1. (i) is the only one which can happen.

2. (a) $\mathbf{x} \cdot \mathbf{y} = 0$

- (b) $\|\mathbf{x}\| = \sqrt{91}; \|\mathbf{y}\| = \sqrt{91}$
- (c) dist $(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\| = \|\langle -3, 5, 1, 5, 11, 1 \rangle\| = \sqrt{182}$
- (d) angle = $\cos^{-1}(0) = \pi/2$
- (e) Because \mathbf{x} and \mathbf{y} are linearly independent, W has dimension 2.
- (f) Both **x** and **y** live in \mathbb{R}^6 , so the dimension of W^{\perp} is 6-2=4.
- (g) Write out the equations for $\mathbf{u} \cdot \mathbf{x} = 0$, $\mathbf{u} \cdot \mathbf{y} = 0$, $\mathbf{v} \cdot \mathbf{x} = 0$, and $\mathbf{v} \cdot \mathbf{y} = 0$ and plug in accordingly to get the right answer.

For example: $\mathbf{u} \cdot \mathbf{x} = 0 \Leftrightarrow u_1 + 2u_2 + 3u_3 + 4u_4 + 5u_5 + 6u_6 = 0$. That's one of the equations; there should be three others.

- 3. (a) This depends on how creative you decided to be, but make sure it's non-diagonal, is 5×5 , has real entries, and is symmetric.
 - (b) Regardless of what you picked for (a), <u>all</u> of the eigenvalues should be real. That's a property of symmetric matrices.
 - (c) Regardless of what you picked for (a), all of the eigenspaces should be orthogonal (i.e. have angle $\pi/2$ between them). That's *also* a property of symmetric matrices.
- 4. (a) True
 - (b) True
 - (c) False
 - (d) False
 - (e) False
 - (f) True
 - (g) True
 - (h) True
 - (i) True
 - (j) True
 - (k) False
 - (l) True

- (m) True
- (n) False
- (o) True
- (p) True
- (\mathbf{q}) True
- (r) True
- (s) False
- (t) True
- (u) True
- (v) True
- (w) False
- (x) True
- (y) False