\qquad
(front and back)
(please print neatly!)

Directions: Answer each of the following questions. Make sure to read the instructions for each question as you proceed. For multiple choice questions, indicate your choice(s) by circling/drawing a box around the appropriate selection(s).

1. Which of the following is a general solution of the differential equation $\left(1+x^{2}\right) d y=\frac{d x}{3 y^{2}-1}$?
(a) $y^{3}+y-\arctan x=C$
(d) $y^{3}-y-\arctan x=C$
(b) $y^{3}-y-C \arctan x=0$
(e) $y=(\arctan x+C)^{1 / 3}$
(c) $y^{3}-y-\tan x=C$
(f) $y^{3}-y=\arctan (\arctan (C x))$
2. Let r, T, K, and ℓ be constants for which $r>0$ and $0<K<\ell<T$. Select all of the following values y which are equilibrium solutions of the autonomous ODE

$$
\frac{d y}{d x}=-r\left(1-\frac{y}{\ell}\right)\left(2+\frac{y}{K T}\right)\left(y^{3}-y^{2}-2 y\right)
$$

(a) $y=0$
(e) $y=-2 K T$
(b) $y=1$
(f) $y=\ell$
(c) $y=-1$
(g) $y=K T$
(d) $y=-2$
(h) $y=2 K T$
3. $m(x)=\frac{2}{x^{3}}$ is an integrating factor for which of the following (≥ 1) linear ODEs?

Hint: If $k(x)$ is an integrating factor of a linear ODE, then so is $c \cdot k(x)$ for all constants c.
(a) $x y^{\prime}+3 y=2 x^{3}$
(d) $x y^{\prime}+3 y=0$
(b) $x^{2} y^{\prime}-3 x^{3} y=2 x^{3}$
(e) $-x^{2} y^{\prime}+3 x y=2 x^{3}$
(c) $x y^{\prime}-3 y=2 x^{3}$
(f) $x y^{\prime}-3 y=0$
4. Consider the IVP

$$
(x(x-1)) \frac{d y}{d x}+\ln (x+5) y=\sqrt{2-\frac{3}{x}}, \quad y(\pi)=-4 .
$$

On what interval is the solution to this problem valid? Do not attempt to solve!

Scratch Paper

