Example 1:

Mark each of the following questions “true” or “false.” Throughout, let vy,...,v, be vectors in a
nonzero subspace H of R" and let S = {vy,...,v,}. Justify your claim.

(a)

The set of all linear combinations of vy, ..., v, is a subspace of R".

True. For justification, you should let V' = span{S}, let u and v be vectors in V, and let
¢, d € R be scalars, and verify the three subspace axioms directly (we did this on the first day
of defining subspaces).

If {v1,...,v,_1} spans H, then S spans H.

True. Adding a vector to a spanning set doesn’t change its span-ness. Or, symbolically,
if {v1,...,v,_1} spans H, then every vector h € H can be written as

h=cvi+ - +cp_1Vp_i;
but then S also spans H, because
h=cvi+- - +c1Vp_1 +0vp
is a linear combo of vectors in S as well.

If {vi,...,v,_1} is linearly independent, then so is S.

False. This isn’t necessarily true, as the vector v, may be a linear combination of the
vectors vi,...,V,_1.

If S is linearly independent, then S is a basis for H.

False. We aren’t told that the vectors in S span H, only that they're in H.

If span{S} = H, then some subset of S is a basis for H.

True. This follows from the “spanning set theorem,” or from the observation that: If
H = span{S}, then removing any linearly independent vectors from S will leave a collection
which also spans H (and is linearly independent!).

If dim H = p and span{S} = H, then S cannot be linearly dependent.

True. If dim H = p and H is spanned by a collection of p vectors (namely, S), then that
collection must be a basis for H.

This can be argued directly, however: If span{S} = H and one vector in S (say, for
example, v,) is linearly dependent, then it would follow that span{vy,...,v, i} (with v,
removed) also spans H. However, dim H = p means that no collection with fewer than p
vectors can span H, and so the result follows.




(g) A plane in R? is a two-dimensional subspace.
False. The plane must contain the origin to be a subspace.

Note: This is true if the plane goes through the origin.

(h) Row operations on a matrix A can change the linear dependence relations among the rows of
A.

False. If Aisr.e. to B, then row(A) = row(B), i.e. the linear dependence relations among
rows are preserved.

(i) Row operations on a matrix can change the null space.

False. If A is r.e. to B, then Ax = 0 if and only if Bx = 0, i.e. the null space relations
among rows are preserved.

(j) The rank of a matrix equals the number of nonzero rows.

False. As a counterexample, consider <1 2). Then there are two nonzero rows, but
rank(A) = 1.

Note: This is true if your matrix is in RREF.

(k) If an m x n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows,
then the dimension of the solution space of Ax = 0 is m — k.

False. If U is m x n, in RREF, and has k nonzero rows, then rank(U) = k& (by part (j)).
By the “rank-nullity theorem,” it follows that nullity(U) = n — rank(U) = n — k, i.e. the
dimension of the solution space of Ux =0 is n — k.

Now, by (i), A being r.e. to U means all this data also holds for A. Hence, the dimension
of the solution space of Ax =0 is n — k, not m — k.

(1) If B is obtained from A by elementary row operations, then rank(B) = rank(A).
True. See (f).

(m) The nonzero rows of a matrix A form a basis for row(A).

False. See (j).

(n) If matrices A and B have the same RREF, then row(A) = row(B).
True. See (f).




(o) If H is a subspace of R?, then there is a 3 x 3 matrix A such that H = col(A).
True. You can actually construct it.

Suppose H is a subspace of R® with dim H = k for 0 < k < 3. That means that there is a
basis B = {by, ..., by} for H consisting of k 3-component vectors.

To build your matrix, write down by,..., b, as columns, and for the remaining 3 — k
columns, write down any scalar multiple (linear combo, etc.) of the k columns you just wrote.
If you call this matrix A, then A will be 3 x 3 and will have col(A) = span{by,...,b,} = H.

See below for an explicit example of this.

(p) If Ais m x n and rank(A) = m, then the linear transformation x — Ax is one-to-one.
False. This characterizes being onto, not one-to-one.

If Ais m x n, then T : x — Ax goes from R" to R™. If
rank(A) = dim(col(A)) = dim(range(T)) = m,

then the range of T is an m-dimensional subspace of R™. The only such subspace is R™ itself,
so the range must equal the codomain and hence T is onto.

To be one-to-one, the right characterization is: nullity(A) = 0 and/or rank(A) = n. These
are equivalent (by the rank-nullity theorem) and say that the equation Ax = 0 has only the
trivial solution, i.e. that T is one-to-one.

(q) If Ais m x n and the linear transformation x — Ax is onto, then rank(A) = m.

True. See (p) and note that the argument is the same: If T : x — Ax is onto for A an
m x n matrix, then T : R" — R™, range(T) = R™ (because onto), and

rank(A) = dim(col(A)) = dim(range(T)) = dim(R™) = m.

As an explicit example of (0):

T T
Let H be the plane in R? spanned by u = (1 2 3) and v = <0 1 4) . Then the 3 x 3 matrix

1 00
A= |2 1 0] hascol(A) =span{u,v} = H. So too do the matrices
340
1 01 1 00 1 0 2
2 1 2¢, 2 1 11, 2 1 4],
3 4 3 3 4 4 3 4 6



4.

etc. (as column 3 is equal to column 1, column 2, and two times column 1 in these examples).

(a) A change-of-coordinates matrix is always invertible.

True. Any change of coordinates is linear and one-to-one (see problems 23-26 in §4.4), which makes
the canonical matrix associated to the transformation invertible by the invertible matrix theorem.

This can also be argued as follows:

For any basis B, Ag is invertible. This is because its columns are basis vectors and are hence
linearly independent.

Because Agl exists for any basis B, Agl is also invertible for any such B (because, as we’ve learned
before, (I\/I’l)_1 = M for all invertible matrices M).

Given the above, for any two bases B, C, each of the matrices Ag, Ac, Agl, and A, ! exist and are
invertible.

Now, any change of basis (from B to C, for example) can be represented via a matrix of the form
Ap_c.

From class, we've seen that Ag_.c = AEIAB for all bases B and C.

We've also seen that if M and N are any two invertible matrices, the product MN is invertible
with inverse (MN)™" = N"'M~L.

Thus, Ag_,c is invertible and its inverse has the form AELC = (AC_ 1AB)_1 = AglAc, aka Ac_.z.

(b) If B={by,...,b,} and C = {cy,...,c,} are two bases for a vector space V, then the jth column of
the change-of-coordinates matrix Ag_,c is the coordinate vector [c;] 5

False. By definition, Ag_¢ = <[b1]c ‘ ‘ [bn]c> for any bases B and C as given. Hence, the jth

column is the coordinate vector [b;]..

If x € V and B is a basis of V' with n vectors, then the B-coordinate vector of x (aka [x];) is in
(R™, std).

True. The map x — [x], is given by multiplying by Az, a matrix which sends (V, B) (and/or (R", B)
if you don’t like vector spaces) to (R",std).

The coordinate change matrix Ag satisfies [x]|,; = Agx for x € V.

False. x = Ag [x]; and [x]z = Az'x.



(e)

If B = std is the standard basis for R", then the B-coordinate vector of x € R" is x itself.

.
True. If x = (:(:1 xn> , then x = 1) + -+ + x,e,, where std = {ey,...,e,}. Now if B =

{by,...,b,} equalsstd, thenb; = ey,...,b, =e,,ie. [xX]z=z1b1+  -+2,b, = 2101+ - F2,€, =X
In some situations, a plane in R® can be “isomorphic” to R2.

Hint: Two vector spaces V and W are isomorphic if there is a one-to-one linear transformation
T:V—>W.

True. If P is a plane through the origin in R?, then P is isomorphic to R%. It suffices to provide a
map T : P — R? which is linear and one-to-one.

Clearly, P is a 2-dimensional subspace of R® and hence is equal to the span of two linearly independent
T T
vectors u = (u; U u3> and v = <v1 Vg v3> in R®. Let B = {u, v} denote the basis for P. and

consider the map T having canonical matrix

Uy U1
A= <11 ‘ V) = | U2 V2
usz U3

Clearly, T is linear (it has a canonical matrix) and one-to-one (its columns are linearly independent);
moreover, T sends (R? std) to (P, B), as

Uy v U U v v

R 1 1 U 1 1 ; R 0 1 U 0 1
=lu v =lu | =1 an =|lu v =lvy | =V.

0 2 U2 0 2 1 2 U2 1 2

U3 Vs Us us U3 U3

Hence, T is an isomorphism between R? and P. O

See below for more commentary on this.

The columns of the matrix Ag_,¢ are B-coordinate vectors of the vectors in C.

False. See (b) above.

If V =R" and C = std, then Ag_¢c = Ag.

True. We showed this in class, but it can also be shown via multiplication: If C = std, then Ac = 1,,
(see (e) and/or parts of (f)). This means that Ag_.c = A;'Ag = I,As = Ag.

The columns of the matrix Az_,¢ are linearly independent.

True. We know this because of the invertible matrix theorem!

In particular, we know that AgLC exists. This means that Ag_.c must be square and must satisfy all
of the “...is invertible...” criteria from the invertible matrix theorem. One such example? Having
linearly independent columns!



(j) fV =R? B = {by, by}, and C = {cy, ¢}, then row reduction of the augmented matrix (b1 b, ‘ ci c2>

to <12 ‘ P) produces a matrix P which satisfies [x]; = P [x], for all x € V.

True. The indicated row reduction yields the matrix Ac_,5 (make sure you understand why!), and
from class, we know that [x]|; = Ac_,5[x], for all x € V.

Here is a little more commentary on isomorphisms per (f):

In general, you should think of the word “isomorphic” as meaning “the same as”: Two spaces V and
W are isomorphic (and/or there is an isomorphism between V' and W) if and only if V' is “the same as”
W in some appropriate sense.

For this aside, let V' be an n-dimensional vector space and let H be a d-dimensional subspace of V.
Clearly, H has a basis of the form B = {by,..., by} consisting of d vectors (from V and thus having
n components) and satisfying H = span{B}. The goal of this aside is to show that there exists an
isomorphism (an injective linear map) T between H and R? given by the same methods used in (f).

Here’s how you can build it explicitly:
o First, construct the n X d matrix M having by, ..., by as columns;
o Next, let T be the transformation with canonical matrix M: T(x) = Mx;

o Finally, observe that (i) T is always a linear transformation, (ii) T is always one-to-one
(because the columns of M are basis vectors and hence are linearly independent), and (iii) T
always maps the standard basis vectors ey, ..., e4 of R? to the basis by, ..., by of H!

Hence, you automatically have an isomorphism T between H and R? without doing any work!

Note, however, that nothing fancy is happening here: The matrix M we construct is really just a “change
of coordinates” between H and R?, and as we saw in class, changing coordinates is the prototypical example
of a linear map that really keeps a space the same!

So remember:
o What was our old mantra?

Always replace “d-dimensional subspace” with “R%”!

o Why did that work?

Because the “change of coordinates” transformation is an isomorphism between R? and
every d-dimensional subspace of every vector space!

o What does that mean?

Every d-dimensional vector space / subspace is “exactly the same”!*

'f d is finite; otherwise,....



