Name:

MAS 3105 - Homework 4

Directions: Complete the following problems for a homework grade, being sure to adhere to the Homework Policy on the Homework tab of the course webpage
http://www.math.fsu.edu/~cstover/teaching/sp18_mas3105/.

Date Due: Thursday, April 26.

1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ be a basis for \mathbb{R}^{4}. Find $T\left(\mathbf{b}_{1}-\mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{4}\right)$ when $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is the linear transformation with \mathcal{B}-matrix

$$
[\mathrm{T}]_{\mathcal{B}}=\left(\begin{array}{cccc}
1 & -1 & 0 & 4 \\
0 & 1 & 1 & -1 \\
-3 & 1 & 0 & 8 \\
1 & 1 & -2 & 1
\end{array}\right)
$$

2. Let $\mathcal{B}=\left\{\mathbf{b}_{1}=(1,1)^{\top}, \mathbf{b}_{2}=\left(\begin{array}{ll}-1, & 1\end{array}\right)^{\top}\right\}$ be a basis for \mathbb{R}^{2}. If $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that

$$
[\mathrm{T}]_{\mathcal{B}}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

find the canonical matrix A corresponding to T. Hint: Draw the corresponding commutative diagram!
3. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ be a basis for a vector space V and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ be a basis for a vector space W. Let $\mathrm{T}: V \rightarrow W$ be a linear transformation such that

$$
T\left(\mathbf{b}_{1}\right)=3 \mathbf{c}_{1}-\mathbf{c}_{3} \quad T\left(\mathbf{b}_{2}\right)=\mathbf{c}_{1}-2 \mathbf{c}_{2}+\mathbf{c}_{3} \quad T\left(\mathbf{b}_{3}\right)=\mathbf{c}_{1}-\mathbf{c}_{2}-\mathbf{c}_{3} \quad T\left(\mathbf{b}_{4}\right)=\mathbf{c}_{2}-3 \mathbf{c}_{3} .
$$

Find $[\mathrm{T}]_{\mathcal{B} \rightarrow \mathcal{C}}$.
4. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ be a basis for \mathbb{R}^{4} and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ be a basis for a vector space W. Find $\mathrm{T}\left(\mathbf{b}_{1}-\mathbf{b}_{2}+\mathbf{b}_{3}-\mathbf{b}_{4}\right)$ when $\mathrm{T}: \mathbb{R}^{4} \rightarrow W$ is the linear transformation with \mathcal{B}-to-C-matrix

$$
[\mathrm{T}]_{\mathcal{B} \rightarrow \mathcal{C}}=\left(\begin{array}{cccc}
1 & -2 & -4 & 4 \\
-3 & 1 & 0 & 8 \\
0 & 1 & -2 & 0
\end{array}\right)
$$

5. For each of the following matrices A,
(i) find the characteristic polynomial of A;
(ii) find the eigenvalues of A with multiplicites;
(iii) find the eigenvectors corresponding to each eigenvalue from part (ii); and
(iv) compute a basis for the eigenspace of each eigenvalue from part (ii).
(a) $\mathrm{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(c) $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
(d) $A=\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$
(e) $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
(f) $A=\left(\begin{array}{cccc}5 & 0 & 1 & -1 \\ 0 & 5 & 4 & -2 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3\end{array}\right) \quad$ Hint: Notice that A is triangular.
6. Consider the matrix

$$
A=\left(\begin{array}{cccc}
5 & 0 & 1 & -1 \\
0 & 5 & 4 & -2 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

from question $5(\mathrm{f})$ above. Let $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4}$ be the eigenvalues of A (written multiple times for multiplicity ≥ 1 and written in descending order) and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ be the eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{4}$.
(a) Write down the 4×4 matrix $P=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3} \mid \mathbf{v}_{4}\right)$.
(b) True or False: The columns of P are linearly independent. Justify your claim.
(c) Write down the 4×4 diagonal matrix D whose (i, i)-entry equals λ_{i} and whose (i, j)-entry equals 0 for all $i \neq j$.

Hint: This means that the $(1,1)$-entry is λ_{1}, the $(2,2)$-entry is λ_{2}, the $(3,3)$-entry is λ_{3}, the $(4,4)$ entry is λ_{4}, and all other entries are 0 .
(d) Compute D^{2}, D^{3}, and $D^{2196432}$. Hint: This should require almost no work; do D^{2} and find the pattern!
(e) Compute AP.
(f) Compute PD.
(g) Using parts (b), (e), and (f), conclude that $A=P P^{-1}$. Do not compute P^{-1} !

This decomposition is called the diagonalization of A, and the process given in parts (a)-(e) is called diagonalizing A. As it happens, not all matrices are diagonalizable, and in fact, an $n \times n$ matrix A is diagonalizable if and only if the sums of the dimensions of its eigenspaces is equal to n. For the matrix A in this problem, you can confirm that this holds by referring back to $5(\mathrm{f})$ above.

Now, the question remains: Why is diagonalization helpful?
(h) Using parts (d) and (g), find a diagonalization for A^{1032} without doing any work!.

Hint: $\mathrm{A}^{2}=\left(\mathrm{PDP}^{-1}\right)^{2}=\left(\mathrm{PDP}^{-1}\right)\left(\mathrm{PDP}^{-1}\right)=\mathrm{PD}_{(!!!)}^{\mathrm{P}^{-1}} \mathrm{DP}^{-1}$.

