Graded Homework 2 Applied Linear Algebra 2 Spring 2024

The solutions are due on Canvas by 11:59 PM on Wednesday February 14, 2024

Problem 2.1

Consider computing the matrix vector product y = Tx, i.e., you are given T and x and you want to compute y. Suppose further that the matrix $T \in \mathbb{R}^{n \times n}$ is tridiagonal with constant values on each diagonal. For example, if n = 6 then

 $\begin{pmatrix} \alpha & \beta & 0 & 0 & 0 & 0 \\ \gamma & \alpha & \beta & 0 & 0 & 0 \\ 0 & \gamma & \alpha & \beta & 0 & 0 \\ 0 & 0 & \gamma & \alpha & \beta & 0 \\ 0 & 0 & 0 & \gamma & \alpha & \beta \\ 0 & 0 & 0 & 0 & \gamma & \alpha \end{pmatrix}$

- (2.1.a) Write a simple loop-based psuedo-code that computes y = Tx for such a matrix $T \in \mathbb{R}^n$.
- (2.1.b) How many operations are required as a function of n?
- (2.1.c) Describe your data structures and determine how many storage locations are required as a function of n?
- (2.1.d) Suppose the diagonals of T are not constant. For example, if n = 6 then

α_1	β_1	0	0	0	0 \	
γ_2	α_2	β_2	0	0	0	
0	γ_3	α_3	β_3	0	0	
0	0	γ_4	α_4	β_4	0	
0	0	0	γ_5	α_5	β_5	
$\int 0$	0	0	0	γ_6	α_6	

Modify your algorithm to handle non-constant diagonal form and discuss the modifications made to the data structures required by the modification.

Problem 2.2

Suppose you are given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and consider the computation of the matrix-vector product $v \leftarrow Au$ where $u \in \mathbb{R}^n$ is given and $v \in \mathbb{R}^n$ is computed.

- **2.2.a** Since the matrix is symmetric, there are only n(n+1)/2 elements that are free to choose while the others are set due to symmetry. Describe a data structure that would only store n(n+1)/2 values that specify A.
- **2.2.b** Describe an algorithm using pseudo-code that uses your data structure to implement the computation of the matrix-vector product, $v \leftarrow Au$, given A and u. Make sure you point out all of the relevant features that influence efficiency.

Problem 2.3

Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and that A = LU is its LU factorization. Give an algorithm that can compute, $e_i^T A^{-1} e_j$, i.e., the (i, j) element of A^{-1} in approximately $(n-j)^2 + (n-i)^2$ operations.

Problem 2.4

Consider an $n \times n$ real matrix where

- $\alpha_{ij} = e_i^T A e_j = -1$ when i > j, i.e., all elements strictly below the diagonal are -1;
- $\alpha_{ii} = e_i^T A e_i = 1$, i.e., all elements on the diagonal are 1;
- $\alpha_{in} = e_i^T A e_n = 1$, i.e., all elements in the last column of the matrix are 1;
- all other elements are 0

For n = 4 we have

- **2.4.a.** Compute the factorization A = LU for n = 4 where L is unit lower triangular and U is upper triangular.
- **2.4.b.** What is the pattern of element values in L and U for any n?

Problem 2.5

Suppose you have the LU factorization of an $i \times i$ matrix $A_i = L_i U_i$ and suppose the matrix A_{i+1} is an $i + 1 \times i + 1$ matrix formed by adding a row and column to A_i , i.e.,

$$A_{i+1} = \left(\begin{array}{cc} A_i & a_{i+1} \\ b_{i+1}^T & \alpha_{i+1,i+1} \end{array}\right)$$

where a_{i+1} and b_{i+1} are vectors in \mathbb{R}^i and $\alpha_{i+1,i+1}$ is a scalar.

- **2.5.a.** Derive an algorithm that, given L_i , U_i and the new row and column information, computes the LU factorization of A_{i+1} and identify the conditions under which the step will fail.
- **2.5.b.** What computational primitives are involved?
- **2.5.c.** Show how this basic step could be used to form an algorithm that computes the LU factorization of an $n \times n$ matrix A.

Problem 2.6

Suppose you are computing a factorization of the $A \in \mathbb{C}^{n \times n}$ with partial pivoting and at the beginning of step *i* of the algorithm you encounter the the transformed matrix with the form

$$TA = A^{(i-1)} = \begin{pmatrix} U_{11} & U_{12} \\ 0 & A_{i-1} \end{pmatrix}$$

where $U_{11} \in \mathbb{R}^{i-1 \times i-1}$ and nonsingular, and $U_{12} \in \mathbb{R}^{i-1 \times n-i+1}$ contain the first i-1 rows of U. Show that if the first column of A_{i-1} is all 0 then A must be a singular matrix.

Problem 2.7

Suppose you are given a tridiagonal matrix $T \in \mathbb{R}^{n \times n}$ For example, if n = 6 then

α_1	β_1	0	0	0	$0 \rangle$
γ_2	α_2	β_2	0	0	0
0	γ_3	α_3	β_3	0	0
0	0	γ_4	α_4	β_4	0
0	0	0	γ_5	α_5	β_5
$\setminus 0$	0	0	0	γ_6	α_6

Assume that $T \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant by columns and that the elements on the main diagonal are all positive, i.e., $\alpha_i > 0$ for $1 \le i \le n$.

- (2.7.a) Determine the form of the matrix after one step of LU factorization without pivoting (which is not needed since diagonal dominance is assumed).
- (2.7.b) How many operations were required to perform the single step?
- (2.7.c) What is the structure of the active part of the matrix after one step, i.e., what is the Schur complement of T with respect to α_1 ?
- (2.7.d) Suppose in addition it is assumed that $\beta_i \ge 0$ for $1 \le i \le n-1$ and $\gamma_i \ge 0$ for $2 \le i \le n$. What is the maximum growth of the elements in the active part of the matrix after one step relative to the elements in T?

- (2.7.e) What does this one step growth imply about the Wilkinson growth factor after completing the LU factorization?
- (2.7.f) Does your conclusion about the growth factor change if the assumptions on the off-diagonal elements are changed to $\beta_i \leq 0$ for $1 \leq i \leq n-1$ and $\gamma_i \geq 0$ for $2 \leq i \leq n$?