\qquad
(front and back)
(please print neatly!)

Directions: Answer each of the following questions. Make sure to read the instructions for each question as you proceed. For multiple choice questions, indicate your choice(s) by circling/drawing a box around the appropriate selection(s).

Throughout, consider the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by $T:\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \longmapsto\left(\begin{array}{c}-x_{2} \\ 0 \\ x_{1} \\ x_{1}+x_{3}\end{array}\right)$.

1. True or False: T is a linear transformation. Justify your claim.
2. Compute:

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)= \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)= \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=
\end{aligned}
$$

3. Find the canonical matrix A corresponding to the transformation T such that $T(\mathbf{x})=\mathrm{A} \mathbf{x}$ for all \mathbf{x} or state that no such matrix exists.
4. What is the domain of T ?
5. What is the codomain of T ?
6. Find/describe the range of T.

Hint: You can look at the right-hand side of T and write a parametric vector form for T; this will suffice!
7. Is the codomain of T equal to the range of T ? How do you know? If they aren't the same, find a point in codomain (T) that $i s n ' t$ in range (T).
8. Is T injective/one-to-one? Justify your claim.
9. Is T surjective/onto? Justify your claim.

Scratch Paper

