How to determine whether $\sum_{n=1}^{\infty} a_n$ converges or diverges.

Throughout, let f be a function satisfying $f(n) = a_n$.

Question 1: Can my series converge (i.e. does $\lim_{n\to\infty} a_n$ exist and does $\lim_{n\to\infty} a_n = 0$?)

• If no: You're done; $\sum_{n=1}^{\infty} a_n$ diverges.

• If *yes*: Your series *may* converge. Go to Question 2.

Question 2: Does my series have negative terms?

- If *no*: You have a positive series. Go to Question 3.
- If *yes*: Go to **Question 5**.

Question 3: Is my series a geometric series or a *p*-series?

- If yes: Use the info you know about geometric series and/or *p*-series and you're done.
- If no: Go to Question 4.

Question 4: If I squint at my series, does it kinda-sorta look like a geometric series or a *p*-series?

• If *yes*, use either the comparison test or the limit comparison test.

- Use the comparison test if you can get the inequalities to work.
- Use the limit comparison test if you can't get the inequalities to work but you're sure you're squinting is accurate.

 \circ If no:

- Does my series have factorials and/or $(constant)^n$?
 - \implies Use the Ratio Test!
- Does a_n have the form $a_n = (b_n)^n$ (a whole function to the *n*th power)?
 - \implies Use the Root Test!
- Does it look like I can find $\int_1^\infty f(x) dx$?
 - \implies (Try to) Use the Integral Test! (*f* must be continuous, positive, and decreasing!)
- If none of the ratio, root, or integral tests seem appropriate:
 - \implies Ask whatever higher power you believe in for an intervention. (If you don't have a higher power, ask a friend to borrow theirs.)

- Question 5: Is my series alternating? (i.e., is $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$ where $\{b_n\}$ has all positive terms?)
 - If yes: (Try to) Use the Alternating Series Test! (b_n must be decreasing and $\lim_{n\to\infty} b_n = 0$ must hold)
 - \circ If no:
 - Does my series have factorials and/or $(constant)^n$?
 - \implies Use the Ratio Test!
 - Does a_n have the form $a_n = (b_n)^n$ (a whole function to the *n*th power)?

 \implies Use the Root Test!

- If neither the ratio nor root test seems applicable:
 - \implies See Question 4 about borrowing higher powers, etc.
 - \implies Try looking at $\sum_{n=1}^{\infty} |a_n|$ directly by going back at **Question 3**.

Notes:

† In Question 4, it's important to recognize what "squint" means.

For example: $\sum_{n=1}^{\infty} \frac{n}{2n^3+1}$ kinda-sorta looks like a *p*-series with p = 2 while $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n-2}$ looks a smidgen like a geometric series with a = 16/3 and r = 4/3. How do we get that? By picking the highest power of *n* on the top and bottom and ignoring everything else!

- [†] Stuff to note about the yes in **Question 4**:
 - If the comparison test works, the limit comparison test definitely works.
 - When both work, here's what to keep in mind:
 - The comparison test = easy algebra but perhaps difficult intuition (WTF do I compare with?!...see the comparison test for integrals).
 - The limit comparison test = easy intuition (just keep the highest power on top and the highest power on bottom) but messy algebra (because dividing + limits).
 - Sometimes, the limit comparison test works but the comparison test doesn't:

Example: We **know** that $\sum 1/2^n$ converges (it's a geometric series with r = 1/2).

Moreover, because $2^n < 2^n + 1 \implies 1/(2^n + 1) < 1/2^n$, we can use **the comparison** test to conclude that $\sum 1/(2^n + 1)$ also converges.

However, even though $1/(2^n - 1)$ looks like $1/2^n$, you **can't** use the comparison test because (a) $1/(2^n - 1) > 1/2^n$ and (b) being *large* than a convergent series tells you nothing!

The solution is to use **the limit comparison test** with $a_n = 1/(2^n - 1)$ and $b_n = 1/2^n$. Doing so shows that $\lim_{n\to\infty} a_n/b_n = 1$; thus, $\sum a_n$ converges because $\sum b_n$ does.