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1. Introduction

It 1s, at present, impossible for a computer model to simulate weather and climate at
all spatial and temporal scales. This would be no problem if the dynamical processes at
widely different scales were independent of each other, but they are not. The modeler is
therefore faced with the decisions of what physical processes to model explicitly, what
processes to ignore, and what processes to parameterize. The word “parameterize” is
used to indicate an approximation of a special kind; phenomena that are not explicitly
treated in a numerical model are “parameterized” in a model when they are approximated
by expressions involving phenomena that are. For example, the barotropic vorticity
equation describes horizontal rotational motions only. The effects of divergent flow
and vertical mass transport on these motions are parameterized by means of damping
and forcing terms proportional to the horizontal rotational motions themselves. These
parameterizations are not “ad hoc,” as has sometimes been suggested, but are based on
knowledge of data and physical principles.

Whether or not they are physically based, parameterizations are approximations and.
as such, some are better than others. The more characteristics of a real process a param-
eterization can mimic, the better the approximation is expected to be. However, there
are virtues in minimalism; resources expended in reproducing a marginally important
effect are probably spent better elsewhere. Thus, returning to our example, we find that
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interactions between resolved and unresolved scales of vorticity are usually parameter-
ized by hyperditfusion in general circulation models with finite resolution in order to
dissipate the numerical build-up of enstrophy at the smallest scales when these inter-
actions are completely ignored. Accounting for the fact that these interactions can add
enstrophy to the resolved scales as well as bleed it out from them, or that such interactions
are more likely to be chaotically varying than temporally smooth, has been considered
too expensive and ditficult to be worth the trouble.

Accounting for the rapidly varying, chaotic nature of multiscale dynamical interac-
tions in terms of random functions is the purview of stochastic theory. However, facing
the importance of stochastic, subscale variability to weather and climate could happen
only as computers became powerful enough to show that increasingly fine resolution in
models never seemed to account for this variability completely. Further, powerful com-
puters are needed to allow the rigorous application of stochastic theory in weather/climate
models since numerical algorithms designed to optimize deterministic models are often
not applicable to stochastic models. The art of numerical prediction and the theory of
stochastic differential equations (SDEs) developed more or less contemporaneously, and
certainly independently, over several decades so that the cultural shock of the two disci-
plines’ discovery of each other has been severe. Happily, the last few years have seen the
development of fruitful collaboration between geoscientists and applied mathematicians
specializing in the development of numerical schemes for generating SDEs.

It is the purpose of this chapter to summarize numerical procedures for evaluating
solutions of classical SDEs in climate prediction and research. Even this narrow focus is
broad enough that we are likely to have overlooked relevant research, and we apologize
to those researchers whose work falls into that category. The next section of this chapter
discusses the central limit theorem, which directs how a system with scale separation
may be approximated as an SDE. We do not provide a proof or even a rigorous state-
ment of it, but rather set notation and examine some of its practical implications. The
third section reviews the stochastic Taylor expansion and relates it to the development
of stochastic numerical integration methods. The fourth section gives an overview of
stochastic numerical methods as used in climate research, and the fifth presents examples.
We conclude the chapter with a discussion of current directions in this field.

2. The central limit theorem

In the following, we discuss an extension of the traditional central limit theorem (e.g.,
Doos [1953], WILKS [1995]) usually employed by geoscientists to justify the use of
Gaussian distributions. Informally, the classical central limit theorem states that the
sum of independently sampled quantities is approximately Gaussian. In the version
described below, we consider dynamical systems described by a slow timescale and
faster timescales. The equations are averaged over a temporal interval large enough that
the fast timescales collectively act as Gaussian stochastic forcing of the slow, coarse-
grained system. In the mathematical literature (e.g., FELLER [1966]), the fact that fine
details of how the fast processes are distributed do not strongly affect the coarse-grained
behavior of the slower dynamics is often called “the invariance principle.” As the proof
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of this theorem is far outside the scope of this review article, we state a commonly
used form of it and refer the interested reader to the literature for details. GARDINER
[1985] gives an heuristic description: we prefer PAPANICOLAOU and KOHLER [1974] for
a technical statement of the theorem.

Adynamical system consisting of separated timescales may be written in the following
manner:

dx
Fn =eG(x, 1) + ng(x, 1. (2.1)

where x is an N-dimensional vector. In Eq. (2.1), the smallness parameter ¢ should not
be taken as a measure of importance. It does measure the rapidity with which the terms
on the right-hand side of Eq. (2.1) vary relative to each other; one can think of & as the
ratio of the characteristic timescale of the first term to the characteristic timescale of the
second. If we now cast Eq. (2.1) in terms of a scaled time coordinate,

As = 2 At (2.2)

Eq. (2.1) becomes

de 1 5 5
— = -G(x,s/e°)+ F(x,s/¢7). (2.3)
ds ¢

We further assume that the first term in Eq. (2.1) decays quickly “enough” in the time
interval At. In the limit € — 0, At — 0o with 2 At remaining finite, the central limit
theorem states that Eq. (2.3) converges weakly to a “Stratonovich” (see below) SDE in
the scaled coordinates:

dx = F'(x, s)ds + G'(x, 5) - dW(s). (2.4)

The symbol W in Eq. (2.4) is a K-dimensional vector, each component of which is an
independent Wiener process, or Brownian motion, and the “-” symbol indicates that it is
to be interpreted in the sense of Stratonovich, discussed below. The symbol G'(x, s) is a
matrix, the first index of which corresponds to a component of x, and the second index
of which corresponds to a component of dW. Using angle brackets to denote expectation

values, we state the following properties of the vector Wiener process W:

W(s) is a vector of Gaussian random variables, (2.5a)
<W(s)> = 0. (2.5b)
<W(s)WT(t)> = I min(s. 1). (2.5¢)
<dW(s)dWT (1) >=138(s — 1). (2.5d)

In Eq. (2.5), the symbol | denotes the identity matrix. The Wiener process is continuous.
but is only differentiable in a generalized sense:

AW, = &dt. (2.6)

where “white noise” & is really a concept that can only be approximated in nature. As
its name suggests, white noise has a flat spectrum and. therefore. infinite power. The
Wiener process, on the other hand, has a power spectrum that decreases everywhere
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with the square of the frequency. For more detailed descriptions of the properties of
Wiener processes and white noise, we refer the interested reader to ARNOLD [1974],
Chapter 3.

The white noise limit leading to Eq. (2.4) essentially represents the combined effect
of the weakly correlated, rapid variations in the first term of Eq. (2.1) that occur within
time Az as the Gaussian variable in Eq. (2.4). This is why it is called the central limit
theorem. For details and proof of the central limit theorem, we recommend, for exam-
ple, the articles by WONG and ZAKAL [1965], KHASMINSKII [1966], and PAPANICOLAOU
and KoHLER [1974]. Examples of geophysical applications may be found in KOHLER
and PAPANICOLAOU [1977], PENLAND [1985], MAJDA et al. [1999], and SARDESHMUKH,
PENLAND and NEwMAN [2001].

Let us examine the special case where the ith component of the rapidly varying term
in Eq. (2.3) can be written as

Gilx,s/e%) = Zam s)m(s/e ), (2.7)
k=1

where n(s/e%) is a stationary, centered, and bounded random function. The integrated
lagged covariance matrix of 7 is defined to be

0

Cim = / <Ot +1y>de', km=12,... K, (2.8)
0

where angle brackets denote expectation value. With these restrictions, the central limit
theorem states that in the limit of long times (f — o0) and small e(e — 0), taken so that
s = &t remains fixed, the conditional probability density function (pdf) for x at time
s given an initial condition x,(s,) satisfies the backward Kolmogorov equation (e.g.,
HORSTHEMKE and LEFEVER [1984], BHATTACHARYA and WAYMIRE [1990])

dp(x, S]x() , S{))

- = Ep(xv Slx()a S())’ (29)
08,
where
N a2
L= a;i(x,, s, + bi(x,, s, 2.10
; 150 8) 5 Z 1 )(x(,, (2.10)
and
K
dij(x, §) = Z CimGir(x, )G (x, 5), (2.11a)

k=1

9Gu
bix.5) = Z CA,,,ZG,k(x ‘ ”(x Win®:5) | pixs), (2.11b)
kon=1

el o,

ey
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In this limit, the conditional pdf also satisfies a forward Kolmogorov equation (called
a “Fokker—Planck equation” in the scientific literature) in the scaled coordinates:

op(x, six,, So)
ds

= LV p(x. six,. 50). (2.12)

where

N2 Noa
(X, — — [bi(x, $)p]. 2.13
2w, [aij(x. 5)p] Z i [bi(x, 5)p] (2.13)

Esz

In short, the moments of x can be approximated by the moments of the solution to the
“Stratonovich” SDE

dx = F(x, s)ds + G(x, 5)S - dW. (2.14)

In Eq. (2.14), G(x, ) is the matrix whose (i, j)th element is G;(x, 5), and S is a matrix

where the (k, m)th element of SS' is Ci,y. Note that S is only unique up to its product
with an arbitrary orthogonal matrix. Notice also that the usual factor of one-half found in
most formulations of the Fokker—Planck equation has been absorbed into the definition
of Cim- :

Before proceeding. it may be well to discuss the physical systems described by
Eq. (2.4). We have presented a sparse outline of how a dynamical system with two
timescales, both finite and with one timescale much shorter than the other, may be
described as a SDE we denoted with the name Stratonovich. This class of systems obeys
the rules of classical Riemannian calculus and is appropriate for dynamical systems that
we assume to be continuous from the outset, before we start thinking about treating the
system as stochastic. That is, when constructing the calculus to describe the dynamics,
the continuous limit is taken before the white noise limit is taken. Mathematically, these
systems are described by integrals defined by limits of Riemann sums. where contribu-
tions from both the beginning and the end of each time interval are taken into account
with equal weight. Details may be found in. for example, KLOEDEN and PLATEN [1992].

There is another class of systems, called “Ito systems.” that arises when these limits
are taken in opposite order. Physically. one has a discrete system at the smaller timescale,
and the disrupting influence that is to be treated as white noise is uncorrelated between
the discrete time steps. At a longer timescale. the discrete time steps are approximately
continuous. and we construct a continuous calculus to handle the dynamical evolution.
These Ito systems also involve Brownian motion, but they do not follow the classical
Riemannian rules of calculus. In contrast to Stratonovich integrals, Ito integrals are
defined by limits of Riemann sums involving contributions from only the beginning of
each time interval.

The difference between Ito and Stratonovich calculus is important for scientists to
understand because most of the physical phenomena they deal with are Stratonovich.
while most mathematical references on stochastic numerical techniques are primarily
interested in Ito schemes. As we shall see, there is a formal equivalence between lto and
Stratonovich descriptions of reality, so a theorem about an Ito process can generally be
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carried over to the corresponding Stratonovich process. Unfortunately, the transformation
from one description to the other can be prohibitively difficult.

Roughly speaking, the Wiener process (Egs. (2.5) and (2.6)) wiggles around enough
that infinitely many ways of integrating this function can be defined, each giving a
different answer. The names “Ito” and “Stratonovich” label two of these calculi, each
of which is a result of applying a limiting procedure to equations describing a physical
system. Let us say we wish to evaluate the integral

T
I:-_/W(t)dW. (2.15a)
]

Classically trained scientists might immediately write the solution to this equation as
Is = [W*(T) = W(10)]/2. (2.15b)

However, this result comes from dividing the interval (¢p, 7] into n partitions

n
Sp =Y WEIW(e) — W=, (2.16)
i=1
witht, = T and 7; chosen arbitrarily in the interval (#;_1, #;]. Asn — 00 and the partitions
become progressively finer, S, converges to I (Eq. (2.15a)). For regular deterministic
processes, the answer does not depend on where t; is chosen in the interval (¢;_1, t;].
However, for integrals over the Wiener process, it does matter (e.g., ARNOLD [1974]).
The Stratonovich solution (Eq. (2.15b)) results as the mean square convergence of
Eq. (2.16) when 1; is chosen to be the midpoint between ;| and ¢;. The Ito solution,

I} = [WXT) — W(t0)1/2 — (T — 19) /2, (2.17)

results as the mean square convergence of Eq. (2.16) when 7; is chosen equal to the
beginning of the interval #;_;.

Which is the “correct” solution? Each can be, as can any of the other calculi corre-
sponding to an infinite number of choices for where one chooses t;. Here, we concentrate
on the two calculi that have been associated with naturally occurring phenomena: Ito

and Stratonovich.

Looking at Egs. (2.15b) and (2.17), one might note that there is an easy transformation
between [g and I;. In fact, there is always a transformation between the solution to a
Stratonovich SDE and an Ito SDE. The solution to the Stratonovich SDE (written in

component form)

dy; = Fi(x,ndt + Y Giglx, 1) - dW, (2.18a)
(¢4
is equivalent to the [to SDE

3Gy (x, Z)—|

1 ,
dyi = | Fi(x, 1) + > Z G (X, 1) e
= X

aj

dr + Z Giolx. ndW,.  (2.18b)
=
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By “equivalent™ it is meant that solving Eq. (2.18a) using Stratonovich calculus gives
the same solution as solving Eq. (2.18b) using Ito calculus. That is, each equation eval-
uated for x using its appropriate calculus would describe an experimental outcome
equally well as the other: the statistics of x in each case are the same. In Eq. (2.18),
we have omitted the symbol “.” in keeping with standard mathematical notation of an
lIto SDE.

As for Stratonovich systems, the transition pdf for an Ito system satisfies a Fokker—
Planck equation (Eqgs. (2.12) and (2.13)). However, the drift and diffusion terms. & and
a, are somewhat different. For the Ito SDE

dx = F(x, r)dr + GdW, (2.19)
we have simply

b=F(x 1 (2.20a)
and

a=GG'/)2. (2.20b)

For longer discussions on the difference between Ito and Stratonovich systems, we
refer the reader to ARNOLD [1974], HORSTHEMKE and LEFEVER [1984], and KLOEDEN
and PLATEN [1992]. In the following, we shall assume that the analytical work leading
to an SDE has been done, the correct calculus has been identified, and that the scientist
is ready to perform a numerical simulation of it.

3. The stochastic Taylor series and application to numerical schemes

3.1. Basic structure of the stochastic Tavlor series

Stochastic Taylor series is an important theoretical and analytical tool in the study of
SDE:s and their numerical approximation. These are described in great detail in KLOEDEN
and PLATEN [1992]: we repeat only their most salient properties here. To see how they
are derived. we will first consider the derivation of a similar deterministic formula. For
this, consider the following ordinary differential equation (ODE):

dx = a(x 3.1
4 = a(x). (3.1
We can then use the chain rule to write:
dftxy _ o de
P f (A)—&’— = [ (x)a(x). (3.2)

In Eqg. (3.2) and in all equations of this section, prime denotes differentiation with
respect to the argument. We can write all of this in a form analogous to that which we

: : , : : : d
will use for the stochastic Taylor series, using the differential operator L = ad—, and we
!

see that, if dx = a(x)dr, then
df(x) = Lf(x)dr. (3.3)
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That is,

T
J(T)) = f(x(0)) +/ Lf(x(t))de. (3.4)
0

If we apply this formula with Lf for f, we will have that

T
LA(TY) = Lfx(0) + f L2 fx(o)dr (3.5)
0

We substitute this into the integral in the previous equation to arrive at

T T t
fX(T)) = fx(0) + / Lf(x(0))dt + / / L? f(x(s))dsdr,
0 0 0

T !
= f(x(0)) + LAONT + / / L2 f(x(s))dsdt. (3.6)
0 4]

If we then use the change of variables formula (Eq. (3.4)) with L” f for f, we get that

T t
FT) = f(e(0)) + LAKONT + / / L2 fx(0))dsds
4] 0

r pt ps
+/ /[ L3(x(u))dudsdt,
0 0 JO

1 , 5 T ! s )
= f(x(0)) + LfxOONT + ;L'f(x(O))T“ + / / / L3(x(u))dudsdt.
~ 0 0 JO
(3.7)

We can then continue this for as long as desired, yielding a Taylor series-like formula
with an integral remainder term.
We will now derive stochastic Taylor series for the SDE

dx = F(x, ndt + G(x, 1)(-)dW, (3.8)

where, as above, x and F are N-vectors, W is a K-dimensional Brownian motion, and
G is an N x K matrix. The symbol “(+)” is to be interpreted as “.” if the Wiener process
I8 to be integrated in the sense of Stratonovich, and is to be ignored if the noise is to be
integrated in the sense of Ito. Instead of the chain rule, we have the Ito formula (also
called the “stochastic chain rule:” GARDINER [1985], KLOEDEN and PLATEN [1992]) for
any sufficiently smooth function f(x, #):

K
dfte. ) = LOfCe, de + Y Lfle. ndW (o). (3.9)

J=1
Here, if Eq. (3.8) is an Ito equation,

LY 8+§:F a+[zN:ZK:GG " (3.10a)
= — N = ijGnj ——— 10a
ot Yox, 2 AT

n= in=1 j=I|




[
2]
~J]
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and
N 3
L= 2 G,,,-é;;. (3.10b)
n=

Note that Eq. (3.10b) operated on the ith component f; of f will be the ijth component
of an N x K matrix. If the equation is Stratonovich, then Eq. (3.10b) is as in the Ito case,

but

L0—8+§:F 0 (3.10¢)
ot — "o, T

We will now rewrite the SDE in integral form:

T T
x(T) =x(0) + / F(x,ndr + / G(x, n()dWw(), (3.11)
0 0

and the integral form of the Ito formula:

T T 4
f(T). T) = fx(0). 0) + / LOfx(). ndr + ) / LIfee(, nydw/ o).
j V0

0
(3.12)

Then, as in the deterministic case above, we can use one of LUf or L/f for f in the Ito
formula and substitute it back in. Note that now we have a choice as to what substitution
to make, and that every time we make such a substitution, we replace one integral with
two iterated integrals, and that we iterate different differential operators ( L% and the L/s)
rather than just one. As such, the formulas can quickly become unwieldy. and it is useful
to have a compact notation.

For this purpose, we introduce the multi-indices o = (i, ja. ..., j1). Each ji is either
0 or a number from 1 to K. If j; = 0, ji refers to LY if it is a superscript of L, or to dr if
it is a superscript of dW. In other words. dr = dW'(s) by convention. If j; is a number
from 1 to K, it refers to L/* or dW/(1). We also have the iterated differential operators

LY = [hpi> i (3.13)

and the iterated integrals
7> f 8 ' . ‘
Ia[f(x,t)];fzf / fix), w)(HdW/ @ dW2(s) - AW/ (1), (3.14)
T JT T

If the integrand f(x, r) is omitted from the iterated integral, it is assumed to be 1. Estima-
tions of I, for Ito integrals are generally different from those for Stratonovich integrals;
we shall introduce those approximations when we get to examples of different schemes.
Meanwhile, with this notation in hand. we can write any stochastic Taylor series in the
form

fe(T). T) = fx(0),0) + ) Lofx(0). 0y + Y 14l fix, D). (3.15)

oeA peb
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where the integrals go from 0 to T. Note that here, B contains those multi-indices 8 for
which LAf could be the next substitution for f in Ito’s formula, and A contains the as
which must have come earlier. When we use Eq. (3.15) to develop a numerical scheme,
the approximation itself comprises muiti-indices belonging to A, and the truncation error
comprises the multi-indices belonging to B.

Before going on, we will clarify this notation with a one-dimensional example; that
is, both F and G are scalars F and G, implying that the arbitrary function f and the
Brownian motion W are scalars as well. If we apply [to’s formula (Eq. (3.12)) twice,
with L° f and then L' f for f, we arrive at the expansion

T T

F(T), T) = f(x(0),0) + / LOJ"(X(O),O)dH-/LIJ"(X(O),O)(')dW(t)
0 0

t

T ¢
/LOLof(x(s), s)dsdr + / / LlLof(x(s), s)(HdW(s)dt
0 0

0

+

S —

T t T ¢
+ / / LOLY f(x(s), $)ds(-)dW(z) + f / L'LY f(x(s), $)(-)dW(s)dW(t) + - - -
0 0 0

0
(3.16)
This is more compactly written as
S(T), T) = f(x(0),0) + IoyL” f(x(0), 0) + I (1) L' f(x(0), 0)

, T ; T

Fhoo L fxto. 0] + T [LM s, 0],

T T
Fhon[LOV e 0]+ L feon] o G

In Eq. (3.17), Io =T and [y = (W(T) — W(0)). If we approximate our integral
with terms involving only the initial condition, Iy and I, then A = {(0), (1)} and
B = {(0,0). (1,0), (0, 1), (L. D)}.

3.2. Application to numerical schemes

To create a numerical scheme for an SDE, we can expand differences using the stochastic
Taylor series and drop the high-order terms. Of course, we break up the integration
interval (0, T7 into discrete time steps so that the ith time step consists of an expansion
analogous to Eq. (3.17) with f(x(0), 0) replaced by fx(t;_ ). t;i_1). f(x(T), T) replaced
by f(x(;). ;). T replaced by the time step A, and (W(T') — W(0)) replaced by avector AW
of Gaussian random variables with each component having variance A. For example,
consider Eq. (3.17), replacing f(x(t), r) with x(r) and dropping the remainder terms.
Since L'x = F and L'x = G. we are left with the stochastic Euler scheme (revisited n
Section 4):

X)) = x(t) + Fx(), ) A + G(x(t;), ;) AW(t;) + Remainder. (3.18)
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In the so-called strong schemes (see below), the estimation of AW is z;. a Gaussian
random deviate with mean zero and variance A. That is, roughly speaking, the determin-
istic part of the equation is updated with the time step, and the stochastic part is updated

with the square root of the time step.
As another example, consider Eq. (3.15) with A = {(0). (1), (1. 1)} and B = {0, 0),
(1,0), (0. 1), (0,1, 1), (1, 1, D}. That is, we expand the term

f/L L' F(x(s). $)(-)dW(s)dW(1) _//L L' f(x(0), 0)(-)dW(s)dW(1)

0 0

S~

f LOL'LY fx(u), w)du(-)dW(s)dW(r)
0

_+_

St—— O —
S— .

/L‘L‘Llf(x(u), u)(HdW(u)dW(s)dW(r) (3.19)
0

and again write in compact form
1.1 : T 1,1
1(1,1)[L( ' )f(x(l),f)]o = Ia.n LY f(x(0), 0)
+ 1.1 1)[L(01 ”f(X(T) l)] + I, 1)[L(1 LD fx(r), f)] . (3.20)

Again taking f(x(1), 1) = x(1)

LY Dx(n) = Gx(), t )8—9(":%-9 (3.21a)
and either the Ito expression (KLOEDEN and PLATEN [1992])

In = (AW? = A%)/2  (lto) (3.21b)
or the Stratonovich expression

Igny = AW?/2 (Stratonovich), | (3.21c¢c)
we arrive at the so-called Milsteyn scheme

X(tig1) = x(t) + Fx(1), ) A + G(x(£;), 1)z

+ G(x(1;). 1)) —G—(—%ﬁl—l—ﬁ—l(l 1y + Remainder. (3.22)

In Eq. (3.22), I(1.1) is appropriately estimated by either Eq. (3.21b) or (3.21¢), again
with AW represented by z;.
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3.3. Order of approximation

To obtain the order of the approximation, we need to know what order various terms
are. It turns out that this depends on the sense, i.e., strong or weak, in which we want
to approximately solve the SDE. The so-called strong schemes approximate the entire
path of the solution process in an L’-sense (see below). Weak schemes, in contrast, yield
paths whose moments approximate all of the moments of the SDE; the paths themselves,
however. may not be pointwise solutions to the SDE.

We shall clarify strong solutions first. If x(¢) is the actual solution process and y(1) is
our strong numerical approximation, then

\/< sup [x(1) — y(0]2 > = O(ArY), (3.23)

0=<r=<T

where y is the (strong) order of convergence. The vertical bars denote an appropriate
norm, the Euclidean norm, for example. Note that this is indeed a strong convergence
condition, usually much stronger than is needed or even necessarily desired. Strong
schemes will, on average, approximate the path of x(¢) that corresponds to the generated
realization of the noise W(r). If we have no particular reason to believe that we are
approximating the realization of the unresolved chaotic process that occurs in nature
(and we generally call it noise because we do not have this belief), the added complexity
and computational expense of strong schemes over weak schemes (see below) may not
be warranted.

[f one desires a strong scheme, then the correct order of an increment involving
the iterated integral /, depends on whether the integral is Ito or Stratonovich. For Ito
integrals, the order is the number of deterministic terms (i.e., jz = 0) plus half the number
of stochastic terms (i.e., jx between 1 and K), excepr that increments that are entirely
deterministic (i.e., all the j;s are 0) have effective order one-half smaller than this. For
example, an increment with « = (0, 0, 1, 1, 0) has (strong) order 4, with & = (1, 0, 0)
has order 2.5, and with ¢ = (0, 0, 0, 0, 0) has order 4.5. It is understood that the iterated
stochastic integrals are approximated using expressions appropriate to the [to scheme,
and that strong schemes can be developed for every integer and half-integer order.

For a particular example, consider Eq. (3.18). The first term on the right-hand side
is, of course, order 0. The next two terms, with @ = (0) and « = (1), are each of strong
order 0.5. Thus, Eq. (3.18) represents an Ito scheme of strong order 0.5. The three
next higher terms shown in Eq. (3.17) possess multi-indices « = (0, 0), « = (0, 1), and
a = (1, 0). They are therefore of strong order 1.5. The last term, with & = (1, 1), is of
strong order 1.

By the same reasoning, the Milsteyn scheme (Eq. (3.22)) is of strong order 1. Its next
higher order terms in the remainder are of strong order 2 and 1.5. Hence, the Milsteyn
scheme is an algorithm of strong order 1.

Similar counting of order is valid for strong Stratonovich integrals. However, only
whole integer orders are valid, so all the half-order integers get bumped up to the
next whole-order integer order. Note that the stochastic Euler scheme is not valid for
Stratonovich integrals.
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It is worth pointing out that it can be difficult to generate the necessary stochastic
increments /, for strong schemes (KLOEDEN and PLATEN [1992]) while still maintaining
the formal accuracy to which the scheme was developed. For a one-dimensional noise.
for example, the increment /(¢ ; 1). which appears in second-order schemes. is difficult
to generate, since it is not Gaussian and has a complicated joint distribution with smaller
order terms. For a multi-dimensional noise, the first-order increment I(j ) 1s already
difficult to generate.

We now turn to weak schemes. For so-called weak schemes, instead of approximating
paths of solutions, we merely attempt to approximate the moments of solutions well. That
is, we try to get the statistics correct. So, if x(7) is the actual solution process and y(1) is
our numerical approximation, then

<x()" > — <y(0)” >| = O(AP) (3.24)

forevery p =1, 2, ..., and where y is the (weak) order of convergence. Note that weak
schemes approximate every moment of the solution well.

It is important to note that what is said below will be valid only for Ito equa-
tions, and not for Stratonovich equations. This is not a major difficulty for sufficiently
simple systems where it is possible to convert a Stratonovich equation to an Ito one
(see Eq. 2.18).

If a weak scheme is desired, then the correct order of an increment involving the
iterated integral /, is simply the length of «. That is, both deterministic and stochastic
terms in the increment have effective order 1. For high-order schemes this represents a
considerable savings over strong schemes since many fewer increments are necessary.
Weak schemes can be generated for any integral order. Note that all strong schemes
of some order are also weak schemes, generally of a higher order. For example, the
Euler scheme (Eq. (3.18)) is a strong scheme of order 0.5 and also a weak scheme of
order 1.

A further savings can be realized with weak schemes since it is not necessary to
simulate fully the stochastic increments. It is only necessary to simulate the first few
moments (depending on the order of the scheme) of the increments.

For example, for a first-order weak scheme, such as the Euler scheme. it is only
necessary that the simulated increments agree with the true stochastic increments up
to the third moments, and these only need to agree up to first order in At (KLOEDEN
and PLATEN [1992]). So. instead of generating a Gaussian random variable with mean
0 and variance Ar for the increment AW(r). it is sufticient to generate a coin-flip and
generate a random variable AW such that

PIAW = VAl = PIAW = vh3— (3.25)

TQI

Note that even though we only approximate this increment correctly up through the third
moment (and of these, only the second moment is nonzero), the scheme still approximates
all moments of the solution well.

Second-order weak schemes need to get the first five moments of the stochastic
increments correct, third-order schemes the first seven moments, etc.
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To generate AW for a second-order scheme with a one-dimensional noise, the random
variable AW with

_ I _ 2
PAW =£V300 =2, PAW=0)=3 (3.26)

suffices, and for the iterated integral /¢ gy, we can use AZ = %AWAt (KLOEDEN
and PLATEN [1992]). If the scheme has a multi-dimensional noisé, we will also need
to generate the increments /4 for j # k. For this, we can independently generate V x
for j < k such that

(3.27)

| —

P(Vip = +A1) =

and Vi ; = -V, and approximate /) by AWIAWK + V. Generating all of this
for just one time-step is faster than generating even one Gaussian random variable.
What can we do if we want a weak scheme for a Stratonovich SDE? We cannot use
stochastic Taylor series to generate a weak scheme trom scratch for a Stratonovich system
since the weak order of a Stratonovich increment is not straightforward to estimate.
However, we do have two possible options. First, as suggested above, we may be able
to use Eq. (2.18) to convert from the Stratonovich system to the equivalent Ito system,
thereby allowing use of weak Ito schemes. The other possibility is to make use of the
fact that every strong scheme is also a weak scheme of the same order or higher. Thus,
we can simply use a strong Stratonovich scheme and use it weakly, even to the extent
of employing the simplifications of the stochastic increments as indicated for Ito weak

schemes above.

4. Popular methods

The tollowing summary of popular numerical algorithms is devoted to numerically
integrating SDEs of the form

dx = F(x, ndt + G(x, s)(-)dW(s). 4.1)

Many definitions introduced in the preceding sections are reproduced for the conve-
nience of the reader. This is not intended to be an exhaustive list, nor do we weigh the
relative advantages and disadvantages of the various schemes. Our motivation in listing
the schemes we have chosen is twofold. 1) Scientists often wish to “stochastify” an
existing numerical model of a deterministic process. Several of the schemes discussed
below (e.g., Ewald-Témam and the stochastic Runge—Kutta schemes) have been shown
to converge to appropriate stochastic integrals by minimally adjusting well-known deter-
ministic integration schemes. 2) If a stochastic model is to be written from scratch, one
may wish to use a scheme that was developed specifically for SDEs. We have included
schemes that we, the authors, have found satisfy one or the other need. As before, the
first subscript of the matrix G corresponds to a component of x; the second subscript
corresponds to a component of dW. It will be made clear if an algorithm can only support
one interpretation. In all cases, time step is denoted A. The symbol z, is used to denote
a centered (i.e., zero-mean) Gaussian random variable with variance A. If one chooses
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to estimate a weak Ito integral. then z, will be replaced by a random variable sampled
as described in Section 3. However, in what follows, we shall assume that Gaussian
estimations for the increment of the Wiener process are being used. The subscript on
Ze 18 used to indicate that this random variable is used as the ath component of a vec-
tor Wiener process. The double stochastic integral over first the ath, and then the Bth
component of the vector Wiener process is denoted /(4 g). and it will be clear whether
that symbol represents Ito or Stratonovich integration. Finally, the scheme introduced
by EwaLD and TEmaM [2003, 2005] has become known as the Ewald-Témam scheme
in the meteorological literature (e.g., HANSEN and PENLAND [2006, 2007]) and that is
the convention we follow here.

4.1. Euler method

This method converges only to Ito calculus. The order of its convergence was described
in Section 3. Given Eq. (4.1), the algorithm is

X1+ 8) = x(0 + Fi(x. DA + ) Gig (x. )2 (7). (4.2)

One generates the vector z(#) once at each time step and uses that same vector in updating
every component of x.

4.2. Heun method

This method (MCSHANE [1974]. RUMELIN [1982]) does converge. but only to
Stratonovich calculus. The order of this convergence is of strong order 0.5 and weak
order 1. As in the Euler scheme, we generate a vector z(f) once at each time step. Here,
we use the Euler predictor as an intermediate variable

Xt + A) = xi(0) + Fix. DA + ) Gia(x, Nza (1), (4.3)
o
and then update x as follows:

I :
xi(t + A) = x;(1) + E{Fj(x, NA+ F(x' r+ M)A+ -
1 . / ,
ot D {Gia(x. 1) + Gig & 1 + A)jza (1), (4.4)
44
The Heun method is a special case of the stochastic Runge—Kutta methods.

4.3. Runge—Kutta methods

The general (m 4+ 1)th order stochastic Runge—Kutta scheme has been published in
RUMELIN [1982], where its convergence properties are discussed. and is also exam-
med in KLOEDEN and PLATEN [1992]. The reader should be aware that when KLOEDEN
and PLATEN [1992] state that the Heun scheme, a second-order Runge—Kutta algorithm.
“does not converge,” they mean that the scheme does not converge to an Ito solution.
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RUMELIN [1982] provides explicit criteria by which the (m + 1)th-order Runge-Kutta
scheme may be judged to converge to [to or Stratonovich calculus.

HANSEN and PENLAND [2006] considered a special case of the fourth-order scheme
since that is the order most commonly used by scientists using Runge—Kutta algorithms
in deterministic modeling. They also used RUMELIN’s [ 1982] criterion to show that this
scheme converges to Stratonovich calculus. The stochastic version of this algorithm
involves several intermediate steps:

K, = F(x(1).1). (4.5a)
M, = G(x(n). 1), (4.5b)
) ] I
x =x(t)+ ;K,)A + ;M(,z(t). (4.5¢)
]
K =Fx', t+ SA), (4.5d)
I
M, =G, r+ ;A), : (4.5e)
" 1 I ~
x'=x(n+ KA+ S Miz(0), (4.5f)
|
Ky =Fx",t+ 5A), (4.5g)
1
M, =G, t + ;A), (4.5h)
x" = x(t) + Ka A + Moz(1), (4.51)
Ky =Fx", t+ A), (4.5))
M: =G, r+ A), (4.5k)

1 | ;
xX(t+A) = x(t) + E(KU + 2K + 2K, + K3)A + E(MO + 2M; + 2M> + M3)z(1).
(4.51)

As before, the same vector of random numbers z(¢) is used during the entire updating
process.

4.4. Milstevn method: explicit version

This method has versions corresponding to either Ito or Stratonovich calculus. Its strong
order of convergence is of order 1, as is its weak order. The updating expression is

JG
Xi(t+ A)y=x;(t) + Fi(x, DA + E Gio(x, Dz + E G,/a—a—-vl—él(a,/ﬁ)- (4.6)
« Jop o
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In Eq. (2.12), 1,4 g represents the double intecral
4 {a, ) TEP &

1+ A r
Lap = / dWﬁ(f’)/dWa(l”). (4.7
| !

1
When o = . we estimate /(4 o) as
loo = (55 — )2 (4.82)
for Ito calculus and
low = 23/2 (4.8b)

for Stratonovich calculus. When « # B, 1(4.p) is the same for both Ito and Stratonovich
calculus and must be approximated (KLOEDEN and PLATEN [1992]). In no case should
it be 1gnored. In order to achieve a strong convergence order of unity, one chooses an
integer n > C/A, with C some positive constant, and estimates /, ) as follows:

](Ol,ﬁ) = Zazﬁ/z + pn(wa,nzﬁ — WBnig).--

n

1 1 ,
-+ E Z E(Ua,m(\/izﬂ + rgm) — Uﬂ.m(‘/jza + Fam)). (4.9a)
m=
where
= : ! - (4.9b)
=127 00 m2’ '

m=1I

and where, similar to the components of z, the quantities Wy n, Va.m, Fe.m - We.ns VB
and rg ,, are all independent Gaussian random variables having mean zero and variance
A. Each of these random variables is also independent from the components of z. The
accuracy of the estimation increases with n, but this estimation can be very expensive
computationally. In a large class of special cases. one loses no accuracy by approximating

La.py = Zazp/2. (4.10)

This class of special cases is known as “commutative noise” and obtains when

0Gp(x. 1) 0Gg(x, 1) ;
Giglx, t) ———nou—_ = Giglx, t) ————— . 4.11
; ka(X. 1) o ; kp(x. 1) o ( )

If the commutativity relation Eq. (3.5) does not hold, one must ensure that the approx-
imation of /4., yields sufficient accuracy. The simplicity of Eq. (4.10) usually makes
checking the commutativity relation worthwhile.

If accuracy of order 1 is necessary, the commutativity relation does not hold. and onc
is trying to estimate an Ito integral, then one of the weak schemes discussed in Section
3 may be appropriate.
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4.5. Milsteyn method: implicit version

In this and in all implicit algorithms, remember this principle: Never, ever. put the stochas-
tic term in the part to be inverted. Depending on your random number generator, you
may get lucky for a particular simulation, but the scheme will eventually either blow up
or give a spurious contribution so large that it will contaminate the rest of the solution.
A cautionary tale is provided when we give examples. That being said. the implicit Mil-
steyn scheme is recognizable from the explicit version. That is, one chooses the level «;
of implicitness for the ith component of x and uses the updating equation

xi(t+A) =xi(0) +{ai File, t +A) + (1 — a))Fi(x,. DA
0Giy(x. 1)
-+ Z Gip(x. 025+ ) Gaple. D=Ly, (4.122)
Dxy
kpy

In Eq. (4.12a), one estimates the multiple stochastic integral as
la.p) = (ZaZp — Sa.p)/2 (Ito) (4.12b)
Lia.p) = ZaZp/ 2 (Stratonovich) (4.12¢)

if the noise is commutative. Otherwise, one either employs the more accurate approx-
imations described in the explicit scheme or chooses a weak version. The order of
convergence for the implicit Milsteyn scheme is the same as that for the explicit Milsteyn
scheme.

4.6. Platen method: explicit version

The classic MILSTEYN [1974, 1978] method requires knowledge of how G(x, #) changes
with each component of x. For very complicated multiplicative stochastic terms, analyti-
cal expressions may be difficult or impossible to evaluate. In this case, there 1s a two-step
process introduced by Platen (KLOEDEN and PLATEN [1992}). For each component of
the noise, one evaluates an intermediate value using no random numbers,

¥4 A) = () + Fix, DA + Gigx. DVA. (4.13a)
One then updates x as follows:

(4 Ay = xi(0) + Fi(x, DA + Z Gio(X. D2

Z Gip(xl. 1) — Gigle. DO} o p)- (4.13b)
u/j

As in the Milsteyn method, the difference between Ito and Stratonovich calculus 1s made
in the estimation of [, g).
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4.7. Implicit strong Runge—Kutta scheme

KLOEDEN and PLATEN [1992] call this algorithm the implicit order 1.0 strong Runge—
Kutta scheme, although it is not a simple heuristic adaptation of the deterministic scheme,
because it1s derived using a strong stochastic Taylor expansion and involves intermediate
variables. Again, one chooses the level «; of implicitness for the ith component of x.
The supporting values are evaluated as in Eq. (3.7), and the updating equation is

Xi(t+A) =xi(t) +{ajFix(t + A).t+ A)+ (] —a)Fi(x,D}A ...

] /
o 2 G 03— DG 1 = g O (4.14)
I o.fi

4.8. Ewald-Témam: explicit scheme

The explicit and implicit versions of the Ewald-Téman scheme have both strong and
weak convergence order of one. The explicit Ewald-Témam is a modification of the
Milsteyn scheme where the explicit tendency is replaced with a discretization (EWALD
and TEmam [2003, 2005]):

Xi(t + ) = xi(1) + & DA+ Y Giax, 024 ...

(4.15)

{Giﬂ(x + £V Aé/, 1 — G,-ﬂ(x, t)
e Z G julx, 1) : ' Lig.p-
8'/‘\/A

In Eq. (4.15), é; is a unit vector corresponding to the component x ;. The vector ¢ has
components less than or equal to unity, in units of x/,/f. and allows the modeler to
adjust the discretized derivatives to the problem at hand. The comments already made
concerning the double stochastic integral also apply here.

s f

4.9. Ewald-Témam: implicit scheme

This scheme was devised to accommodate the architecture of extant climate mod-
els (EwALD and TEMaM [2003, 2003]), including barotropic vorticity models (e.g..
SARDESHMUKH and Hoskins [1988]) and full general circulation models (e.g.. SAHA,
NADIGA. THIAW, WANG. WANG, ZHANG. VAN DEN DoOOL, PAN, MOORTHI. BEHRINGER,
STOKES, PENA. LORD. WHITE, EBISUZAKI, PENG and XIE [2006]). As such. this scheme is
obviously different from any of the previous schemes described in this article. Determin-
istic climate models usually integrate the state vector first using a leapfrog step. followed
by an implicit step. To implement the stochastic analog of this procedure, we rewrite
Eq. (4.2) as

dx = Fi(x,ndr + Fo(x, ndt + G(x, 0 (+)dW. (4.16)
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In Eq. (3.10), F(x, 1) is the explicit part of the model and F,(x, t) is the implicit part.
The implicit leapfrog scheme of EwaLD and TEMAM [2003, 2005] is as follows:

X' (t+20) =x() + 2F (x(t + A), 1 + MDA +Mx(0), 1) + M(x(t + A), t + D),
(4.17a)

x(t4+2A) =x'(t + 2A) + 2F>(x(t + 2A), t + 2A)A. (4.17b)
[n the updating expressions Eq. (4.17a), the ith component of the vector M(x(1), 1) is

G g(x. 1)

Mix.n = Gjalx,1) ——lap) + Y Gialx, Nz (4.17¢)
jop i o

Again, we approximate the derivative in Eq. (4.17¢c) as
0Gip(x, 1) Gig(x +e;vVA&;. 1) — Giglx, 1)
with all symbols defined as in the explicit case.

As written, this scheme is of strong order | for both Ito and Stratonovich systems. If
a weak order I Ito scheme is sufficient, the /(4 ) terms in Eq. (4.17¢) may be neglected.

(4.17d)

5. Random number generators

All of the stochastic numerical schemes require random deviates. The Gaussian devi-
ates required by strong schemes may be obtained by applying the Box—Miiller (PrRESS
et al. [1992]) technique to output from pseudorandom number generators, which provide
numbers evenly distributed on the interval (0,1), and the non-Gaussian deviates required
by weak schemes also employ output from pseudorandom generators. Many computer
languages have intrinsic random number generators that claim to fill this need, and some
of them are dangerous for our purposes. According to Garcia [2000], C++ has a random
number generator in the <stdlib.h> that is not intended for scientific programming; it
repeats the same sequence of numbers after 33,000 calls. For comparison, a computer
model with a triangular truncation of T382 in the horizontal and 64 levels in the verti-
cal has more than 5,500,000 grid points. Perhaps the best random number generator is
called the Mersenne Twister (MATSUMOTO and NISHIMURA [1998]), which s freely avail-
able from the website http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. The
period of this generator is an enormous 1000, We are unaware of any problems associ-
ated with this random number generator and would be grateful if anyone who finds any
were to inform us.

6. Frequently asked questions

Before we begin exploring some common mistakes, let us note that when the noise is
purely additive, many of the more complicated schemes are equivalent to the stochas-
tic Euler scheme. Some of the examples below use additive noise for simplicity;
multiplicative noise only exacerbates the problems discussed in this section.
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6.1. Why do we need the square roots in the noise terms?

Without treating the system as a legitimately generated Wiener process, we do not
have dynamical consistency. Consider the simple Ornstein—Uhlenbeck (OU) process
below:

dx
217 = —yx + nk (6.1

In Eq. (6.1), white noise is denoted &, and n is a constant. It is easy to show that the
stationary probability density is a centered Gaussian with variance < x2 > = n°/2y.
With values of y = 0.05 and 5 = 1, <x?> = 10. Now we use the Euler method to
numerically integrate Eq. (3.2), employing the relation dW = £dr. We shall also treat
Eq. (6.1) naively, by treating n¢ as a discrete white noise with unit variance at every
time step and using the deterministic Euler scheme x(7 + A) = x(1) + (—yx(t)y + né)A.
Figure 6.1 shows estimates of < x? > for 10,000 samples from a time series sampled
every 2.4 time units, using time steps of 0.2, 0.4, 0.6, and 0.8 time units. It is clear that
the variance of the naively generated system increases monotonically with the time step,
even for time steps an order of magnitude smaller than the standard deviation of the
system to be generated. In fact, perusal of the schemes indicates that the variance for this
system integrated naively should increase linearly. The stochastic Euler system, on the
other hand, gives a reasonably accurate estimate of the variance. The moral of this story,
of course, is that throwing random numbers into a deterministic integration scheme will
provide noise with a variance dependent upon the time step.
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FiG. 6.1 Mean square of 10,000 samples of Eq. (6.1). Solid circles: Naive Euler scheme. Solid diamonds:
stochastic Euler scheme, Eq. (4.1).
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6.2. What happens if [ use more than one random vector per time step?

There may be a temptation to hard-wire a random number generator into the code atevery
place the symbol z, appears in the updating equation. If the system is multivariate, doing
so is equivalent to using more than one random vector per time step. This is deadly if the
correlations between variables are important. As an illustration, consider two damped
oscillators coupled only through the driving noise:

dx = Lxdr + GdW, (6.2a)
where
-0.5 | 0 0
— -0.5 0 0
— 3
L=1 o 0o 05 1 (6.2b)
0 0 —1 —-0.5
and
V2 0 0. 0
>
G = 0 V2 0 0 ) (6.2¢)

1/v2 0 V15 0
0 /2 0 JI5

From the fluctuation—dissipation relationship (e.g., PENLAND and SARDESHMUKH [1995],
NEWMAN, SARDESHMUKH and PENLAND [1997]), this system yields a covariance matrix

2 0 1 0

r o201
<xxi==1 1 5 5 (6.2d)

0O 1 0 2

Generating the vector of random numbers before employing it in the time stepping
procedure, as one ought to do, yielded the following sample covariance matrix:

1.979 —0.006 0.993 —0.029
e _ | -0006 1990 0016  1.001
Sample = 0993 0.016  2.024 —0.013
0.002  1.001 —0.013  2.010

(6.2e)

whereas hard-wiring the random number generator into the updating equation yielded

2.002  0.014 —0.013  0.002
c o 0.014  2.020 0.012 —0.005
Had-wire = 013 0.012 2014  0.002
0.002 —0.005  0.002  2.016

(6.2f)

The vector of random numbers must be preserved during the entire course of the time
step, or the correlations between state vector components are lost. This occurs with
additive noise; the consequences of being cavalier with multiplicative noise can be dire
indeed.
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6.3. What happens if I use a naive implicit scheme?

This cautionary tale is reproduced from EwALD, PENLAND and TEMAM [2004]. Consider
the following forced diffusion equation:

dx A .
E/‘ =hk" —rx+ F (6.3a)

where r = r,, + rgn, and where 5 is white noise. That is.
rdt = r,dt + redW. (6.3b)

An analytical solution for the stationary probability distribution function (pdf) is derived
from the Fokker—Planck equation (HORSTHEMKE and LEFEVER [1984]) and is shown
in Fig. 6.2 (heavy solid line) for the parameters k = 0.1, r, = 0.51, r, = 0.5, and
F = 0.5. Also shown is the sample pdf from an integration of Eq. (6.3) using the implicit
Ewald-Témam (filled circles). In this implementation, we have defined ¢; = F and
a» = (k* — r,)x; further details may be found in EWALD, PENLAND and TEMAM [2004].
For comparison is the sample pdf estimated from a time series generated using a naive
application of an implicit scheme as follows:

X'(t+2A) = x(t) + 2a; (x(1 + A), r + A)A, (6.4a)
x(14+2A) = x(t) + 2ax (X' (t +2A). 1 + 2A)A. (6.4b)
Eq. (6.4) was used to integrate Eq. (6.3a) with n estimated as a Gaussian random variable

of unit variance. This exercise shows the danger of throwing random numbers into a
deterministic model and expecting to get useful results.

To7.8

plx)

FiG. 6.2 Probability density function estimated from integrating Eq. (6.3). Heavy solid line: theoretically
expected pdf. Filled circles with crosses: implicit Ewald-Témam. Light solid line: naive implicit scheme.
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6.4. How do I implement stochastic forcing in a dvnamical model based on measured
statistics?

There is no single answer to this question. A stochastic parameterization cannot be
implemented unless something is known about the timescales of the system to be parame-
terized. The common practice of simply augmenting a deterministic parameter in a model
with an uncorrelated random component of specified, experimentally estimated, variance
can cause most of the undesirable results discussed in this section (see, e.g., Fig. 6.2).
Some of these effects can be ameliorated somewhat by using red noise, rather than white
noise, but this is often extremely difficult in a high-dimensional, massively parallelized
numerical model. Besides, using red noise rather than white noise does not guarantee the
problems will go away. In the following, we consider two procedures that are appropriate
tor important special cases.

One solution to the quandary is possible when the timescale of the fast system is known
at least to some approximation. In that case, the central limit theorem can be applied
and the equivalent stochastic forcing identified. SARDESHMUKH, PENLAND and NEWMAN
[2001], for example, applied this procedure to the linearized barotropic vorticity equation
with stochastic fluctuations in the zonally symmetric mean velocity. After accounting for
the effects of the annual cycle and El Niifio, their four-times-daily measured velocities
were tound to have a spectrum varying roughly as the inverse square of the frequency.
They, therefore, decided to approximate the fluctuations as an Ornstein—Uhlenbeck pro-
cess with a timescale fast enough that the rest of the system would see those fluctuations
as white. As is well known (e.g., HORSTHEMKE and LEFEVER [1984]) and as is readily
verified by the formulas provided in Section 2, the white noise approximation of an
Ornstein—Uhlenbeck process 1 with variance o and decay rate y is

udt ~ (o/2/y)dW. (6.5)

The larger o and y are, with o> /y remaining constant, the better the approximation is.

[t turned out that the decay time 7, = 1/y of the velocity fluctuations considered
by SARDESHMUKH, PENLAND and NEWMAN [2001] was somewhat too large to present
a legitimate candidate for a white noise parameterization (SARDESHMUKH, PENLAND
and NEwWMAN [2003]). However, when the decay time is small enough, Eq. (6.5) can be
used to parameterize a physical quantity « stochastically.

A second procedure (HANSEN and PENLAND [2007]) can be used if the parameters of
the stochasticity are diagnosed using data assimilation in, for example, a forecast model.
That study was originally concerned with whether or not standard data assimilation pro-
cedures, such as various versions of the ensemble Kalman filter (ANDERSON [2001],
Bisnop, ETHERTON and MAJUMDAT [2001], EVENSEN [1994], WHITAKER and HAMILL
[2002]), could be applied to diagnosing the coetficients of random terms in a dynam-
ical model. The answer was a reserved “yes,” but the reservation had implications for
stochastic integration.

The technique is best described using the example presented by HANSEN and PENLAND
[2007], who considered a stochastic version of the chaotic Lorenz system:
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dx = —ap(x — v)dr — ag(x — y) - dW,
dv = (rox — xz — v)ds, (6.6)
dz = (xy — byo)dr.

In Eq. (6.6). the typical chaotic parameter values are ay = 10. ry = 28, and by = 8/3.
In addition, there is a stochastic component to be integrated in the sense of Stratonovich.
with an addition parameter ¢, = 0.1. HANSEN and PENLAND [2007] integrated Eq. (6.6)
using a stochastic fourth-order Runge-Kutta scheme (see Section 4c) using a time step
(the details are important) of 0.00025 model units (mu). The resulting trajectory was
taken as “truth.” Employing the deterministic Lorenz model (i.e., Eq. (6.6) with a, = 0)
but augmented with the condition dag/d7 = 0, as the assimilation model. the ensemble
Kalman filter was used to assimilate the state vector (x. v, z, ap). The deterministic
Lorenz model was integrated using a standard fourth-order Runge—Kutta method with a
time step of 0.01mu, and data from the “true” trajectory were assimilated every fifth time
step, 1.e., every To,py = 0.05 mu. Data assimilation resulted in an estimate of ap = 10.2
with a standard deviation of that estimate being 0.42.

It is now that the central limit theorem (Section 2) becomes important. OQur “truth”
(Eq. 6.6) looks like Eq. (2.14). Our assimilation model looks like Eq. (2.1). with the
x-component of £2F identified as ag(x — v) and with G identified as (x — v) times a
centered (zero-mean) variable having a standard deviation of 0.42 in the same units as agp.
During the data assimilation, that variable is held fixed for Tops = .05 mu after which
another independent value is inserted into the assimilation model. Thus, the integrated
lagged covariance (Eq. 2.8) of this variable is simply (0.42)77,,, yielding a coefficient
of the Wiener process equal to (x — y) times the square root of that, or 0.098 (x — V).
This 1s not far from the true expression 0.1 (x — v).

All this may be interesting, but the relation to stochastic integration is not obvious
until one asks, “If the central limit theorem worked in the data assimilation scheme.
why won’t it work in forward integration?” In fact. it does. If we go to all the trouble
to assimilate the stochastic parameter into a forecast model. the Stratonovich SDE is
estimated to a remarkably accurate extent by a piecewise deterministic model, where the
stochastic parameter is drawn from a Gaussian distribution having the observed mean
and standard deviation (10.2 and 0.42, respectively, in the Hansen—Penland example).
It is then injected into the forward integration, after which it is held constant for exactly
the assimilation period (t,p; = 0.05 mu in this example) before it is replaced by another
draw from the same distribution. Of course, for this to work. the assimilation period still
has to be much smaller than the timescales of the dynamics the forecast model is trying
to predict, or the central limit theorem is not satisfied.

7. Discussion

As the popularity of stochastic climate modeling increases, so does the temptation to
do a quick and dirty job of it. The traditional identity of uncertainty as representing the
extent to which a scientist “fails” to eliminate uncontrolled experimental variables causes
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many scientists to harbor a certain discomfort with dynamically generated stochasticity.
resulting in a very human denial of its importance. Once this denial can no longer
be maintained, one may try to account for stochasticity in a numerical model while
minimizing the effort needed to do so by simply adding a random number generator to
the deterministic model. Unfortunately, it has been shown many times that this attitude
can lead to wrong answers that look reasonable. We have tried to summarize approaches
that combine necessary rigor and ease.

Ease is nearly as important as rigor. The immense practical difficulties of implement-
ing stochastic numerical techniques in state-of-the art general circulation models are
real and should be approached with sympathy and respect. It is for this reason that we
have included not only numerical algorithms commonly employed for their theoretical
advantages but also those algorithms that are similar to those already employed by geo-
scientists in numerical models. For example, the dynamical core of many deterministic
models in climate research consists of a semi-implicit leapfrog scheme; the implicit
Ewald-Témam scheme is therefore ideally suited for such models.

In this chapter, we have tried to clarify the reasons for the existence of two calculi
found in nature. We have summarized some of their basic properties, including the dif-
terences and connections between them as well as a rule of thumb for the use of each:
it the system one wishes to model derives its stochasticity from unresolved continuous
chaotic processes, Stratonovich calculus is appropriate. If the process being modeled
possesses discrete, uncorrelated components that are treated as approximately continu-
ous, the appropriate calculus is Ito (HORSTHEMKE and LEFEVER [1984]). Practically, the
difference between these calculi is in the definition of the integral over a Wiener process
(Brownian motion) and the numerical approximation of that integral. '

Although it is possible for the reader to use the algorithms presented here without
understanding the basic theory behind them, we cannot recommend such a course. We
have therefore presented a review of the stochastic Taylor series and its role in developing
the numerical algorithms tor integrating SDEs. In particular, we have noted that one
need use strong schemes only if the actual trajectory of the system through phase space
is required. If one is interested only in the statistics ot the system, and this is usually
the case, one may employ the more etficient weak schemes. As we have seen, a strong
scheme of one order of convergence is equivalent to a weak scheme of at least that order.
Sometimes, order of convergence is not the primary consideration in choosing a scheme;
however, the coetficient in front of the order estimate can also make a difference. For this
reason. if at all possible, we encourage modelers to experiment with different schemes
on simple systems for which the analytic solution is known.

Finally, we urge the readers to refrain from taking “short cuts™ since most of the
theorems pertaining to deterministic numerical integrations do not apply to the stochas-
tic case. The numerical integration of SDEs may be somewhat unfamiliar to traditional
climate modelers, but stochastic schemes are well defined, straightforward, and increas-
ingly common. For us, it is indeed welcome to see widespread advantage taken of these
useful and elegant techniques.
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