Exam 2 Preview Solutions

1. General Solution: $x \sin y+x^{2}+y^{3}=C$
$\underline{\text { Particular Solution: } x \sin y+x^{2}+y^{3}=\pi^{3}}$
2. (a) $\frac{N_{x}-M_{y}}{M}=\frac{y-0}{-4}=-\frac{y}{4}$ is a function with only y 's. Therefore,

$$
m(y)=\exp \left(-\int \frac{y}{4} d y\right)=\exp \left(-\frac{y^{2}}{8}\right)
$$

is your integrating factor. You should verify that multiplying the given ODE by this integrating factor really does give an ODE which is exact.
(b) Notice that $\frac{M_{y}-N_{x}}{N}=4$, and so this is a function with "only x 's". Hence,

$$
m(x)=\exp \left(\int 4 d x\right)=\exp (4 x)
$$

is an integrating factor that works.
3. Answer: (vi) and (vii)

Justification: Here,

$$
f(x, y)=\frac{\ln (\ln (3 x))-\ln x}{\tan y} \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=-\frac{\sec ^{2} y(\ln (\ln (3 x))-\ln x)}{\tan ^{2} y}
$$

and we observe that anything that breaks f_{y} also breaks f. Note that lots of things could break f :

- $\tan y=0 \Longleftrightarrow y=n \pi$ for integer n (yields dividing by 0)
- $\sin y=0 \Longleftrightarrow y=n \pi$ for integer n (breaks $1 / \tan y$)
- $x \leq 0$ (breaks $\ln x$ in numerator)
- $3 x \leq 0 \Longleftrightarrow x \leq 0$ (breaks $\ln (3 x)$ in numerator)
- $\ln (3 x) \leq 0 \Longleftrightarrow 3 x \leq 1 \Longleftrightarrow x \leq 1 / 3$ (breaks $\ln (\ln (3 x))$ in numerator)

Note: The above list is a list of things which break f and/or f_{y}; this is not a list of things which make f and/or f_{y} defined/continuous!
Combining these things, we see that $x \leq 1 / 3$ and $y=n \pi$ for integer n both break f (and f_{y}), so we eliminate all answer choices $\left(x_{0}, y_{0}\right)$ with $x_{0} \leq 1 / 3$ and/or $y_{0}=n \pi$.
The result? (vi) and (vii) are both valid.
4. (a) General Solution: $y=e^{2 x}\left(c_{1} \sin (7 x)+c_{2} \cos (7 x)\right)$
$\underline{\text { Particular Solution: }} y=e^{2 x}\left(\frac{3}{7} \pi e^{-2 \pi} \sin (7 x)-\pi e^{-2 \pi} \cos (7 x)\right)$
(b) General Solution: $y=c_{1} e^{7 x / 4}+c_{2} e^{-x}$
$\underline{\text { Particular Solution: }} y=\frac{12}{11} e^{7 x / 4}-\frac{12}{11} e^{-x}$
(c) General Solution: $y=c_{1} e^{-x}+c_{2} x e^{-x}$

Particular Solution: $y=e e^{-x}+e x e^{-x}$
5. (a) Repeated root $r_{1}=r_{2}=2$ gives a characteristic equation $(r-2)(r-2)=0 \Longleftrightarrow r^{2}-4 r+4=0$.

Hence, the ODE is $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
(b) Complex roots $r_{1}=-3+2 i$ and $r_{2}=-3-2 i$: This gives characteristic equation

$$
\left(r-r_{1}\right)\left(r-r_{2}\right)=0 \Longleftrightarrow r^{2}+6 r+13=0
$$

Thus, we have the corresponding ODE $y^{\prime \prime}+6 y^{\prime}+13 y=0$.
(c) Real non-repeated roots $r_{1}=-5$ and $r_{2}=5$ yield a characteristic equation $(r+5)(r-5)=0$, i.e. $r^{2}-25=0$. This corresponds to the ODE $y^{\prime \prime}-25 y=0$.
6. (a) You can verify that

$$
\begin{gathered}
y_{1}^{\prime}=e^{x} \sin (3 x)+3 e^{x} \cos (3 x), \quad y_{1}^{\prime \prime}=6 e^{x} \cos (3 x)-8 e^{x} \sin (3 x) \\
y_{2}^{\prime}=e^{x} \cos (3 x)-3 e^{x} \sin (3 x), \quad \text { and } \quad y_{2}^{\prime \prime}=-6 e^{x} \sin (3 x)-8 e^{x} \cos (3 x)
\end{gathered}
$$

From here, just plug and chug to show that both $y_{1}^{\prime \prime}-2 y_{1}^{\prime}+10 y_{1}=0$ and $y_{2}^{\prime \prime}-2 y_{2}^{\prime}+10 y_{2}=0$ hold.
(b) $W\left(y_{1}, y_{2}\right)=-3 e^{2 x}$.
(c) They do form a fundamental system of solutions: By (a), both y_{1} and y_{2} solve that ODE, and by (b), $W\left(y_{1}, y_{2}\right) \neq 0$. Thus, y_{1} and y_{2} satisfy both conditions of the definition.
(d) This is false: Because y_{1} and y_{2} form a fundamental set of solutions, every solution y_{3} of the ODE $y^{\prime \prime}-2 y^{\prime}+10 y=0$ has the form $y_{3}=c_{1} y_{1}+c_{2} y_{2}$ for some choice of constants c_{1} and c_{2}.

