Final Exam Preview

Here's a bit of logistical info about the final.

- There will be 8–10 questions overall, and some will have multiple parts.
- The exam will cover the following:
 - Exam 3 material

Remember: You needed the invertible matrix theorem on Exam 3 too!

- HW4 material (but not problem 6)
- Dot/inner products, norm, distance (between vectors), angles (between vectors)
- Orthogonality / orthogonal complements

(definitions; $(row(\mathsf{A}))^{\perp} = nul(\mathsf{A}); (col(\mathsf{A}))^{\perp} = nul(\mathsf{A}^{\mathsf{T}}); etc.)$

- Symmetric matrices

(definition; they have orthogonal eigenspaces; they have real eigenvalues; etc.)

- The exam will be 35%–50% "old stuff" (Exam 3) and 50%–65% "new stuff" (stuff after Exam 3)
- You should expect the following question formats:
 - computation questions (e.g. using matrices to solve systems from start to finish)
 - multiple-choice questions
 - True/False questions (which may or may not require justification).

The True/False questions will mostly look like those from Exam 3 and/or the textbook. Sample questions are included herein.

- For some of the above topics, your review questions will be from other sources:
 - Exam 3

Make sure you use questions 1–2, 3(vi) as a lesson to read the questions carefully!

- HW4

You should all read <u>and understand</u> the solution for question 2!!! I ve seen lots of wrong answers handed in for that one!

Textbook problems

I'll update the website accordingly!

Now, here are some sample questions for the <u>remaining</u> topics that you should be able to answer before the exam.

- 1. Which of the following scenarios are possible? There may be more than one!
 - (i). A is 14×14 ; and $(\lambda^2 + 1)^7$ is a factor of det(A - λ I).
 - (ii). W is a subspace of \mathbb{R}^{12} ; and dim(W) = 7; and dim $(W^{\perp}) = 7$

- (v). W is a subspace of \mathbb{R}^{12} ; and dim(W) = 7; and dim $(W^{\perp}) = 7$
- (vi). A is 5×5 ; and rank(A) = \mathbb{R}^3 ; and nul(A) is 2-dimensional
- (iii). A is 2×2 ; and A has real entries; and A has eigenvalues 2i, -2i, and 4. (vii). A is 2×2 ; and A has real entries; and A has eigenvalues 2i, -2i, and 4.
- (iv). A is 3×5 ; and nullity(A^T) = 3; and nullity(A) = 2 (ix). None of the above
- 2. Let x = (1, 2, 3, 4, 5, 6) and y = (4, -3, 2, -1, -6, 5), and let W = span{x, y}.
 (a) Find x ⋅ y.
 - (b) Find $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$.
 - (c) Find the distance $dist(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} .
 - (d) Find the angle $\measuredangle(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} .
 - (e) What is $\dim(W)$?
 - (f) What is the dimension of the orthogonal complement of W? How do you know?

(g) Let $\mathbf{u} = \langle u_1, u_2, u_3, u_4, u_5, u_6 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3, v_4, v_5, v_6 \rangle$. Write down the system of equations that must be satisfied by the components of \mathbf{u} and \mathbf{v} for both $\mathbf{u} \in W^{\perp}$ and $\mathbf{v} \in W^{\perp}$ to hold. **DO NOT SOLVE!**

- 3. (a) Give an example of a non-diagonal 5×5 matrix A with real entries which is symmetric. Justify your claim.
 - (b) How many of the eigenvalues to your matrix A are real? Check your answer with Wolfram | Alpha (W|A). Hint: Matrices in W|A are lists of rows: For example, $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is $\{\{1, 2\}, \{3, 4\}\}$ in W|A.
 - (c) Compute the angles between the eigenspaces for your matrix A.Hint: If you forget "the trick," you can always try *this* thing....

https://en.wikipedia.org/wiki/Angles_between_flats#Angles_between_subspaces

- 4. Indicate whether each of the following questions is True or False by writing the words "True" or "False". No justification is required!
 - (a) If H_1 and H_2 are two subspaces of a vector space V, then the collection of all vectors in both H_1 and H_2 is a subspace of V.
 - (b) If a square matrix is *diagonal*, then it is symmetric. **Hint**: Recall that A is *diagonal* if every entry not on its main diagonal equals zero.
 - (c) If E_1 and E_2 are two eigenspaces for a square matrix A with real entries, then $E_1 \perp E_2$.
 - (d) The null space of a 3×6 matrix may be 0-dimensional.
 - (e) The rank of a 3×6 matrix may be \mathbb{R}^3 .
 - (f) The null space of a 3×6 matrix may be 4-dimensional.
 - (g) The column space of a 3×6 matrix may be 0-dimensional.
 - (h) For every matrix A, the linearly independent rows of the matrix RREF(A) are a basis for row(A).
 - (i) For every real number $r \in \mathbb{R}$, there exists a vector **v** such that $\langle 1, 2, 3, 4 \rangle \cdot \mathbf{v} = r$.
 - (j) The row space of a 6×7 matrix is a subspace of \mathbb{R}^7 .
 - (k) The column space of a 6×7 matrix is a subspace of \mathbb{R}^7 .

- (1) The null space of a 6×7 matrix is a subspace of \mathbb{R}^7 .
- (m) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B} -coordinates to \mathcal{C} coordinates is a linear transformation $V \to V$.
- (n) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then det $(\mathsf{A}_{\mathcal{B}\to\mathcal{C}})$ may equal 0.
- (o) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B} -coordinates to \mathcal{C} coordinates is injective.
- (p) If **v** is orthogonal to every vector in a basis for a vector space W, then $\mathbf{v} \perp W$.
- (q) If $\mathbf{v} \perp W$, then \mathbf{v} is orthogonal to every vector in a basis for a vector space W.
- (r) If $\lambda_1 \neq \lambda_2$ are two distinct eigenvalues of a square matrix A, there is at least one vector which is in both the eigenspace for λ_1 and in the eigenspace for λ_2 .
- (s) There exists a matrix A with real coefficients such that $A = A^T \underline{\text{and}}$ whose characteristic polynomial has a factor which is an irreducible quadratic.
- (t) The range of a linear transformation is a subspace of its codomain.
- (u) The matrix A is invertible if and only if the kernel of the transformation $T(\mathbf{x}) = A\mathbf{x}$ is a 0-dimensional subspace of domain(T).
- (v) If H is a subspace of \mathbb{R}^4 , then there is a 4×4 matrix A such that $H = \operatorname{col}(A)$.
- (w) If A is $m \times n$ and dim(row(A)) = m, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (x) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then rank(A) = m.
- (y) There exist two vectors **u** and **v** such that $\mathbf{u} \cdot \mathbf{v} = 0$ and $\measuredangle(\mathbf{u}, \mathbf{v}) < \pi/2$ (radians).