\qquad
(front and back)
(please print neatly!)

Directions: Answer each of the following questions. Make sure to read the instructions for each question as you proceed. For multiple choice questions, indicate your choice(s) by circling/drawing a box around the appropriate selection(s).

Throughout, let

$$
\mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right) \quad \mathrm{C}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \mathbf{v}=\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right) .
$$

1. Compute each of the following or state that it does not exist. If it does not exist, please indicate why!
(a) $A+C$
(b) $B-2 C$
(c) $A B$
(d) BA
(e) $\mathbf{v A}$
(f) Av
2. Which of the following matrices are in Row Echelon Form (REF)? Hint: There may be more than one but there may also be none!
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2\end{array}\right)$
(b) $\left(\begin{array}{cc}0 & 0 \\ 2 & 2 \\ 0 & -5\end{array}\right)$
(e) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 1\end{array}\right)$
(f) $\left(\begin{array}{llll}0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$
3. Which of the following matrices are in Reduced Row Echelon Form (RREF)? Hint: There may be more than one but there may also be none!
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2\end{array}\right)$
(b) $\left(\begin{array}{cc}0 & 0 \\ 2 & 2 \\ 0 & -5\end{array}\right)$
(e) $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 1\end{array}\right)$
(f) $\left(\begin{array}{llll}0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$
4. Each of the following matrices needs only one elementary row operation to be in RREF.

Indicate which operation is required and show the RREF matrix that results from performing that operation.
(a) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 2 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & -2\end{array}\right)$

Scratch Paper

