How to determine whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
Throughout, let f be a function satisfying $f(n)=a_{n}$.

Question 1: $\underline{\text { Can }}$ my series converge (i.e. does $\lim _{n \rightarrow \infty} a_{n}$ exist and does $\lim _{n \rightarrow \infty} a_{n}=0$?)

- If no: You're done; $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If yes: Your series may converge. Go to Question 2.

Question 2: Does my series have negative terms?

- If no: You have a positive series. Go to Question 3.
- If yes: Go to Question 5.

Question 3: Is my series a geometric series or a p-series?

- If yes: Use the info you know about geometric series and/or \boldsymbol{p}-series and you're done.
- If no: Go to Question 4.

Question 4: If I squint at my series, does it kinda-sorta look like a geometric series or a p-series?

- If yes, use either the comparison test or the limit comparison test.
- Use the comparison test if you can get the inequalities to work.
- Use the limit comparison test if you can't get the inequalities to work but you're sure you're squinting is accurate.
- If $n o$:
- Does my series have factorials and/or (constant) ${ }^{n}$?
\Longrightarrow Use the Ratio Test!
- Does a_{n} have the form $a_{n}=\left(b_{n}\right)^{n}$ (a whole function to the nth power)?
\Longrightarrow Use the Root Test!
- Does it look like I can find $\int_{1}^{\infty} f(x) d x$?
\Longrightarrow (Try to) Use the Integral Test! (f must be continuous, positive, and decreasing!)
- If none of the ratio, root, or integral tests seem appropriate:
\Longrightarrow Ask whatever higher power you believe in for an intervention. (If you don't have a higher power, ask a friend to borrow theirs.)

Question 5: Is my series alternating? (i.e., is $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ where $\left\{b_{n}\right\}$ has all positive terms?)

- If yes: (Try to) Use the Alternating Series Test! (b_{n} must be decreasing and $\lim _{n \rightarrow \infty} b_{n}=0$ must hold)
- If $n o$:
- Does my series have factorials and/or (constant) ${ }^{n}$?
\Longrightarrow Use the Ratio Test!
- Does a_{n} have the form $a_{n}=\left(b_{n}\right)^{n}$ (a whole function to the nth power)?
\Longrightarrow Use the Root Test!
- If neither the ratio nor root test seems applicable:
\Longrightarrow See Question 4 about borrowing higher powers, etc.
\Longrightarrow Try looking at $\sum_{n=1}^{\infty}\left|a_{n}\right|$ directly by going back at Question 3.

Notes:

\dagger In Question 4, it's important to recognize what "squint" means.
For example: $\sum_{n=1}^{\infty} \frac{n}{2 n^{3}+1}$ kinda-sorta looks like a p-series with $p=2$ while $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^{n}-2}$ looks a smidgen like a geometric series with $a=16 / 3$ and $r=4 / 3$. How do we get that? By picking the highest power of n on the top and bottom and ignoring everything else!
\dagger Stuff to note about the yes in Question 4:

- If the comparison test works, the limit comparison test definitely works.
- When both work, here's what to keep in mind:
- The comparison test $=$ easy algebra but perhaps difficult intuition (WTF do I compare with?!...see the comparison test for integrals).
- The limit comparison test = easy intuition (just keep the highest power on top and the highest power on bottom) but messy algebra (because dividing + limits).
- Sometimes, the limit comparison test works but the comparison test doesn't:

Example: We know that $\sum 1 / 2^{n}$ converges (it's a geometric series with $r=1 / 2$).
Moreover, because $2^{n}<2^{n}+1 \Longrightarrow 1 /\left(2^{n}+1\right)<1 / 2^{n}$, we can use the comparison test to conclude that $\sum 1 /\left(2^{n}+1\right)$ also converges.
However, even though $1 /\left(2^{n}-1\right)$ looks like $1 / 2^{n}$, you can't use the comparison test because (a) $1 /\left(2^{n}-1\right)>1 / 2^{n}$ and (b) being large than a convergent series tells you nothing!
The solution is to use the limit comparison test with $a_{n}=1 /\left(2^{n}-1\right)$ and $b_{n}=1 / 2^{n}$. Doing so shows that $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$; thus, $\sum a_{n}$ converges because $\sum b_{n}$ does.

