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A collection of facts to show that any initial distribution will converge to a stationary
distribution for irreducible, aperiodic, homogeneous Markov chains with a full set of linearly
independent eigenvectors.

Definition Let A be an n × n square matrix. A is irreducible if for every pair of indices
i, j = 1, . . . , n there exists an m ∈ N such that (Am)ij 6= 0.

Remark In the context of Markov chains, a Markov chain is said to be irreducible if the
associated transition matrix is irreducible. Also in this context, a Markov chain is called
irreducible if all its states communicate, which means exactly the definition for irreducible.

Definition Let A be a non-negative n×n square matrix. The period of index i, i = 1, . . . , n,
is the GCD of all m ∈ N such that (Am)ii > 0.

Remark If A is irreducible the period of each index is the same; hence we may speak of
the period of A in such a case.

Remark If the period of A is 1, then A is called aperiodic.

Theorem 0.1 (Perron-Frobenius) Let A be an irreducible, non-negative n× n matrix with
period α and spectral radius ρ(A) = r. Then

1. The number r is a unique eigenvalue of A (it is a simple root of the characteristic
equation of A).

2. A has a left eigenvector z with associated eigenvalue r, and z has all positive entries.

3. A has exactly α complex eigenvalues with modulus r and each is a simple root of the
characteristic polynomial of A.

Proposition 0.2 A row-stochastic square matrix has a largest eigenvalue of one.

Proof Let A be an n×n row-stochastic matrix; i.e.,
∑n

j=1 aij = 1 for all i = 1, . . . , n. Since

A1 = 1,

the vector 1 ∈ Rn is a right eigenvector with eigenvalue 1. Hence 1 is an eigenvalue of A.
To see this is also the largest eigenvalue, let z ∈ Cn be an eigenvector of A with associated
eigenvalue λ ∈ C. That is,

Az = λz.
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Now let k be such that |zi| ≤ |zk| for all i = 1, . . . , n. The kth entry of the equation above
is

n∑
j=1

akj zj = λzk.

Hence

|λzk| = |λ| · |zk| =

∣∣∣∣∣∣
n∑

j=1

akj zj

∣∣∣∣∣∣ ≤
n∑

j=1

akj |zj | ≤
n∑

j=1

akj |zk| = |zk|.

Therefore |λ| ≤ 1.

Remark If Π is the transition matrix for a Markov chain then Π is row-stochastic, hence
it has a largest right eigenvalue of 1. If Π is irreducible and aperiodic, then by P-F theorem
the eigenvalue of 1 is unique and all other eigenvalues have moduli strictly less than 1.

Proposition 0.3 The right eigenvectors of AT are the (transpose of the) left eigenvectors
of A, and the corresponding eigenvalues are the same.

Proof Let (λ, z) be an eigenpair of AT . That is, AT z = λz. Then zTA = λzT . So (λ, zT )
is a left eigenpair of A.

Proposition 0.4 A matrix and its transpose have the same set of eigenvalues.

Proof Let A be a square matrix and note (A− λI)T = AT − λI since the identity matrix
I is symmetric. Thus since det(B) = det(BT ) for any square matrix B,

det(A− λI) = det((A− λI)T ) = det(AT − λI),

hence A and AT have the same characteristic polynomials and therefore the same set of
eigenvalues.

Remark The two propositions above mean that we can inspect the eigenvalues of a tran-
sition matrix Π and these will be the same as the left eigenvalues of Π. Furthermore, we
may compute the eigenvectors for ΠT and those will be the left eigenvectors of Π.

Remark If Π is the transition matrix for a Markov chain then Π and ΠT have the same set
of eigenvalues. We mentioned above that Π has a largest eigenvalue of 1, and hence ΠT has
a largest eigenvalue of 1 as well. That is, there is an eigenvector z ∈ Rn such that ΠT z = z,
which is true iff

zT Π = zT .

If Π is irreducible then z has strictly positive entries by P-F theorem. Since we can normalize
z so the entries sum to 1, we know that any irreducible Markov chain has a stationary
distribution.

If Π is irreducible and aperiodic then this stationary distribution is unique, by P-F
theorem. More specifically, all other eigenvalues of Π are strictly less than 1 in modulus,
so there is only one eigenvector z such that zT Π = zT , where zT is the unique stationary
distribution. Thus we state the following important result.
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Theorem 0.5 An irreducible, aperiodic, homogeneous Markov chain on a finite state space
has a unique stationary distribution. Furthermore, if Π is diagonalizable, i.e., Π has n
linearly independent eigenvectors, then the marginal distribution will converge to this unique
stationary distribution as time tends to infinity regardless of the initial distribution.

Before we prove this, note the following lemmas.

Lemma 0.6 Let A be an n × n matrix. Then A is diagonalizable iff A has n linearly
independent eigenvectors.

In fact, A = PDP−1 with D a diagonal matrix iff the columns of P are n linearly inde-
pendent eigenvectors of A, and in this case the diagonal elements of D are the eigenvalues
of A that correspond, respectively, to the eigenvectors in P .

Proof Let P be any n× n matrix with columns z1, . . . , zn and let D be an n× n diagonal
matrix with diagonal entries λ1, . . . , λn. Then

AP = A
[
z1 z2 · · · zn

]
=
[
Az1 Az2 · · · Azn

]
,

and

PD = P


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =
[
λ1z1 λ2z2 · · · λnzn

]
.

Assume A is diagonalizable and A = PDP−1. Then AP = PD, which from above gives[
Az1 Az2 · · · Azn

]
=
[
λ1z1 λ2z2 · · · λnzn

]
,

or
Az1 = λ1z1, Az2 = λ2z2, . . . , Azn = λnzn.

Since P is invertible its columns are linearly independent. Since these columns are nonzero
(otherwise they wouldn’t be linearly independent), the above relations show that (λi, zi)
are eigenpairs for i = 1, . . . , n. So, a diagonalizable matrix has n linearly independent
eigenvectors, where the columns of P are these eigenvectors and the diagonal of D are the
eigenvalues.

Now assumeA has n linearly independent eigenvectors z1, . . . , zn with eigenvalues λ1, . . . , λn.
Construct a matrix P =

[
z1 z2 · · · zn

]
and a diagonal matrix D = diag(λ1, . . . , λn).

Then from above we see that AP = PD, which is true without the eigenvectors being lin-
early independent. Since the eigenvectors are linearly independent, P is invertible and so
A = PDP−1.

Lemma 0.7 If A has n linearly independent eigenvectors, then so does AT .

Proof Since A has n linearly independent eigenvectors, A may be diagonalized as A =
PDP−1, where the columns of P are the linearly independent eigenvectors of A and the
diagonal elements of D are the eigenvalues of A. Then AT = (P−1)TDPT . By the above
lemma, the columns of (P−1)T are the n linearly independent eigenvectors of AT .

Remark The decomposition AT = (P−1)TDPT is another was of showing A and AT have
the same set of eigenvalues, but relies on the fact that A has a full set of linearly independent
eigenvectors.
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Proof We have already argued the existence of a unique stationary distribution. For the
convergence, note if Π has n linearly independent eigenvectors z1, . . . , zn then any element
of Rn may be written as a linear combination of eigenvectors. In particular, any initial
probability mass function q0 may be written

q0 =

n∑
i=1

cizi,

where ci ∈ R, i = 1, . . . , n. The pmf at time t = k is given by

qk = Πqk−1.

Note we can write qk as

qk = Πqk−1

= Πkq0

= Πk
m∑
i=1

cizi

=

m∑
i=1

ciΠ
kzi

=

m∑
i=1

ciλ
k
i zi.

Since Π is irreducible and aperiodic there is only one eigenvalue, say λ1, with modulus 1,
and all other have modulus strictly less than one. Hence

lim
k→∞

qk =

m∑
i=1

ciλ
k
i zi = c1z1.

Thus q := c1z1 is the unique stationary distribution that any initial distribution converges
to. In particular since q is a pmf, the scaling factor c1 is simply the normalizing constant
making the sum of the entries in z1 to be 1.
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