How your proof should look

I realized that some of you have never had to prove anything before, so I wanted to jump in and give you all some guidance!

The short story: To show that two quantities are equal, you start on one side of the equal sign (without messing with the other side) and you do math until the thing you have looks like the other side of the equation!

Below is an outline of how the "homework" proof should look: Your job is to use the justifications provided (to the right of the blanks) to fill in the blanks provided. Once you've filled in all the blanks, what you should have is a proof that the integrating factor satisfies the identity claimed in class.
Note 1: Throughout, $\exp (x)$ is shorthand for e^{x} and $I(x)$ is shorthand for $\int p(x) d x$. Using this notation,

$$
e^{\int p(x) d x}=\exp (I(x))
$$

is the thing we called $m(x)$ in class and is explicitly highlighted below.
Note 2: "FTC" stands for "Fundamental Theorem of Calculus."

$$
\begin{array}{rlr}
\frac{d}{d x}(\underbrace{\exp (I(x))}_{m(x)} y) & =\frac{}{} \quad \text { (by the product rule) } \\
& \left.=\square \quad \text { (because } \frac{d}{d x}(y)=\frac{d y}{d x}\right) \\
& =\underbrace{}_{m(x)} \quad \text { (by the chain rule) } \\
& =\underbrace{\exp (I(x))} \frac{d y}{d x}+\underbrace{\exp (I(x))}_{m(x)} p(x) y & \text { (by FTC) }
\end{array}
$$

