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When a system’s activity alternates between a resting state (e.g. a stable equilibrium) and an
active state (e.g. a stable periodic orbit), the system is said to exhibit bursting behavior. We
use bifurcation theory to identify three distinct topological types of bursting in one-dimensional
mappings and 20 topological types in two-dimensional mappings having one fast and one slow
variable. We show that different bursters can interact, synchronize, and process information
differently. Our study suggests that bursting mappings do not occur only in a few isolated
examples, rather they are robust nonlinear phenomena.
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1. Introduction

Bursting is ubiquitous in physical and biologi-
cal systems, especially in neural systems where it
plays an important role in information processing
[Lisman, 1997; Izhikevich, 2000, 2002; Izhikevich
et al., 2003]. Synchronization of bursters is a mul-
tiscale phenomenon that may involve synchroniza-
tion between individual bursts (slow time), of spikes
within each burst (fast time), or both [Izhikevich,
2001]. Studying networks of bursters poses challeng-
ing mathematical problems. Even simulating such
networks is a computational challenge, since thou-
sands of stiff nonlinear ordinary differential equa-
tions (ODEs) may be involved.

Bursting dynamics of mappings has recently
been investigated by physicists [Rulkov, 2001, 2002;
de Vries, 2001; Cazelles et al., 2001; Shilnikov &
Rulkov, 2003, 2004; Rulkov et al., 2004; Copelli
et al., 2004]. Using a discrete-time system, say
ZTnie1 = f(x,), instead of a system of ODEs, pro-
vides one with a number of theoretical and com-
putational advantages. For example, it is possible
to explore collective behavior of millions of coupled
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discrete-time bursters with only modest computa-
tional effort.

Many ODE bursters can be reduced to return
mappings for Poincaré cross-sections. For example,
bursting in a model human pancreatic (-cell has
been described in this way, resulting in a mapping
[Terman, 1991] that has in it a horse-shoe struc-
ture, which implies the possibility of chaotic dy-
namics. The resulting mapping is implicitly defined
and quite complicated. To the best of our knowl-
edge, there have been proposed only six explicit
mappings capable of generating bursting activ-
ity [Chialvo, 1995; Kinouchi & Tragtenberg, 1996;
Rulkov, 2001, 2002; Cazelles et al., 2001; Laing &
Longtin, 2002]. Some simulate recently proposed
simple model of spiking neurons [Izhikevich, 2003]
using Eulier method with 1 ms time step, that is,
the mapping

Upt1 = 0.0402 + 6v,, + 140 — uy, + T
Up4+1 = 0.004v,, + 0.98u,,
if v, < 30, and
Uptl = C

Upt1 = Up + d
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Fig. 1. Summary of the neuro-computational properties of biological spiking neurons [Izhikevich, 2004]. This figure is re-
produced with permission from www.izhikevich.com. (Electronic version of the figure and reproduction permissions are freely

available at www.izhikevich.com).



otherwise. Depending on the values of the parame-
ters, this mapping can produce a variety of burst-
ing patterns, including those corresponding to IB
(intrinsically bursting) and CH (chattering) neocor-
tical neurons. In addition, the simple model can re-
produce 20 most fundamental neuro-computational
properties of biological spiking neurons summarized
in Fig. 1 [Izhikevich, 2004].

Our goal here is to introduce a method for clas-
sifying all bursting mappings and patterns using bi-
furcation theory, and although it is not our primary
goal, we also present examples of several interest-
ing bursters. We show that it is important to dis-
tinguish between different types of bursters, since
different bursters can have different collective com-
putational properties [Hoppensteadt & Izhikevich,
1997].

2. One-Dimensional Mappings

Bursting can occur in planar ODEs and in one-
dimensional mappings, and it involves a fast-time
scale for spiking and slow-time scale for gaps be-
tween spiking events. For example, a hedgehog
limit cycle attractor in Fig. 2 (top) corresponds
to bursting dynamics in a planar ODE. Similarly,
the periodic attractor for a simple unimodal one-
dimensional map shown in the middle figure in
Fig. 2 also corresponds to bursting behavior. In each
case, the behavior has two time scales — fast spik-
ing and slow modulation. During the slow interval,
the system remains near an equilibrium, but slowly
diverges from it. It eventually jumps into the spiking
mode. From the spiking mode the system eventu-
ally hits a window of return to near the equilibrium.
Repetitive transitions from rest to spiking and back
occurs here because the one-dimensional bursting
mapping is near a homoclinic bifurcation [Belykh
et al., 2000]. That is, we define an orbit {z,} to be
homoclinic to an equilibrium z*, if it originates and
terminates at z, i.e. x,, — x* as n — £oo. A map-
ping having a homoclinic orbit to an equilibrium
x* (in fact, there is often an infinite family of such
orbits) can be perturbed so that a periodic orbit ap-
pears [Kuznetsov, 1995]. Such an orbit corresponds
to bursting dynamics, since the solution stays long
near the equilibrium z*, yet it makes occasional ex-
cursions away from it, as in Fig. 2.

Our classification begins by identifying three
structures involved in bursting for one-dimensional
mappings: A node, a focus and a fold, as shown
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Fig. 2. A hedgehog periodic orbit often corresponds to
bursting dynamics in continuous (top) and discrete (bottom)
systems [Izhikevich, 2000].

in Fig. 3. Obviously, the equilibrium must be un-
stable, otherwise the solution never diverges from
it. We can classify all such equilibria in one-
dimensional mappings in terms of the slope of F'(z)
at the equilibrium (which we refer to here as being
the Floquet multiplier of the equilibrium): Thus,
there are three distinct types of homoclinic orbits
in one-dimensional mappings, which we summarize
in Fig. 3:

e (Node) The homoclinic orbit can be to and from
an unstable node, i.e. an equilibrium having Flo-
quet multiplier greater than 1, as in Fig. 3(a)
(top). A small perturbation of such a system
that shifts the function up makes a returning or-
bit miss the equilibrium. The resulting slow-time
modulation is characterized by a monotone expo-
nential rate of divergence from the rest.

e (Focus) The homoclinic orbit can be to and from
an unstable focus, i.e. the equilibrium having Flo-
quet multiplier less than —1, as in Fig. 3(b). A
small perturbation of such a system makes the or-
bit miss the equilibrium. The resulting slow-time
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Fig. 3.

Classification of bursting in one-dimensional mappings. (a) F(z) = 4z(1 — z) when z < 0.98, and 0.000098z when

x> 0.98. (b) F(z) =1 —4z(1 — ) when z < 0.98, and 0.25 + 0.00003z when z > 0.98. (c) F(z) = —0.25 + 2z — 0.3(z — 1)®

when x < 3.7, and x — 4 when = > 3.7.

behavior is characterized by growing oscillatory
divergence.

e (Fold) The homoclinic orbit can be to and from a
fold equilibrium having Floquet multiplier equal
to 1, as in Fig. 3(c). (Such a system is said to be
near saddle-node on invariant circle bifurcation.)
A small perturbation that shifts F'(x) up results
in the disappearance of the equilibrium. The re-
sulting slow-time behavior is characterized by a
linear rate of divergence from a neighborhood of
where the node vanished.

This identifies three distinct types of bursting
in one-dimensional mappings, which we name
“node”, “focus”, and “fold” burster, respectively.
The burster proposed by Cazelles et al. [2001] is
of the “node” type, since their system can be per-

turbed to have a homoclinic orbit to a node equi-
librium, similar to the one in Fig. 3(a).

Notice that in all three cases above the system
is near a bifurcation of co-dimension one, i.e. only
one constraint is imposed. Other possible cases,
such as a homoclinic orbit to an equilibrium at a
flip bifurcation [Kuznetsov, 1995], would result in
co-dimension two or higher bifurcations, since two
or more constraints are imposed. The classification
above is complete for co-dimension-1 bursting in
one-dimensional mappings.

3. Fast/Slow Mappings

We give a complete classification of co-dimension-
1 bursters in fast/slow systems of the following
form, by extending ideas developed for singularly
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Fig. 4. Classification of bursting in two-dimensional fast-slow mappings. Examples: “fold /circle” f(z, y) = 1/2+z+ 22 —y?,
if £ > 1, then z — —y/4, g(z) = 14+, if y > 1, then y «— —1, & = 0.075; “circle/circle” f(z, y) =1/2+z+22 — 42, if & > 1,
then ¢ «— —1/2, g(z) = 1+=x,if y > 1, then y «— —1, ¢ = 0.05; “fold /homoclinic” f(z, y) = z+2z24y,ifz > 1, then z — 1/5,
g(z) =1/5 -z, e = 0.01; “circle/homoclinic” f(z, y) = 1/2 +x + 2 —y?, if & > 1, then & — y/4, g(z) = 1 + =, if y > 1, then
y — —1, e =0.075; “fold/fip” f(x, y) = (3/2+y)x—a®+y, g(x) = 1/4— =z, e = 0.05; “flip/flip” f(z, y) = (-3/2+y*)z+a°,
g(z) =1+ 22, if y > 1, then y — —1, e = 0.05; “subflip/fold orbit” f(z, y) = yx — 1/2w3 + 25, g(z) = 22— 0.1, e = 0.01.

perturbed ordinary differential equations [Rinzel,
1987; Bertram et al., 1995; Izhikevich, 2000].

Tn+1 = f(-rm yn)

Yn+1 = Yn + 59(%1)

(1)
2)

where the fast variable, x,, describes spiking be-
havior, the slow wvariable, y,, is like a slowly
changing parameter that modulates the spiking
dynamics, and ¢ < 1 describes the time scale of
parameter variation. We assume that f and g are
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piecewise continuous functions, and g may also de-
pend on y,, €, and external noise. The quasi-static
approximation to solutions of (1, 2) first sets ¢ = 0
and treats ¥, as being a constant parameter. Burst-
ing occurs when for some values of y Eq. (1) exhibits
equilibrium dynamics, while for others it exhibits
periodic dynamics. When ¢ is small, the variable z,,
exhibits bursting dynamics because y,, slowly moves
between those regimes.

An important observation made regarding neu-
ronal bursting [Rinzel, 1987] is that bursting be-
havior depends less on specific ionic currents than
on the type of bifurcations that the fast subsys-
tem undergoes as the slow variable changes; see
review by Izhikevich [2000]. Motivated by this, we
base our classification on bifurcation properties of
the fast variable. First, we consider all possible co-
dimension-1 bifurcations of an equilibrium that lead
to loss of its stability or its disappearance: There
are only four such bifurcations [Kuznetsov, 1995],
which are listed in the left column in Fig. 4:

e [old bifurcation: A stable and an unstable equi-
librium coalesce and annihilate each other. The
solution leaves a neighborhood of the equilibria.

e Saddle-node on invariant circle bifurcation is sim-
ilar to the fold bifurcation, except that the solu-
tion returns to a neighborhood of the equilibrium.
Such a bifurcation results in an oscillation having
very large period.

e Supercritical flip bifurcation results in the ap-
pearance from the equilibrium of a small ampli-
tude period-2 stable periodic orbit.

e Subcritical flip bifurcation results when an unsta-
ble periodic orbit shrinks to a point that becomes
unstable.

There are only five co-dimension-1 bifurcations of a
stable periodic orbit in which the fast variable goes
from being active to an equilibrium [Kuznetsov,
1995]. These are listed in the top row in Fig. 4 (the
other co-dimension-1 bifurcations of periodic orbits,
such as supercritical flip bifurcation, do not lead to
transitions from spiking to resting, and hence are
not listed here).

e Saddle-node on invariant circle bifurcation: The
period of oscillation becomes infinite as a saddle-
node (fold) equilibrium appears on the circle.

e Homoclinic bifurcation: The periodic orbit at-
tractor becomes a homoclinic orbit to an unstable
node equilibrium. Its period also becomes infinite.

e Supercritical flip bifurcation: The periodic orbit
shrinks to a point.

e Fold periodic orbit bifurcation: The stable peri-
odic orbit is approached by an unstable one, they
coalesce and annihilate each other.

e Subcritical flip of periodic orbits bifurcation: A
stable periodic orbit is surrounded by an unsta-
ble periodic orbit of twice the period, which glues
to the stable one and make it lose stability.

Any combination of a bifurcation from equilibrium
(there are only four of them) and of a bifurca-
tion from a periodic orbit attractor (there are only
five of them) results in a distinct type of burster;
hence, there are exactly 20 possible bursters, which
we name according to the bifurcations involved;
see Fig. 4. For example, both of Rulkov’s bursters
[Rulkov, 2001, 2002] are of the “fold/homoclinic”
type, since the transition from rest to spiking in
those bursters occurs via a fold bifurcation and the
transition from spiking to rest occurs via a homo-
clinic bifurcation. Since every co-dimension-1 bifur-
cation of an equilibrium or of a one-dimensional
periodic orbit is accounted for in Fig. 4, our clas-
sification of co-dimension-1 bursters in fast/slow
two-dimensional mappings is complete. The empty
boxes in Fig. 4 correspond to bursters that have not
yet been discovered.

4. Computational Properties

It is well-known from studies of biophysical mod-
els of neurons that the nature of a bifurcation from
rest determines important computational abilities
of a neuron: For example, it might be an integrator
or a resonator [Izhikevich, 2000; Izhikevich et al.,
2003].

When the bifurcation is of a fold type (the
upper half of the table in Fig. 4), the burster acts
as an integrator; that is, the stronger the input,
the sooner the burster responds. In contrast, when
the bifurcation is of a flip type (the lower half
of the table in Fig. 4), the burster exhibits sub-
threshold oscillations, and it acts as a resonator;
that is, it responds only to inputs having appropri-
ate frequency and phase, as shown in Fig. 5. When
an oscillatory input to a resonator is in-phase with
the intrinsic oscillation, the transition to spiking is
facilitated. However, when the input is anti-phase
with the oscillation, the transition to spiking can
be significantly delayed. Thus, the type of bursting
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Fig. 5. Integrators and resonators have different neuro-
computational properties: They react differently to oscilla-
tory input. Shown are simulations of “fold/homoclinic” and
“subflip/fold orbit” bursters from Fig. 4 with fast subsystem
of the form f(zn, yn) + 0.035(—1)".

determines how the burster reacts to an input,
such as that coming from other bursters, which
is an important aspect of neuro-computation, see
[Izhikevich, 2000].

5. Discussion

Classification of phenomena is important in all ar-
eas of science, especially in mathematics. In this
short paper we use bifurcation theory to classify
topological types of bursting in mappings. Our
study shows that such bursting is a robust nonlinear
phenomenon that can occur in many different ways.
Our classification scheme provides a useful frame-
work for studying the dynamical mechanisms of all
possible bursters, and it is intended to organize the
many examples of bursters that will emerge in the
near future.

Bursting in one-dimensional mappings occurs
because of the system’s proximity to a homoclinic
bifurcation. Solutions near a homoclinic orbit spend
part of their time in a small neighborhood of
an equilibrium (resting state) and part far from
the equilibrium (spiking state), thereby exhibiting
bursting behavior; see Fig. 3. Such bursting does
not require a fast/slow system. The apparent mul-
tiscale behavior in Fig. 3 appears because of the
properties of homoclinic orbits.

We also consider bursting in two-dimensional
fast /slow mappings of the form (1, 2). Using clas-
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sical ideas developed for ODEs (see review by
Izhikevich [2000]), we identify four bifurcations of
equilibrium that may lead to spiking, and five bi-
furcations of periodic orbit attractors that may lead
to rest; hence, there are 4 x 5 = 20 different types
of bursters in such mappings. We suggest nam-
ing the bursters according to the bifurcations in-
volved, so that the nomenclature is self-explanatory
and consistent with that used for ODEs [Izhikevich,
2000]. Since we exhaust all possible combinations
of co-dimension-1 bifurcations of equilibria and a
periodic orbits in one-dimensional maps (1), our
classification is complete. Remarkably, the result-
ing classification scheme is so general as to explain
and predict some neuro-computational properties
and to name bursters that have yet to be discov-
ered (empty boxes in Fig. 4).

Even though we consider bifurcations of peri-
odic attractors, many bursters that we have found
exhibit chaotic behavior. The nonperiodicity man-
ifests itself in random inter-burst periods and ran-
dom durations of activity. This may not be sur-
prising, since, e.g. all one-dimensional bursters in
Fig. 3 exhibit Pomeau-Manneville intermittency.
One can easily get rid of chaos and create a periodic
1D-bursting by setting the slope of the “reset step”
(when = > 0.98) to zero. To get rid of chaos in
2D-bursting is more difficult, though we do not have
an explanation for that.

Considering bursting in mappings in contrast
to bursting in ODEs provides a number of advan-
tages, mostly mathematical simplicity and compu-
tational efficiency needed for simulations of large
networks, due to the minimal numerical problems
entailed. Nevertheless, as we see in Sec. 4, con-
sidering mappings is not a compromise or a trade
off, since bursting in mappings has many important
neuro-computational properties seen in ODEs and
in biological neurons.
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