Example 1:

Mark each of the following questions "true" or "false." Throughout, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in a nonzero subspace H of \mathbb{R}^{n} and let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Justify your claim.
(a) The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is a subspace of \mathbb{R}^{n}.

True. For justification, you should let $V=\operatorname{span}\{S\}$, let \mathbf{u} and \mathbf{v} be vectors in V, and let $c, d \in \mathbb{R}$ be scalars, and verify the three subspace axioms directly (we did this on the first day of defining subspaces).
(b) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ spans H, then S spans H.

True. Adding a vector to a spanning set doesn't change its span-ness. Or, symbolically, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ spans H, then every vector $\mathbf{h} \in H$ can be written as

$$
\mathbf{h}=c_{1} \mathbf{v}_{1}+\cdots+c_{p-1} \mathbf{v}_{p-1} ;
$$

but then S also spans H, because

$$
\mathbf{h}=c_{1} \mathbf{v}_{1}+\cdots+c_{p-1} \mathbf{v}_{p-1}+0 \mathbf{v}_{p}
$$

is a linear combo of vectors in S as well.
(c) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ is linearly independent, then so is S.

False. This isn't necessarily true, as the vector \mathbf{v}_{p} may be a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}$.
(d) If S is linearly independent, then S is a basis for H.

False. We aren't told that the vectors in S span H, only that they're in H.
(e) If $\operatorname{span}\{S\}=H$, then some subset of S is a basis for H.

True. This follows from the "spanning set theorem," or from the observation that: If $H=\operatorname{span}\{S\}$, then removing any linearly independent vectors from S will leave a collection which also spans H (and is linearly independent!).
(f) If $\operatorname{dim} H=p$ and $\operatorname{span}\{S\}=H$, then S cannot be linearly dependent.

True. If $\operatorname{dim} H=p$ and H is spanned by a collection of p vectors (namely, S), then that collection must be a basis for H.

This can be argued directly, however: If $\operatorname{span}\{S\}=H$ and one vector in S (say, for example, \mathbf{v}_{p}) is linearly dependent, then it would follow that $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ (with \mathbf{v}_{p} removed) also spans H. However, $\operatorname{dim} H=p$ means that no collection with fewer than p vectors can span H, and so the result follows.
(g) A plane in \mathbb{R}^{3} is a two-dimensional subspace.

False. The plane must contain the origin to be a subspace.
Note: This is true if the plane goes through the origin.
(h) Row operations on a matrix A can change the linear dependence relations among the rows of A.

False. If A is r.e. to B, then $\operatorname{row}(A)=\operatorname{row}(B)$, i.e. the linear dependence relations among rows are preserved.
(i) Row operations on a matrix can change the null space.

False. If A is r.e. to B, then $A x=0$ if and only if $B x=0$, i.e. the null space relations among rows are preserved.
(j) The rank of a matrix equals the number of nonzero rows.

False. As a counterexample, consider $\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$. Then there are two nonzero rows, but $\operatorname{rank}(\mathrm{A})=1$.

Note: This is true if your matrix is in RREF.
(k) If an $m \times n$ matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of $\mathbf{A} \mathbf{x}=\mathbf{0}$ is $m-k$.

False. If \mathbf{U} is $m \times n$, in RREF, and has k nonzero rows, then $\operatorname{rank}(\mathbf{U})=k$ (by part (j)). By the "rank-nullity theorem," it follows that nullity $(\mathrm{U})=n-\operatorname{rank}(\mathrm{U})=n-k$, i.e. the dimension of the solution space of $\mathbf{U} \mathbf{x}=\mathbf{0}$ is $n-k$.

Now, by (i), A being r.e. to U means all this data also holds for A. Hence, the dimension of the solution space of $\mathbf{A x}=\mathbf{0}$ is $n-k$, not $m-k$.
(l) If B is obtained from A by elementary row operations, then $\operatorname{rank}(B)=\operatorname{rank}(A)$.

True. See (f).
(m) The nonzero rows of a matrix A form a basis for $\operatorname{row}(A)$.

False. See (j).
(n) If matrices A and B have the same $R R E F$, then $\operatorname{row}(A)=\operatorname{row}(B)$.

True. See (f).
(o) If H is a subspace of \mathbb{R}^{3}, then there is a 3×3 matrix A such that $H=\operatorname{col}(\mathrm{A})$.

True. You can actually construct it.
Suppose H is a subspace of \mathbb{R}^{3} with $\operatorname{dim} H=k$ for $0 \leq k \leq 3$. That means that there is a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ for H consisting of $k 3$-component vectors.

To build your matrix, write down $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$ as columns, and for the remaining $3-k$ columns, write down any scalar multiple (linear combo, etc.) of the k columns you just wrote. If you call this matrix A, then A will be 3×3 and will have $\operatorname{col}(A)=\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}=H$.

See below for an explicit example of this.
(p) If A is $m \times n$ and $\operatorname{rank}(\mathrm{A})=m$, then the linear transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is one-to-one.

False. This characterizes being onto, not one-to-one.
If A is $m \times n$, then $\mathrm{T}: \mathbf{x} \mapsto \mathrm{A}$ g goes from \mathbb{R}^{n} to \mathbb{R}^{m}. If

$$
\operatorname{rank}(\mathrm{A})=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=\operatorname{dim}(\operatorname{range}(\mathrm{T}))=m
$$

then the range of T is an m-dimensional subspace of \mathbb{R}^{m}. The only such subspace is \mathbb{R}^{m} itself, so the range must equal the codomain and hence T is onto.

To be one-to-one, the right characterization is: $\operatorname{nullity}(\mathrm{A})=0$ and/or $\operatorname{rank}(\mathrm{A})=n$. These are equivalent (by the rank-nullity theorem) and say that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, i.e. that T is one-to-one.
(q) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is onto, then $\operatorname{rank}(\mathrm{A})=m$.

True. See (p) and note that the argument is the same: If $T: x \mapsto A x$ is onto for A an $m \times n$ matrix, then $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, range $(\mathrm{T})=\mathbb{R}^{m}$ (because onto), and

$$
\operatorname{rank}(\mathrm{A})=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=\operatorname{dim}(\operatorname{range}(\mathrm{T}))=\operatorname{dim}\left(\mathbb{R}^{m}\right)=m
$$

As an explicit example of (o):
Let H be the plane in \mathbb{R}^{3} spanned by $\mathbf{u}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\top}$ and $\mathbf{v}=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right)^{\top}$. Then the 3×3 matrix $\mathrm{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 0\end{array}\right) \operatorname{has} \operatorname{col}(\mathrm{A})=\operatorname{span}\{\mathbf{u}, \mathbf{v}\}=H$. So too do the matrices

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
3 & 4 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 1 \\
3 & 4 & 4
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 4 \\
3 & 4 & 6
\end{array}\right)
$$

etc. (as column 3 is equal to column 1, column 2, and two times column 1 in these examples).
4. (a) A change-of-coordinates matrix is always invertible.

True. Any change of coordinates is linear and one-to-one (see problems 23-26 in §4.4), which makes the canonical matrix associated to the transformation invertible by the invertible matrix theorem.

This can also be argued as follows:

- For any basis $\mathcal{B}, \mathrm{A}_{\mathcal{B}}$ is invertible. This is because its columns are basis vectors and are hence linearly independent.
- Because $A_{\mathcal{B}}^{-1}$ exists for any basis $\mathcal{B}, A_{\mathcal{B}}^{-1}$ is also invertible for any such \mathcal{B} (because, as we've learned before, $\left(\mathrm{M}^{-1}\right)^{-1}=\mathrm{M}$ for all invertible matrices M$)$.
- Given the above, for any two bases \mathcal{B}, \mathcal{C}, each of the matrices $A_{\mathcal{B}}, A_{\mathcal{C}}, A_{\mathcal{B}}^{-1}$, and $A_{\mathcal{C}}^{-1}$ exist and are invertible.
- Now, any change of basis (from B to C, for example) can be represented via a matrix of the form $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$.
- From class, we've seen that $A_{\mathcal{B} \rightarrow \mathcal{C}}=A_{\mathcal{C}}^{-1} A_{\mathcal{B}}$ for all bases \mathcal{B} and \mathcal{C}.
- We've also seen that if M and N are any two invertible matrices, the product $M N$ is invertible with inverse $(M N)^{-1}=N^{-1} \mathrm{M}^{-1}$.
- Thus, $A_{\mathcal{B} \rightarrow \mathcal{C}}$ is invertible and its inverse has the form $A_{\mathcal{B} \rightarrow \mathcal{C}}^{-1}=\left(A_{\mathcal{C}}^{-1} A_{\mathcal{B}}\right)^{-1}=A_{\mathcal{B}}^{-1} A_{\mathcal{C}}$, aka $A_{\mathcal{C} \rightarrow \mathcal{B}}$.
(b) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are two bases for a vector space V, then the j th column of the change-of-coordinates matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$ is the coordinate vector $\left[\mathbf{c}_{j}\right]_{\mathcal{B}}$.

False. By definition, $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}=\left(\left[\mathbf{b}_{1}\right]_{\mathcal{C}}|\cdots|\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right)$ for any bases \mathcal{B} and \mathcal{C} as given. Hence, the j th column is the coordinate vector $\left[\mathbf{b}_{j}\right]_{\mathcal{C}}$.
(c) If $\mathbf{x} \in V$ and \mathcal{B} is a basis of V with n vectors, then the \mathcal{B}-coordinate vector of \mathbf{x} (aka $\left.[\mathbf{x}]_{\mathcal{B}}\right)$ is in ($\left.\mathbb{R}^{n}, \mathrm{std}\right)$.

True. The map $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is given by multiplying by $\mathrm{A}_{\mathcal{B}}$, a matrix which sends (V, \mathcal{B}) (and/or $\left(\mathbb{R}^{n}, \mathcal{B}\right)$ if you don't like vector spaces) to ($\left.\mathbb{R}^{n}, \operatorname{std}\right)$.
(d) The coordinate change matrix $\mathrm{A}_{\mathcal{B}}$ satisfies $[\mathbf{x}]_{\mathcal{B}}=\mathrm{A}_{\mathcal{B}} \mathbf{x}$ for $\mathbf{x} \in V$.

False. $x=A_{\mathcal{B}}[x]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{B}}=A_{\mathcal{B}}^{-1} \mathbf{x}$.
(e) If $\mathcal{B}=\operatorname{std}$ is the standard basis for \mathbb{R}^{n}, then the \mathcal{B}-coordinate vector of $\mathbf{x} \in \mathbb{R}^{n}$ is \mathbf{x} itself.

True. If $\mathbf{x}=\left(\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right)^{\top}$, then $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$, where std $=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$. Now if $\mathcal{B}=$ $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ equals std, then $\mathbf{b}_{1}=\mathbf{e}_{1}, \ldots, \mathbf{b}_{n}=\mathbf{e}_{n}$, i.e. $[\mathbf{x}]_{\mathcal{B}}=x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}=\mathbf{x}$
(f) In some situations, a plane in \mathbb{R}^{3} can be "isomorphic" to \mathbb{R}^{2}.

Hint: Two vector spaces V and W are isomorphic if there is a one-to-one linear transformation $\mathrm{T}: V \rightarrow W$.

True. If P is a plane through the origin in \mathbb{R}^{3}, then P is isomorphic to \mathbb{R}^{2}. It suffices to provide a map $\mathrm{T}: P \rightarrow \mathbb{R}^{2}$ which is linear and one-to-one.

Clearly, P is a 2-dimensional subspace of \mathbb{R}^{3} and hence is equal to the span of two linearly independent vectors $\mathbf{u}=\left(\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right)^{\top}$ and $\mathbf{v}=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)^{\top}$ in \mathbb{R}^{3}. Let $\mathcal{B}=\{\mathbf{u}, \mathbf{v}\}$ denote the basis for P. and consider the map T having canonical matrix

$$
\mathbf{A}=(\mathbf{u} \mid \mathbf{v})=\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right)
$$

Clearly, T is linear (it has a canonical matrix) and one-to-one (its columns are linearly independent); moreover, T sends $\left(\mathbb{R}^{2}\right.$, std) to (P, \mathcal{B}), as

$$
\mathrm{A}\binom{1}{0}=\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right)\binom{1}{0}=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\mathbf{u} \quad \text { and } \quad \mathrm{A}\binom{0}{1}=\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right)\binom{0}{1}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\mathbf{v}
$$

Hence, T is an isomorphism between \mathbb{R}^{2} and P.
See below for more commentary on this.
(g) The columns of the matrix $A_{\mathcal{B} \rightarrow \mathcal{C}}$ are \mathcal{B}-coordinate vectors of the vectors in \mathcal{C}.

False. See (b) above.
(h) If $V=\mathbb{R}^{n}$ and $\mathcal{C}=$ std, then $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}=\mathrm{A}_{\mathcal{B}}$.

True. We showed this in class, but it can also be shown via multiplication: If $\mathcal{C}=\operatorname{std}$, then $A_{\mathcal{C}}=I_{n}$ (see (e) and/or parts of (f)). This means that $A_{\mathcal{B} \rightarrow \mathcal{C}}=A_{\mathcal{C}}^{-1} A_{\mathcal{B}}=I_{n} A_{\mathcal{B}}=A_{\mathcal{B}}$.
(i) The columns of the matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$ are linearly independent.

True. We know this because of the invertible matrix theorem!
In particular, we know that $A_{\mathcal{B} \rightarrow \mathcal{C}}^{-1}$ exists. This means that $A_{\mathcal{B} \rightarrow \mathcal{C}}$ must be square and must satisfy all of the "...is invertible..." criteria from the invertible matrix theorem. One such example? Having linearly independent columns!
(j) If $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$, then row reduction of the augmented matrix $\left(\begin{array}{ll|ll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{c}_{1} & \mathbf{c}_{2}\end{array}\right)$ to $\left(I_{2} \mid \mathrm{P}\right)$ produces a matrix P which satisfies $[\mathbf{x}]_{\mathcal{B}}=\mathrm{P}[\mathbf{x}]_{\mathcal{C}}$ for all $\mathbf{x} \in V$.

True. The indicated row reduction yields the matrix $A_{\mathcal{C} \rightarrow \mathcal{B}}$ (make sure you understand why!), and from class, we know that $[\mathbf{x}]_{\mathcal{B}}=\mathrm{A}_{\mathcal{C} \rightarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{C}}$ for all $\mathbf{x} \in V$.

Here is a little more commentary on isomorphisms per (f):
In general, you should think of the word "isomorphic" as meaning "the same as": Two spaces V and W are isomorphic (and/or there is an isomorphism between V and W) if and only if V is "the same as" W in some appropriate sense.

For this aside, let V be an n-dimensional vector space and let H be a d-dimensional subspace of V. Clearly, H has a basis of the form $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\}$ consisting of d vectors (from V and thus having n components) and satisfying $H=\operatorname{span}\{\mathcal{B}\}$. The goal of this aside is to show that there exists an isomorphism (an injective linear map) T between H and \mathbb{R}^{d} given by the same methods used in (f).

Here's how you can build it explicitly:

- First, construct the $n \times d$ matrix M having $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$ as columns;
- Next, let T be the transformation with canonical matrix $\mathrm{M}: \mathrm{T}(\mathbf{x})=\mathbf{M x}$;
- Finally, observe that (i) T is always a linear transformation, (ii) T is always one-to-one (because the columns of M are $\overline{\text { basis vectors and hence are linearly independent), and (iii) } \mathrm{T}}$ always maps the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ of \mathbb{R}^{d} to the basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$ of H !

Hence, you automatically have an isomorphism T between H and \mathbb{R}^{d} without doing any work!
Note, however, that nothing fancy is happening here: The matrix M we construct is really just a "change of coordinates" between H and \mathbb{R}^{d}, and as we saw in class, changing coordinates is the prototypical example of a linear map that really keeps a space the same!

So remember:

- What was our old mantra?

Always replace " d-dimensional subspace" with " \mathbb{R}^{d} "!

- Why did that work?

Because the "change of coordinates" transformation is an isomorphism between \mathbb{R}^{d} and every d-dimensional subspace of every vector space!

- What does that mean?

Every d-dimensional vector space / subspace is "exactly the same" ! ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ If d is finite; otherwise,....

