$Quiz\ 2/{\rm test\ prep\ 1}$

(front and back)

Name:	
	(please print neatly!)

Directions: Answer each of the following $\underline{\mathbf{four}}$ (4) questions, making sure to read the instructions for $\underline{\mathbf{each}}$ question as you proceed.

You may use the backs of the pages for scratch work or get scrap paper from me!

1. (10 pts) Solve the IVP

$$\sin y + (x\cos y + 3y^2)y' = -2x, \quad y(0) = \pi.$$

SOLUTION:

2.	(10 pts) Find a second-order	linear homogeneous	differential	equation	whose	general	solution is
		y = c	$e_1e^{2t} + c_2e^{-3t}$				

SOLUTION:

3. (10 pts) For which of the following initial conditions does the IVP

$$(\ln(y) - 1)\frac{dy}{dx} - 2\sin x = \ln(\ln(x)), \quad y(x_0) = y_0$$

have a unique solution? There may be more than one!

i.
$$y(1) = 4$$
 ii. $y\left(\frac{\pi}{4}\right) = 0$ iii. $y\left(\frac{\pi}{2}\right) = 0$ iv. $y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$ v. $y(e) = e$ vi. None of These

4. (1 pt ea.) Consider the first-order IVP

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$$

Indicate whether each of the following questions is True or False by writing the words "True" or "False" (and **not** just the letters "T" or "F"). **No** justification is required!

- (a) The IVP always has a solution if f is continuous in a small rectangle containing x_0 .
- (b) The IVP always has a unique solution if f is continuous in a small rectangle containing x_0 .
- (c) The IVP always has a *unique* solution if $\frac{\partial f}{\partial y}$ is continuous in a small rectangle containing x_0 .
- (d) The IVP always has a solution if f and $\frac{\partial f}{\partial x}$ are both continuous in a small rectangle containing x_0 .
- (e) The IVP always has a *unique* solution if f and $\frac{\partial f}{\partial x}$ are both continuous in a small rectangle containing x_0 .
- (f) The IVP may have multiple solutions.
- (g) The IVP may have no solution.
- (h) If the IVP has a unique solution, the existence and uniqueness theorem tells you that the solution is valid on an x-interval containing x_0 .
- (i) If the IVP has a unique solution, the existence and uniqueness theorem helps you find the x-interval containing x_0 on which the solution is valid.
- (j) If f(x,y) = 0, then the IVP has a unique solution.