Robustness of Affine Short Rate Models

David Mandel — Florida State University — Department of Mathematics

Feb 25, 2016

Overview

  1. Global Sensitivity Analysis
  2. Calibration of Vasicek & CIR Models
  3. Robustness Results

Methods

  • ANOVA Decomposition
  • Monte Carlo
  • Maximum Likelihood Estimation (MLE)
  • Asymptotic Distribution Approximations of MLEs

Robustness

  • The ability of tolerating perturbations that might affect the system's functional body.
  • System = bond prices implied by interest rate model, perturbations = changes in parameter values.
  • Global sensitivity analysis (GSA) to quantify sensitivity to parameters.

Global Sensitivity Analysis

ANOVA Decomposition

For $f \in \mathcal{L}^2[0,1]^d$ and $D := \{1,2,\ldots,d\}$,

$\displaystyle f(x) = \sum_{u \subseteq D} f_u(x_u), \qquad (f_u, f_v) = 0, \, u \neq v$

$\displaystyle \boxed{\sigma^2 = \sum_{u \subseteq D} \sigma_u^2}$

ANOVA Decomposition

$\displaystyle \boxed{\sigma^2 = \sum_{u \subseteq D} \sigma_u^2}$

"First-order effects" $\displaystyle \underline{S}_u := \frac{1}{\sigma^2} \sum_{v \subseteq u} \sigma^2_v$

"Total effects" $\displaystyle \bar{S}_u := \frac{1}{\sigma^2} \sum_{v \cap u \neq \emptyset} \sigma^2_v$

Global Sensitivity Analysis

$\underline{S}_{\{1\}}$ $\underline{S}_{\{2\}}$ $\underline{S}_{\{3\}}$ $\underline{S}_{\{4\}}$
$0.0331$ $0.1334$ $0.2996$ $0.5331$

First-Order Effects

$\underline{S}_{\{1\}}$ $\underline{S}_{\{2\}}$ $\underline{S}_{\{3\}}$ $\underline{S}_{\{4\}}$
$0.0331$ $0.1334$ $0.2996$ $0.5331$

$\underline{S}_{\{i\}}$ measures the expected fraction of variance to be eliminated if the "true" $X_i$ were known.

Total Effects

  • $\bar{S}_{\{i\}}$ takes the first-order effects and all interactions of $X_i$ into account
  • If $\bar{S}_{\{i\}} \approx 0$, parameter $i$ has negligible effect - can freeze
  • Offers insights into model reduction

Maximum Likelihood Estimation

Maximum Likelihood Estimation

  • Assume $X \sim P_\theta$ with joint pdf $f(x; \theta)$, $\theta \in \Theta$
  • Likelihood function $$ L(\hat{\theta}_n) := \sup\limits_{\theta \in \Theta} f(x;\theta) $$
  • Convergence in distribution $$ \sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow d \mathcal{N}(0,I^{-1}(\theta)) $$

Example - Vasicek Model

  • $Q$-dynamics $$ dr_t = a(b - r_t)dt + \sigma dW_t $$
  • Implies normal distribution of short rate: $$ r_t \mid r_0 \sim \mathcal{N}\left(r_0e^{-at} + b\left(1 - e^{-at}\right), \frac{\sigma^2}{2b}\left(1 - e^{-2at}\right)\right) $$
  • Parameters to be calibrated:
    1. $a > 0$ = mean reversion speed
    2. $b > 0$ = long-term mean
    3. $\sigma > 0$ = volatility
  • 2 issues: asymptotic normality and observable data

Vasicek Calibration - Normality

Vasicek Calibration

  • Calibrate logarithm of parameters, instead
  • Lognormal distribution implied by MLE theory
  • Short rate not observable; yields are observable
  • Calibration performed to four years of Treasury yields, maturities 1-30 years
  • Now have (approximate) distributions of parameters

CIR Model - Same Idea

  • $Q$-dynamics $$ dr_t = a(b - r_t)dt + \sigma \sqrt{r_t}dW_t $$
  • Implies a noncentral chi-squared distribution of the short rate
  • Parameters to be calibrated:
    1. $a > 0$ = mean reversion speed
    2. $b > 0$ = long-term mean
    3. $\sigma > 0$ = volatility

Parameter Distributions

Robustness Results

Closed-Form Bond Price Models

$$ P(t,T) = e^{A(t,T;a,b,\sigma) + B(t,T;a,b,\sigma)r_t}$$

Robustness

  • The ability of tolerating perturbations that might affect the system's functional body.
  • System = bond prices implies by interest rate model, perturbations = changes in parameter values.
  • Global sensitivity analysis (GSA) to quantify sensitivity to parameters.

Sensitivities as Functions of Maturity

Robustness

  • The ability of tolerating perturbations that might affect the system's functional body.
  • System = bond prices implied by interest rate model, perturbations = changes in parameter values.
  • Global sensitivity analysis (GSA) to quantify sensitivity to parameters.
  • MLE-implied parameter distributions don't capture total uncertainty in parameters
  • Additional uncertainty because of truncating asymptotic result and model fit error

Sensitivities as Functions of Parameter Uncertainty

Model Variances as Functions of Parameter Uncertainty

Conclusions and Future Work

  • CIR more robust than Vasicek
  • Narrow in scope - depends on calibration method and data
  • Dependence of parameters - ANOVA assumes independence
  • Formulate sensitivity indices so uncertainty in parameters is input