Remarks about homework problem No. 4, Chap. IV

Contour of integration: No need to consider squares or anything. You can use the standard segment $[-R, R]$ on the real line followed by a closing circle. Which circle (in the lower or upper) half plane will depend on the sign of ξ, since

$$
e^{-2 \pi i \xi z}=e^{-2 \pi i \xi x} e^{2 \pi \xi y}
$$

So the three cases $\xi>0, \xi<0$, and $\xi=0$ will need to be considered separately.
Calculation: Use residues, plus prove that the part of the integral on the upper (or lower) circle will go to zero as $R \rightarrow \infty$. This requires an analysis of the denominator.

Residues: Contrary to what I claimed in class, no need to assume the denominator $Q(x)$ is real, although it causes no harm to do so. Clearly, the parameter R will have to be big enough so that all the roots are enclosed.
For the calculation, you can either use that

$$
Q(z)=c \prod_{k=1}^{n}\left(z-\lambda_{k}\right)
$$

and c is a non-zero complex number, or for any root λ define

$$
Q_{\lambda}(z)=\frac{Q(z)}{z-\lambda},
$$

so, as explained in class, the residue at $z=\lambda$ will be:

$$
\frac{e^{-2 \pi i \xi \lambda}}{Q_{\lambda}(\lambda)}
$$

Note that if you want to assume that $Q(z)$ is a real polynomial, since there are no real roots, then the degree n is even, say $n=2 m$, and all the roots will come in pairs as $\lambda_{k}, \bar{\lambda}_{k}= \pm i a_{k}$, with all $a_{k}>0$, for $k=1, \ldots, m$.

