Name: _

Directions: Answer each of the following questions. Make sure to read the instructions for each question as you proceed. For multiple choice questions, indicate your choice(s) by circling/drawing a box around the appropriate selection(s).

- 1. Which of the following is a general solution of the differential equation $(1 + x^2)dy = \frac{dx}{3y^2 1}$?
 - (a) $y^3 + y \arctan x = C$ (d) $y^3 y \arctan x = C$
 - (b) $y^3 y C \arctan x = 0$ (e) $y = (\arctan x + C)^{1/3}$

(c)
$$y^3 - y - \tan x = C$$
 (f) $y^3 - y = \arctan(\arctan(Cx))$

2. Let r, T, K, and ℓ be constants for which r > 0 and $0 < K < \ell < T$. Select all of the following values y which are equilibrium solutions of the autonomous ODE

	$\frac{dy}{dx} = -r\left(1 - \frac{y}{\ell}\right)\left(2 + \frac{y}{KT}\right)(y^3 - y^2 - 2y).$
(a) $y = 0$	(e) $y = -2KT$
(b) $y = 1$	(f) $y = \ell$
(c) $y = -1$	(g) $y = KT$
(d) $y = -2$	(h) $y = 2KT$

3. $m(x) = \frac{2}{x^3}$ is an integrating factor for which of the following (≥ 1) linear ODEs?

Hint: If k(x) is an integrating factor of a linear ODE, then so is $c \cdot k(x)$ for all constants c.

(a) $xy' + 3y = 2x^3$ (b) $x^2y' - 3x^3y = 2x^3$ (c) $xy' - 3y = 2x^3$ (d) xy' + 3y = 0(e) $-x^2y' + 3xy = 2x^3$ (f) xy' - 3y = 0 4. Consider the IVP

$$(x(x-1))\frac{dy}{dx} + \ln(x+5)y = \sqrt{2-\frac{3}{x}}, \quad y(\pi) = -4.$$

On what interval is the solution to this problem valid? Do not attempt to solve!

Scratch Paper