Name:

MAS 3105 - Homework 3

Directions: Complete the following problems for a homework grade, being sure to adhere to the Homework Policy on the Homework tab of the course webpage

```
http://www.math.fsu.edu/~cstover/teaching/sp18_mas3105/.
```

Date Due: Tuesday, April 3.

1. Go to the \#hw3 channel in our course's SLACK room (see course homepage for the URL) and
(i) post ≥ 1 thing about this homework; and
(ii) reply to ≥ 1 of your classmates' posts.

Note: Yes, you will get graded for this question. ©
2. For each of the following matrices A,
(i) put A into RREF;
(ii) find a basis for $\operatorname{col}(\mathrm{A})$;
(iii) compute $\operatorname{dim}(\operatorname{col}(\mathrm{A}))$;
(iv) find a basis for $\operatorname{row}(\mathrm{A})$;
(v) compute $\operatorname{dim}(\operatorname{row}(\mathrm{A}))$;
(vi) find a basis for $\operatorname{nul}(\mathrm{A})$;
(vii) compute $\operatorname{dim}(\operatorname{nul}(A))$; and
(viii) verify the rank-nullity theorem for A.
(a) $\mathrm{A}=\left(\begin{array}{cccc}1 & -1 & 1 & 3 \\ 0 & 2 & 3 & 1 \\ 3 & -7 & -3 & 7\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}-2 & 1 & 3 \\ 4 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & -2 & 4\end{array}\right)$
(c) $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & -2 & 3 & -4 \\ 9 & 10 & -11 & 12\end{array}\right)$
3. For each of the matrices A in Problem 2, repeat parts (i)-(viii) (of problem 2) for the matrix A^{\top}.
4. For each of the following linear transformations T,
(i) find the domain and codomain of T;
(ii) find the canonical matrix A for T ;
(iii) find range(T);
(iv) find the dimension of range(T);
(v) find $\operatorname{ker}(\mathrm{T})$; and
(vi) find the dimension of $\operatorname{ker}(\mathrm{T})$;

Assume that x_{1}, x_{2}, x_{3}, and x_{4} are all real numbers.
(a) $\mathrm{T}:\binom{x_{1}}{x_{2}} \longmapsto\left(\begin{array}{c}x_{1} \\ x_{1}-x_{2} \\ x_{2} \\ x_{2}-x_{1} \\ 2 x_{1}+3 x_{2}\end{array}\right)$
(b) $\mathrm{T}:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \longmapsto\binom{x_{1}-x_{4}}{x_{2}-x_{3}}$
(c) $\mathrm{T}:\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \longmapsto\left(\begin{array}{c}x_{4} \\ -x_{1} \\ x_{2}-x_{3}-x_{4} \\ x_{1}-x_{2}-x_{3}\end{array}\right)$
5. For each of the linear transformations in Problem 4, repeat parts (i)-(vi) (of problem 4) for the linear transformation $S(\mathbf{x})=\mathrm{A}^{\top} \mathbf{x}$ (where A is the canonical matrix of the transformation in question).
6. Let $\mathrm{A}=\left(\begin{array}{ccccccc}7 & -9 & -4 & 5 & 3 & -3 & -7 \\ -4 & 6 & 7 & -2 & -6 & -5 & 5 \\ 5 & -7 & -6 & 5 & -6 & 2 & 8 \\ -3 & 5 & 8 & -1 & -7 & -4 & 8 \\ 6 & -8 & -5 & 4 & 4 & 9 & 3\end{array}\right)$.
(a) Construct a matrix C whose columns are a basis for $\operatorname{col}(\mathrm{A})$.
(b) Construct a matrix N whose columns are a basis for nul(A).
(c) Construct a matrix R whose rows are a basis for $\operatorname{row}(\mathrm{A})$.
(d) Construct a matrix M whose columns are a basis for $\operatorname{nul}\left(A^{\top}\right)$.
(e) Form the augmented matrix $S=\left(R^{\top} \mid N\right)$. What are its dimensions?
(f) Find the determinant for S and the inverse S^{-1}, if they exist. If not, state why.
(g) Form the augmented matrix $\mathrm{T}=(\mathrm{C} \mid \mathrm{M})$. What are its dimensions?
(h) Find the determinant for T and the inverse T^{-1}, if they exist. If not, state why.

