
Stuff You Need to Know From Calculus

For the first time in the semester, the stuff we’re doing is finally going to look like calculus (with a vector
slant, of course). This means that in order to succeed, you need to remember all that other calculus junk
that you’ve probably forgotten!

Don’t fret, though: This review should help you out!
Unless otherwise noted, f, g, h : R→ R will denote real-valued functions on R.

Limits and Continuity

Even though most of us can’t define it precisely, we all sort of know what it means to “take the limit” of
the values of a function f , say, as x approaches a: It means we analyze the values of f(x) as x “gets close
to” a, and most of the time, we accomplish this either by (a) plugging x = a into f directly, or (b) doing
algebra on f (e.g. factoring,...) until we can plug in x = a.

We may not always get a value this way, but if we do get a value (say, L), we write

lim
x→a

f(x) = L

for the value of the limit. As it happens, this approach almost always works for elementary stuff, and later
(read: after we know derivatives), we have additional tools such as L’Hôpital’s rule to help us evaluate
even more limits.

That’s fine and good, and in Calc 3, we’ll almost always use the techniques we already have to evaluate
higher-dimensional analogues of this concept. Even so, here’s the real definition of a limit, just so you can
say you’ve seen it before.

Definition: The real number L is said to be the limit of the function f as x→ a if

for all ε > 0, there exists a δ > 0 such that |f(x)− L| < ε whenever |x− a| < δ. (1)

In this case, we write L = limx→a f(x).

The condition in (1) is esoteric to be certain, but as the figure 1 shows, it properly characterizes the
notion most of us have in our minds.

Recall that we also have notions of “limits from the left / below” and “limits from the right / above”
which we shouldn’t forget. Without beating a dead horse, you should recall what these “one-sided limits”
mean, intuitively, and you should always remember that L is the limit of f as x→ a in the sense of (1) if
and only if L is the limit from the left and from the right:

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

As it happens, limits distribute over sums, differences, scalar multiplication, division, and powers; in
addition, common results such as the squeeze theorem also hold.

In short: Limits provide the framework needed to allow us the privilege of talking about the values of
functions close to “bad spots” like holes, jumps, and vertical asymptotes in ways that we couldn’t do in
algebra, for example.

Of course, not all functions have “bad spots” like holes, jumps, and vertical asymptotes, and as a way
to differentiate those from the rest, we have a special word.
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Figure 1
Even though f(a) 6= L, the limit limx→a f(x) does equal L because for every ε > 0 (no matter

how small), there is an interval (x− δ, x+ δ) on the x-axis which maps to the interval
(L− ε, L+ ε) on the y-axis. Note that smaller ε values (i.e. smaller intervals on the y-axis) will

require smaller δ values (i.e. smaller intervals on the x-axis).

Definition: The function f : R→ R is said to be continuous at x = a if:

(a) f(a) exists (as a real number);

(b) limx→a f(x) exists (as a real number); and

(c) limx→a f(x) = f(a).

Intuitively, we imagine that a function is continuous if and only if we’re able to draw the entirety of its
graph without having to lift our pencil (so that it has no holes, no jumps, no vertical asymptotes...), and
as figure 2 shows, each of these conditions is necessary for our definition to match our intuition.

a a a

Figure 2
Discontinuity may mean violating any of the three above conditions: f(a) may fail to exist (left),
limx→a f(x) may fail to exist (middle), or both may exist and satisfy limx→a f(x) 6= f(a) (right).

Taking limits of continuous functions is easier overall because of property (c): To take the limit as
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x → a of a function which is continuous at x = a, it suffices to “just plug in” a. In addition, if f and g
are defined and continuous at the point x = a and if c is any constant, the functions f ± g, fg, f/g (if
g(a) 6= 0), cf , f ◦g, and g ◦f are all continuous at x = a (assuming the compositions meet the appropriate
domain/range restrictions). Significant results such as the intermediate value theorem also hold.

Derivatives & Differentiability

First, the definitions.

Definition: The derivative of a function f at x = a (if it exists) is the number

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
. (2)

In this case, we say that f is differentiable at x = a.

Definition: The derivative of a function f (if it exists) is the function f ′(x) defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (3)

Of course, equations (2) and (3) have all the quantitative and qualitative properties we know and love
from Calc 1: f ′(a) in (2) describes the slope of the tangent line to the curve y = f(x) at x = a, for example,
and if r(x) is a differentiable function describing the position of a particle (or whatever), the functions
v(x) = r′(x) and a(x) = v′(x) = r′′(x) describe the velocity and acceleration of the particle, respectively.

As we know from Calc 1, not all functions have derivatives: In particular, a function which fails to be
continuous at x = a will clearly not have a derivative there, though some continuous functions may also
not be differentiable everywhere (e.g. f(x) = |x| fails to have a derivative at x = 0).

In this way, being differentiable is stronger than being continuous, and in general, we expect a function
f to be differentiable at a point x = a if f is continuous at a and if the graph y = f(x) has no “sharp
corners” and/or vertical tangents at x = a. Said differently: If f is differentiable at x = a, then when
we zoom in toward the point (a, f(a)), the graph straightens out and appears more and more like a line.
Figure 3 illustrates this.

By now, we’re all pros at derivatives: We know that derivatives distribute over addition/subtraction
and scalar multiplication, and we know that we can use the product rule, the quotient rule, and the chain
rule to compute derivatives of products, quotients, and compositions, respectively. Even so, however, we
shouldn’t forget how to compute f ′(x) using equation (3), as that will sometimes be required.

Other Uses for Derivatives, Briefly:

You shouldn’t forget the “extras” that you’re able to do with derivatives, as many of these will also
come up in vector-valued functions. Some examples:

• Linear approximations

• Implicit/logarithmic differentiation

• Related rates (ugh!) & optimization
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Figure 3
The function on the left is differentiable at x = a, as zooming in closer and closer to (a, f(a))

reveals that the graph becomes more and more linear; the function on the right isn’t, because no
matter how much you zoom in, it always has a point.

• L’Hôpital’s rule for finding limits involving indeterminate forms (many of which arise when investi-
gating information about horizontal asymptotes, etc.)

• Mean value theorem (!!!)

• Information about where functions are increasing/decreasing, concave up/down, etc.

Suffice it to say: If you’re even a little bit rusty at derivatives, you need to get unrusty yesterday.

Antiderivatives & Integrability

We all (mostly) know the spiel:

Definition: The antiderivative of a function f (if it exists) is a function F for which

F ′(x) = f(x) (4)

As it happens, every function which is continuous on an interval [a, b] has an antiderivative on the same
interval.

By the first part of the fundamental theorem of calculus,

F (x)
def
=

∫ x

a

f(t) dt (5)

is one such antiderivative of f on the interval [a, b] (where we let x vary between a and b), and as we find
out later, every antiderivative G of f is just a vertical translate of (5):

G(x) is an antiderivative of f(x) if and only if G(x) = C +

∫ x

a

f(t) dt for some C.
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One can easily show that such a G satisfies (4), and using the fact that G′(x) = f(x) = F ′(x), it follows
that G(x)−F (x) is a constant (see Corollary 7 in section 3.2 of Stewart). The result follows immediately.

In two-dimensions, the definite integral
∫ b

a
f(x) dx gives the (signed) area of the region bounded by f(x)

and the x-axis from x = a to x = b. Recall that the definite integral is defined as the limit of Riemann
sums, and by the second part of the fundamental theorem of calculus,∫ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f . This shows in particular that finding antiderivatives/indefinite integrals
is essentially the same as finding definite integrals.

One of the most important properties of antiderivatives is that they’re inverses of derivatives:

d

dx

(∫ x

a

f(t) dt

)
= f(x) and

∫ x

a

f ′(t) dt = f(x)− f(a).

Intuitively, this means that integrals “cancel” derivatives and vice versa. It also means that we can “go
backwards” in applications: For example, the position r(x), velocity v(x), and acceleration a(x) of a
particle (or whatever) is also related by the equations r(x) = C1 +

∫
v(x) dx and v(x) = C2 +

∫
a(x) dx.

As we learned in Calc 2, integrals also have lots of applications to arc length, surface area, etc.; for
the sake of brevity, that won’t be discussed here, but it should be noted that those things will come up
(sooner than later) in Calc 3.

Formulas you have to know!

Here is a brief summary of formulas you’ll have to know to succeed in this course.

Limits:

If c is a constant and the limits limx→a f(x) and limx→a g(x) both exist, then:

◦ limx→a [f(x)± g(x)] = limx→a f(x)± limx→a g(x)

◦ limx→a [cf(x)] = c limx→a f(x)

◦ limx→a [f(x)g(x)] = limx→a f(x) · limx→a g(x)

◦ lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)

◦ limx→a [f(x)]n = [limx→a f(x)]n

◦ (Squeeze theorem) If f(x) ≤ g(x) ≤ h(x) when x is near a and if limx→a f(x) = L = limx→a h(x),
then

lim
x→a

g(x) = L.
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Derivatives:

If c is a constant and if f and g are both differentiable, then:

◦ d

dx
(c) = 0

◦ d

dx
(xn) = nxn−1

◦ (cf)′ = cf ′

◦ (f ± g)′ = f ′ ± g′

◦ (fg)′ = fg′ + f ′g

◦
(
f

g

)′
=
f ′g − fg′

g2

◦ d

dx
(f(g(x))) = f ′(g(x)) · g′(x)

Also:

◦ d

dx
(sinx) = cos x

◦ d

dx
(cosx) = − sinx

◦ d

dx
(tanx) = sec2 x

◦ d

dx
(cscx) = − cscx cotx

◦ d

dx
(secx) = secx tanx

◦ d

dx
(cotx) = − csc2 x

◦ d

dx
(sin−1(x)) =

1√
1− x2

◦ d

dx
(cos−1(x)) = − 1√

1− x2

◦ d

dx
(tan−1(x)) =

1

1 + x2

◦ d

dx
(ax) = ax ln a

◦ d

dx
(ex) = ex

◦ d

dx
(lnx) =

1

x

◦ d

dx
(logb x) =

1

x ln b

Integrals:

You should definitely know how to “go backwards” on the list of derivatives to rewrite in terms of
integrals: For example,

d

dx
(tan−1(x)) =

1

1 + x2
⇐⇒

∫
1

1 + x2
dx = tan−1(x) + C.

You also need to now how to do u-substitution, integration by parts, trig substitution, and integration by
partial fractions, as well as how to integrate products of powers of trig functions (e.g.

∫
sin2 x cos3 x dx).

In addition: If k is a constant and if f and g are both integrable, then:

◦
∫
k dx = kx+ C

◦
∫
xn dx = xn+1

n+1
+ C

◦
∫
kf dx = k

∫
f(x) dx+ C

◦
∫

(f ± g) dx =
∫
f dx±

∫
g dx+ C

Finally:

◦
∫

lnx dx = x lnx− x+ C

◦
∫

tanx dx = ln | secx|+ C

◦
∫

cotx dx = ln | sinx|+ C

◦
∫

secx dx = ln | secx+ tanx|+ C

◦
∫

cscx dx = ln | cscx− cotx|+ C
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