Exam 1

MAP 2302—ODE, Summer 2017

(CLEARLY!) PRINT NAME: _____

Read all of what follows carefully before starting!

- 1. This test has 6 problems and is worth 100 points. Please be sure you have all the questions before beginning!
- 2. The exam is closed-note and closed-book. You may **not** consult with other students, and **no** calculators may be used!
- 3. Show all work clearly in order to receive full credit. Points will be deducted for incorrect work, and unless otherwise stated, no credit will be given for a correct answer without supporting calculations. No work = no credit! (unless otherwise stated)
- 4. You may use appropriate results from class and/or from the textbook <u>as long as you fully and correctly</u> state the result and where it came from.
 - $\circ~$ If you use a result/theorem, you have to state which result you're using and explain why you're able to use it!
- 5. You **do not** need to simplify results, unless otherwise stated.
- 6. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.
- 7. Some questions are multiple choice.
 - Indicate correct answers by circling them and/or drawing a box around them.
 - More than one choice may be a correct answer for a question; if so, circle all correct answers!
 - \circ There may be correct answers which aren't listed; in this case, <u>only</u> focus on the choices provided!
- 8. Some questions are True/False.
 - If you write *True*, you should give a "proof" or (thorough!) explanation of why.

Example: "All quadratic functions have derivatives which are linear" is *True*, and the proof is: If $f(x) = ax^2 + bx + c$, then f'(x) = 2ax + b, which is linear.

• If you write *False*, you should give and explain a counterexample.

Example: "All polynomials have graphs which are parabolas" is *False*; a counterexample is the function $f(x) = x^3$, whose graph *isn't* a parabola, and I could "explain" why this is a counterexample by drawing the non-parabola graph of y = f(x).

9. The notation $y^{(n)}$ always means "the n^{th} derivative of y", e.g. $y^{(4)}$ is the fourth derivative of y and is equivalent to y'''' (with 4 primes).

Question	$1_{(25)}$	2 (5)	3 (10)	4 (20)	5 (25)	6 (15)	Total (100)
Points							

Do not write in these boxes! If you do, you get 0 points for those questions!

1. Consider the autonomous ODE

$$\frac{dy}{dx} = y^3 - 9y.$$

(a) $(5 \ pts)$ What are the equilibrium solutions of this ODE?

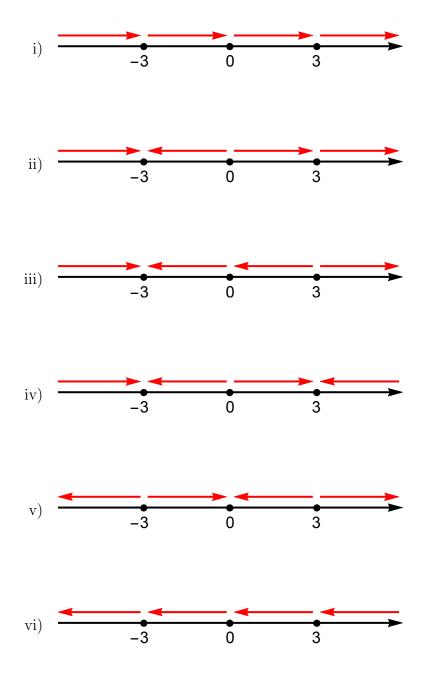
SOLUTION:

(b) (5 pts) Classify each of the equilibrium solutions of this ODE as asymptotically stable, asymptotically unstable, or neither. Hint: Do not assume that y > 0!

SOLUTION:

Part (c) is on the next page

(c) $(5 \ pts)$ Which of the following phase lines correspond to this ODE?



vii) None of the above

Part (d) is on the next page

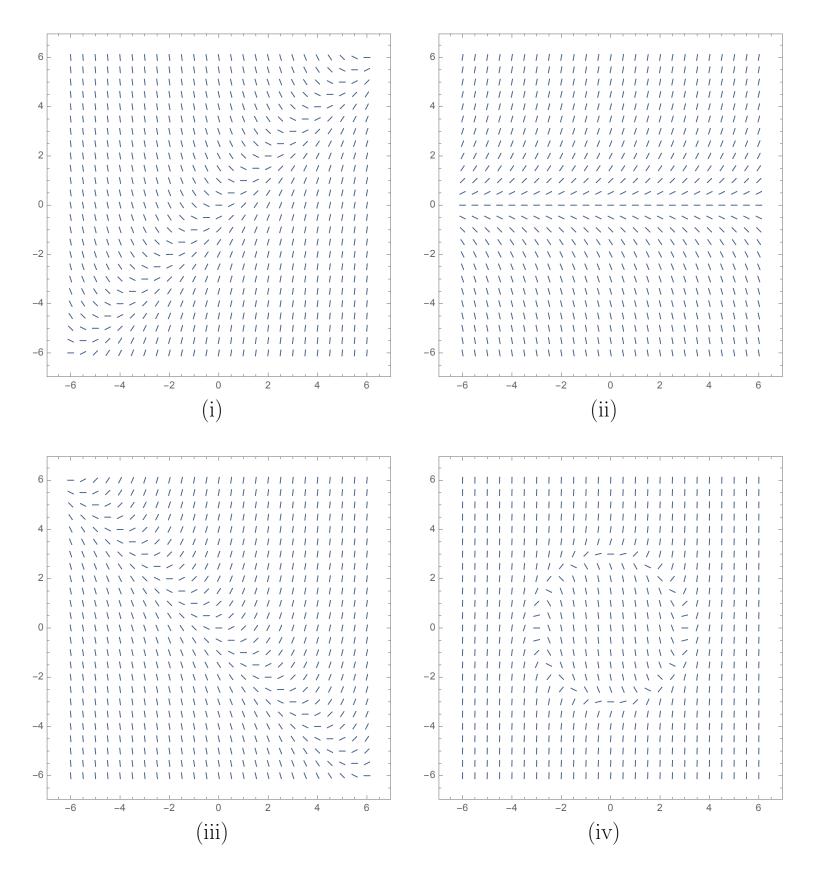
(d) (5 *pts*) Assuming that y(0) = 2, find $\lim_{x \to \infty} y(x)$. Do not solve the ODE!

Solution:

(e) (5 pts) True or False: This ODE is separable. Justify your claim!Hint: See item 8 on the front page for what constitutes *justification*!

SOLUTION:

2. (5 pts) Which of the following slope fields correspond to the ODE $\frac{dy}{dx} = x + y$?



3. (10 pts) Show that $y = \sin x + \cos x$ is a solution to the third-order ODE

$$y^{(3)} - y'' + y' = y.$$

SOLUTION:

4. (10 pts ea.) Answer the following questions about the first-order linear ODE

$$(x - x^3)y' + y - x^3 = 0.$$

(a) Find the integrating factor of the differential equation. Simplify fully!

Hint: Expect to use partial fractions; also, be careful with your algebra: Things should be nice! SOLUTION:

(b) Determine which of the following is the largest interval on which the IVP $(x - x^3)y' + y - x^3 = 0$, y(-0.5) = 3 exists and is unique. Do not solve the ODE!

i. $(-\infty, -1)$ ii. (-1, 1) iii. (-1, 0) iv. (0, 1) v. $(1, \infty)$ vi. $(-\infty, 0)$

5. (5 pts ea.) Indicate whether each of the following questions is True or False by writing the words "True" or "False" (and **not** just the letters "T" or "F"). Justify your answers!

Hint: See item 8 on the front page for what constitutes *justification*!

(a) Every separable ODE is exact.

(b) The (first-order) linear ODE $\frac{dy}{dx} + p(x)y = q(x)$ has a unique (i.e. <u>exactly one</u>) integrating factor.

(c) Every separable ODE is autonomous.

(d) Every (first-order) linear ODE is exact.

(e) Let r > 0 be a constant. The general solution of the ODE $\frac{dy}{dx} = -ry$ is $y = e^{-rx} + C$, where C is a constant.

6. $(15 \ pts)$ Solve the IVP

$$(x\cos y + 3y^2)y' + \sin y + 2x = 0, \quad y(0) = \pi^3.$$

SOLUTION:

Bonus: If the right side of a first-order ODE can be written as a function of the ratio y/x only, then the equation is said to be *homogeneous*. For example,

$$\frac{dy}{dx} = \frac{y - 4x}{x - y} = \frac{(y/x) - 4}{1 - (y/x)}$$
 (by dividing everything by x),

and so this ODE is homogeneous. To solve such an ODE, the steps are as follows:

- (i) Introduce the function $v(x) = y/x \iff y = xv(x);$
- (ii) calculate $\frac{dy}{dx} = v + x \frac{dv}{dx}$; and

(iii) replace all instances of y and $\frac{dy}{dx}$ in the original ODE with these expressions of x, v, and $\frac{dv}{dx}$. The resulting ODE will be separable.

Use the above information to answer the following questions about the ODE $\frac{dy}{dx} = \frac{x^2 + 3y^2}{xy}$.

(a) (1 pt) Show that this ODE is homogeneous. **Hint**: Divide everything by x^2 .

(b) (1 pt) Let
$$v(x) = y/x \iff y = xv(x)$$
. Show that $\frac{dy}{dx} = v + x\frac{dv}{dx}$.

Part (c) is on the next page

(c) (1 pt) Use parts (a) and (b) to rewrite the original ODE in terms of x, v, and $\frac{dv}{dx}$.

(d) (1 pt) Show that the ODE in part (c) is separable.

Part (e) is on the next page

(e) (5 *pts*) Solve the ODE from part (c) in terms of x, v, and $\frac{dv}{dx}$.

(f) $(1 \ pt)$ Find the solution of the original ODE by replacing v by y/x in (e).

Scratch Paper