Homework 3/test prep 1

(front and back)

Name: _____

(please print neatly!)

Directions: Answer each of the following $\underline{\text{four}}$ (4) questions, making sure to read the instructions for each question as you proceed.

Make sure that your submission meets the criteria of the $\underline{\text{Homework Policy}}$ on the Homework tab of the course webpage!

Note: Questions 1–3 are good quiz prep; all are good exam prep!

Due date: Monday, July 17

1. Solve the initial value problem

 $y'' + 4y = x^2 e^{-x} - x \sin x + 4x$, y(0) = 0, y'(0) = 1.

SOLUTION:

Write down the general solution for each of the following non-homogeneous ODEs.
Hint: Do not use undetermined coefficients!

(a)
$$y'' + 4y' - 5y = 16e^{x/2}$$

(b)
$$2y'' + 8y' + 8y = 2t^{-2}e^{-2t}, \quad t > 0$$

(c)
$$y'' - 2y' + y = 3\sec(2t), \quad t < \frac{\pi}{6}$$

(d) y'' - 5y' + 6y = g(t) Hint: g(t) is an arbitrary continuous function.

3. Show that the functions y_1 and y_2 satisfy the corresponding homogeneous equation; then, find a particular solution of the given non-homogeneous ODE. Throughout, assume x > 0.

$$x^{2}y'' + xy' + (x^{2} - 0.25)y = 3x^{3/2}\sin(x); \quad y_{1} = \frac{\sin x}{\sqrt{x}}, \quad y_{2} = \frac{\cos x}{\sqrt{x}}$$

SOLUTION:

- 4. Find the Laplace transform for each of the following functions. Throughout, assume that a and b are real constants and that $i = \sqrt{-1}$ is the imaginary unit.
 - (a) f(t) = 1

(b) $f(t) = t^2$

(c)
$$f(t) = \sin(bt)$$
 Hint: $\sin(bt) = \frac{e^{ibt} - e^{-ibt}}{2i}$

(d) $f(t) = t^2 e^{at}$ Hint: Use integration by parts!

(e)
$$f(t) = 5\sin(bt) - 2t^2e^{at}$$