Exam 2 Preview Solutions

1. General Solution: $x \sin y + x^2 + y^3 = C$

Particular Solution: $x \sin y + x^2 + y^3 = \pi^3$

2. (a) $\frac{N_x - M_y}{M} = \frac{y - 0}{-4} = -\frac{y}{4}$ is a function with only y's. Therefore,

$$m(y) = \exp\left(-\int \frac{y}{4} \, dy\right) = \exp\left(-\frac{y^2}{8}\right)$$

is your integrating factor. You should verify that multiplying the given ODE by this integrating factor really *does* give an ODE which is exact.

(b) Notice that $\frac{M_y - N_x}{N} = 4$, and so this is a function with "only x's". Hence,

$$m(x) = \exp\left(\int 4\,dx\right) = \exp\left(4x\right)$$

is an integrating factor that works.

3. Answer: (vi) and (vii)

Justification: Here,

$$f(x,y) = \frac{\ln(\ln(3x)) - \ln x}{\tan y} \quad \text{and} \quad \frac{\partial f}{\partial y}(x,y) = -\frac{\sec^2 y \left(\ln(\ln(3x)) - \ln x\right)}{\tan^2 y}$$

and we observe that anything that breaks f_y also breaks f. Note that lots of things could break f:

- $\tan y = 0 \iff y = n\pi$ for integer *n* (yields dividing by 0)
- $\sin y = 0 \iff y = n\pi$ for integer n (breaks $1/\tan y$)
- $x \le 0$ (breaks $\ln x$ in numerator)
- $3x \le 0 \iff x \le 0$ (breaks $\ln(3x)$ in numerator)
- $\ln(3x) \le 0 \iff 3x \le 1 \iff x \le 1/3$ (breaks $\ln(\ln(3x))$ in numerator)

Note: The above list is a list of things which <u>break</u> f and/or f_y ; this is not a list of things which make f and/or f_y defined/continuous!

Combining these things, we see that $x \leq 1/3$ and $y = n\pi$ for integer n both break f (and f_y), so we eliminate all answer choices (x_0, y_0) with $x_0 \leq 1/3$ and/or $y_0 = n\pi$.

The result? (vi) and (vii) are both valid.

- 4. (a) <u>General Solution</u>: $y = e^{2x} (c_1 \sin(7x) + c_2 \cos(7x))$ <u>Particular Solution</u>: $y = e^{2x} \left(\frac{3}{7} \pi e^{-2\pi} \sin(7x) - \pi e^{-2\pi} \cos(7x) \right)$ (b) <u>General Solution</u>: $y = c_1 e^{7x/4} + c_2 e^{-x}$ <u>Particular Solution</u>: $y = \frac{12}{11} e^{7x/4} - \frac{12}{11} e^{-x}$ (c) <u>General Solution</u>: $y = c_1 e^{-x} + c_2 x e^{-x}$ Particular Solution: $y = ee^{-x} + exe^{-x}$
- 5. (a) Repeated root $r_1 = r_2 = 2$ gives a characteristic equation $(r-2)(r-2) = 0 \iff r^2 4r + 4 = 0$. Hence, the ODE is y'' - 4y' + 4y = 0.
 - (b) Complex roots $r_1 = -3 + 2i$ and $r_2 = -3 2i$: This gives characteristic equation

$$(r - r_1)(r - r_2) = 0 \iff r^2 + 6r + 13 = 0.$$

Thus, we have the corresponding ODE y'' + 6y' + 13y = 0.

- (c) Real non-repeated roots $r_1 = -5$ and $r_2 = 5$ yield a characteristic equation (r+5)(r-5) = 0, i.e. $r^2 - 25 = 0$. This corresponds to the ODE y'' - 25y = 0.
- 6. (a) You can verify that

$$y'_1 = e^x \sin(3x) + 3e^x \cos(3x), \quad y''_1 = 6e^x \cos(3x) - 8e^x \sin(3x),$$
$$y'_2 = e^x \cos(3x) - 3e^x \sin(3x), \quad \text{and} \quad y''_2 = -6e^x \sin(3x) - 8e^x \cos(3x).$$

From here, just plug and chug to show that both $y_1'' - 2y_1' + 10y_1 = 0$ and $y_2'' - 2y_2' + 10y_2 = 0$ hold.

- (b) $W(y_1, y_2) = -3e^{2x}$.
- (c) They do form a fundamental system of solutions: By (a), both y_1 and y_2 solve that ODE, and by (b), $W(y_1, y_2) \neq 0$. Thus, y_1 and y_2 satisfy both conditions of the definition.
- (d) This is false: Because y_1 and y_2 form a fundamental set of solutions, every solution y_3 of the ODE y'' 2y' + 10y = 0 has the form $y_3 = c_1y_1 + c_2y_2$ for some choice of constants c_1 and c_2 .