥ 1.

4. You should check the accuracy via the residual b− Ax̃ and

‖b− Ax̃‖
‖b‖

assuming ‖b‖ ≥ 1 for all attempts to solve a system, i.e., whether or not you know the
true solution.

5. If you have access to a standard library you may also use the results of its LU factoriza-
tion algorithms. However, as noted above care must be taken since details of pivoting
strategies may yield differences in the factors and permutations. The library routines
or your Program 1 solutions are very useful when you generate a system by choosing A
and b and need a reliable way of generating x to compare with your computed solution.

6. You should compute the growth factor

γε =
‖ |Lε||Uε| ‖
‖A‖

where LεUε = PrA is the computed factorization of PrA using the selected pivoting
strategy. This is important in that is used to assess the numerical stability of solving
systems but it is also useful for checking the correctness of structured problems such
as the one in the study questions with the large growth of elements.
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Generation of Test Problems

A key consideration in this assignment is the generation of test problems. They must have
full rank, i.e., linearly independent columns.

Some suggestions follow:

1. The matrices should be generated using double precision storage and computation.
You can then coerce the type to single when storing the matrix before calling your
single precision code if you decide to check both single and double precision execution
of your codes. This is, however, not required but it is encouraged that you do this at
some point.

2. Generate L and U so they are nonsingular unit lower triangular and upper triangular
matrices respectively. Evaluate their product to define A. By their structure these
matrices have linearly independent columns and therefore their product has full-rank.

This is useful for both small and large values of n. For small values you can also
constrain L and U to have integer values so A will have integer values. Take care
with the magnitude of the elements of L and U . Nicely conditioned problems tend to
be specified by off-diagonal elements in L smaller than 1 in magnitude and diagonal
elements in U that have a reasonable range in magnitudes. The off-diagonal elements
in U should not be significantly larger in magnitude than the diagonal elements of U .
Recall, it was suggested to do this in Program 1 problems.

3. Remember even if A is generated from L and U when you run your routine with partial
pivoting, nontrivial permutation matrices Pr may result and you may return L̃ and Ũ
such that PrA = L̃Ũ .

4. Square randomly generated matrices tend may be nonsingular and reasonably con-
ditioned. Random triangular matrices tend not to be well-conditioned, as you have
seen. You can make sure any matrix is nonsingular by adding to the diagonal elements
until the matrix is diagonally dominant by rows, columns or both.1 This guarantees
success of the factorization if it is run without pivoting. As noted above, if you allow
pivoting the routine may so do even for a diagonally dominant matrix depending on
the form of dominance and the pivoting strategy used. It is also useful to note that
after generating such a matrix, A you can apply random permutations P̃ and P̂ to
generate a new test matrix Ã = P̃AP̂ that will not be diagonally dominant but will
still be nonsingular. Of course, P̃ and P̂ are not necessarily the permuations that will
be generated by applying partial or complete pivoting to Ã.

5. You can generate a symmetric positive definite A ∈ Rn×n from a lower triangular L̃
with positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular by

1A matrix is strictly diagonally dominant by rows (columns) if the magnitude of each diagonal element
is strictly larger than the sum of the magnitudes of all off-diagonal elements in the same row (column). A
matrix may of course be diagonally dominant by rows and columns simultaneously.
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definition and factorization will succeed without pivoting. Note that your code will still
produce an LU factorization since your factorization routine is not designed to exploit
symmetry. However, there is a relationship between L, U and L̃. This is probed in the
first set of structured factorization tasks.

6. Matrices with known structures that influence the structure or magnitude pattern of
their factorizations are also useful. This is especially true if the patterns scale in a
known way with n. Recall the example in the homework problems that has large
elements in U . Consider what should happen when no pivoting or partial pivoting is
used for various n values. Also, nonzero patterns such as banded matrices for A should
produce specific nonzero patterns in L and U . Structure is the subject of the first set
of empirical tasks discussed below.

7. Make sure that the matrices you use to check pivoting actually require some piv-
oting when factored.

8. You should run a range of problem sizes for each algorithm and problem type you
evaluate.

9. Do not simply report the the factors or accuracy of the factorization for a small number
of small systems. Think about how you would report the results of testing each of the
routines with many matrices including those of sizes too large to display for any useful
effect.
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Empirical Tasks Set 1 : Structure

Consider the following structured matrices, predict the structure of their factors and fac-
torization, and verify them empirically. Your solutions must include an explanation of your
observations and justification for the conclusion that your predictions are correct. This could
include solutions to related homework or study questions.

1. Consider a matrix A ∈ Rn×n that is unit lower triangular and the elements in the strict
lower part all have magnitude less than 1, i.e., |λij| < 1 for i > j, λij = 0 for i < j,
and λii = 1. Consider factoring with no pivoting and partial row pivoting. What can
be said about the L, U , and Pr factors? (Note that your code does not know that A is
unit lower triangular and will eliminate the elements below the diagonal by applying
Gauss transformations.)

2. Consider a lower triangular matrix A again but this time let the diagonal elements be
positive and not 1 and the elements in the strictly lower triangular part be larger than
1, e.g.,

A =


2 0 0 0 0
3 2 0 0 0
4 3 2 0 0
5 4 0 2 0
6 5 4 3 2

 .

Consider factoring with no pivoting and partial row pivoting. What can be said about
the L, U , and Pr factors?

3. Consider a matrix A ∈ Rn×n that is tridiagonal with all elements on the main diagonal
and the first super and subdiagonals nonzero, i.e., αii 6= 0, αi+1,i 6= 0, and αi,i+1 6= 0.
Of course, these must be such that the matrix is nonsingular.

Suppose A is, additionally, strictly diagonally dominant by rows and columns. Consider
factoring with no pivoting and partial row pivoting. What can be said about the L,
U , and Pr factors?

4. Suppose A ∈ Rn×n is a symmetric positive definite generated from a lower triangular
L̃ with positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular
by definition and factorization will succeed without pivoting. Note that your code will
still produce an LU factorization since your factorization routine is not designed to
exploit symmetry. What is the relationship between L, U and L̃?

Empirical Tasks Set 2 : General Trends

As with the assignment for Program 1, this set requries the generation of a large set of
problems grouped and empirically analyzed by problem size n and, if appropriate the class
of matrix problem considered.
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For each problem size and class of problem, generate many example problems and evaluate
the various metrics discussed earlier You should present your results in a form appropriate
to characterize these metrics over a large data set, i.e., too large to look at each problem
individually. This can be done, for example, by graphs and histograms. The latter is
particularly useful for detecting outliers in the performance such as large factorization error.
These outliers can be discussed in more detail and explained if you wish.
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