(a) $y=0, y=5$, and $y=9$
(b) $y=0$ is stable; $y=5$ is unstable; $y=9$ is stable.
(c) Given that $y(0)=2, \lim _{x \rightarrow \infty} y(x)=0$.

- To see this, note first that $y=2$ lives in the y-interval $(0,5)$.
- Then, because $y=0$ is asymptotically stable, every integral curve in the y-intervals $(-\infty, 0)$ and $(0,5)$ go to 0 as $x \rightarrow \infty$.
- The graph of the actual solution (which you were told not to find) verifies our claim:

(d) (iv)
(e) I cheated and used the computer; you should do it without cheating, and upon doing so, your result should look something like this:

(f) False
(g) (ii)
(h) This equation (like every autonomous ODE) is separable:

$$
\frac{d y}{\left(1-\frac{y}{5}\right)\left(1-\frac{y}{9}\right) y}=-3 d x \text {. }
$$

Using partial fractions, we can decompose the lefthand side:

$$
\left(\frac{1}{y}-\frac{9}{4(y-5)}+\frac{5}{4(y-9)}\right) d y=-3 d x
$$

Now, we integrate each side:

$$
\int\left(\frac{1}{y}-\frac{9}{4(y-5)}+\frac{5}{4(y-9)}\right) d y=\int-3 d x \Longleftrightarrow \ln |y|-\frac{9}{4} \ln |y-5|+\frac{5}{4} \ln |y-9|=-3 x+C
$$

Next, we rewrite the lefthand side using properties of logarithms:

$$
\ln \left(\frac{|y||y-9|^{5 / 4}}{|y-5|^{9 / 4}}\right)=-3 x+C
$$

Finally, we eliminate the ln, giving a solution in implicit form:

$$
\frac{|y||y-9|^{5 / 4}}{|y-5|^{9 / 4}}=e^{-3 x+C}
$$

Note: We have to leave the absolute values here because we were told initially to allow $y<0$.
(i) After part (h) above, all that's left is to find the constant C corresponding to the point $(-1, \pi)$. Doing so yields

$$
\frac{|\pi||\pi-9|^{5 / 4}}{|\pi-5|^{9 / 4}}=e^{-3(-1)+C} \Longleftrightarrow C=\ln \left(\frac{\pi(9-\pi)^{5 / 4}}{e^{3}(5-\pi)^{9 / 4}}\right)
$$

Note 1: The last step used the property $e^{a+b}=e^{a} e^{b}$.
Note 2: We were able to remove the absolute values by rewriting accordingly. In the numerator of C, for example, $\pi-9<0$ implies that $|\pi-9|=-(\pi-9)$ (since absolute value makes negative things positive), and because

$$
-(\pi-9)=9-\pi,
$$

we have that $|\pi-9|=9-\pi$ and hence that $|\pi-9|^{5 / 4}=(9-\pi)^{5 / 4}$. The same is true for the $|\pi-5|^{9 / 4}$ term in the denominator.

