
Example 1:

Mark each of the following questions “true” or “false.” Throughout, let v1, . . . ,vp be vectors in a
nonzero subspace H of Rn and let S = {v1, . . . ,vp}. Justify your claim.

(a) The set of all linear combinations of v1, . . . ,vp is a subspace of Rn.

True. For justification, you should let V = span{S}, let u and v be vectors in V , and let
c, d ∈ R be scalars, and verify the three subspace axioms directly (we did this on the first day
of defining subspaces).

(b) If {v1, . . . ,vp−1} spans H, then S spans H.

True. Adding a vector to a spanning set doesn’t change its span-ness. Or, symbolically,
if {v1, . . . ,vp−1} spans H, then every vector h ∈ H can be written as

h = c1v1 + · · ·+ cp−1vp−1;

but then S also spans H, because

h = c1v1 + · · ·+ cp−1vp−1 + 0vp

is a linear combo of vectors in S as well.

(c) If {v1, . . . ,vp−1} is linearly independent, then so is S.

False. This isn’t necessarily true, as the vector vp may be a linear combination of the
vectors v1, . . . ,vp−1.

(d) If S is linearly independent, then S is a basis for H.

False. We aren’t told that the vectors in S span H, only that they’re in H.

(e) If span{S} = H, then some subset of S is a basis for H.

True. This follows from the “spanning set theorem,” or from the observation that: If
H = span{S}, then removing any linearly independent vectors from S will leave a collection
which also spans H (and is linearly independent!).

(f) If dimH = p and span{S} = H, then S cannot be linearly dependent.

True. If dimH = p and H is spanned by a collection of p vectors (namely, S), then that
collection must be a basis for H.

This can be argued directly, however: If span{S} = H and one vector in S (say, for
example, vp) is linearly dependent, then it would follow that span{v1, . . . ,vp−1} (with vp

removed) also spans H. However, dimH = p means that no collection with fewer than p
vectors can span H, and so the result follows.



(g) A plane in R3 is a two-dimensional subspace.

False. The plane must contain the origin to be a subspace.

Note: This is true if the plane goes through the origin.

(h) Row operations on a matrix A can change the linear dependence relations among the rows of
A.

False. If A is r.e. to B, then row(A) = row(B), i.e. the linear dependence relations among
rows are preserved.

(i) Row operations on a matrix can change the null space.

False. If A is r.e. to B, then Ax = 0 if and only if Bx = 0, i.e. the null space relations
among rows are preserved.

(j) The rank of a matrix equals the number of nonzero rows.

False. As a counterexample, consider

(
1 2

1 2

)
. Then there are two nonzero rows, but

rank(A) = 1.

Note: This is true if your matrix is in RREF.

(k) If an m× n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows,
then the dimension of the solution space of Ax = 0 is m− k.

False. If U is m× n, in RREF, and has k nonzero rows, then rank(U) = k (by part (j)).
By the “rank-nullity theorem,” it follows that nullity(U) = n − rank(U) = n − k, i.e. the
dimension of the solution space of Ux = 0 is n− k.

Now, by (i), A being r.e. to U means all this data also holds for A. Hence, the dimension
of the solution space of Ax = 0 is n− k, not m− k.

(l) If B is obtained from A by elementary row operations, then rank(B) = rank(A).

True. See (f).

(m) The nonzero rows of a matrix A form a basis for row(A).

False. See (j).

(n) If matrices A and B have the same RREF, then row(A) = row(B).

True. See (f).
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(o) If H is a subspace of R3, then there is a 3× 3 matrix A such that H = col(A).

True. You can actually construct it.

Suppose H is a subspace of R3 with dimH = k for 0 ≤ k ≤ 3. That means that there is a
basis B = {b1, . . . ,bk} for H consisting of k 3-component vectors.

To build your matrix, write down b1, . . . ,bk as columns, and for the remaining 3 − k
columns, write down any scalar multiple (linear combo, etc.) of the k columns you just wrote.
If you call this matrix A, then A will be 3× 3 and will have col(A) = span{b1, . . . ,bk} = H.

See below for an explicit example of this.

(p) If A is m× n and rank(A) = m, then the linear transformation x 7→ Ax is one-to-one.

False. This characterizes being onto, not one-to-one.

If A is m× n, then T : x 7→ Ax goes from Rn to Rm. If

rank(A) = dim(col(A)) = dim(range(T)) = m,

then the range of T is an m-dimensional subspace of Rm. The only such subspace is Rm itself,
so the range must equal the codomain and hence T is onto.

To be one-to-one, the right characterization is: nullity(A) = 0 and/or rank(A) = n. These
are equivalent (by the rank-nullity theorem) and say that the equation Ax = 0 has only the
trivial solution, i.e. that T is one-to-one.

(q) If A is m× n and the linear transformation x 7→ Ax is onto, then rank(A) = m.

True. See (p) and note that the argument is the same: If T : x 7→ Ax is onto for A an
m× n matrix, then T : Rn → Rm, range(T) = Rm (because onto), and

rank(A) = dim(col(A)) = dim(range(T)) = dim(Rm) = m.

As an explicit example of (o):

Let H be the plane in R3 spanned by u =
(

1 2 3
)T

and v =
(

0 1 4
)T

. Then the 3 × 3 matrix

A =

1 0 0

2 1 0

3 4 0

 has col(A) = span{u,v} = H. So too do the matrices

1 0 1

2 1 2

3 4 3

 ,

1 0 0

2 1 1

3 4 4

 ,

1 0 2

2 1 4

3 4 6

 ,
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etc. (as column 3 is equal to column 1, column 2, and two times column 1 in these examples).

4. (a) A change-of-coordinates matrix is always invertible.

True. Any change of coordinates is linear and one-to-one (see problems 23–26 in §4.4), which makes
the canonical matrix associated to the transformation invertible by the invertible matrix theorem.

This can also be argued as follows:

• For any basis B, AB is invertible. This is because its columns are basis vectors and are hence
linearly independent.

• Because A−1B exists for any basis B, A−1B is also invertible for any such B (because, as we’ve learned

before,
(
M−1

)−1
= M for all invertible matrices M).

• Given the above, for any two bases B, C, each of the matrices AB, AC, A
−1
B , and A−1C exist and are

invertible.

• Now, any change of basis (from B to C, for example) can be represented via a matrix of the form
AB→C.

• From class, we’ve seen that AB→C = A−1C AB for all bases B and C.

• We’ve also seen that if M and N are any two invertible matrices, the product MN is invertible
with inverse (MN)−1 = N−1M−1.

• Thus, AB→C is invertible and its inverse has the form A−1B→C =
(
A−1C AB

)−1
= A−1B AC, aka AC→B.

(b) If B = {b1, . . . ,bn} and C = {c1, . . . , cn} are two bases for a vector space V , then the jth column of
the change-of-coordinates matrix AB→C is the coordinate vector [cj]B.

False. By definition, AB→C =
(

[b1]C · · · [bn]C

)
for any bases B and C as given. Hence, the jth

column is the coordinate vector [bj]C.

(c) If x ∈ V and B is a basis of V with n vectors, then the B-coordinate vector of x (aka [x]B) is in
(Rn, std).

True. The map x 7→ [x]B is given by multiplying by AB, a matrix which sends (V,B) (and/or (Rn,B)
if you don’t like vector spaces) to (Rn, std).

(d) The coordinate change matrix AB satisfies [x]B = ABx for x ∈ V .

False. x = AB [x]B and [x]B = A−1B x.
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(e) If B = std is the standard basis for Rn, then the B-coordinate vector of x ∈ Rn is x itself.

True. If x =
(
x1 · · · xn

)T
, then x = x1e1 + · · · + xnen, where std = {e1, . . . , en}. Now if B =

{b1, . . . ,bn} equals std, then b1 = e1, . . . ,bn = en, i.e. [x]B = x1b1+· · ·+xnbn = x1e1+· · ·+xnen = x

(f) In some situations, a plane in R3 can be “isomorphic” to R2.

Hint: Two vector spaces V and W are isomorphic if there is a one-to-one linear transformation
T : V → W .

True. If P is a plane through the origin in R3, then P is isomorphic to R2. It suffices to provide a
map T : P → R2 which is linear and one-to-one.

Clearly, P is a 2-dimensional subspace of R3 and hence is equal to the span of two linearly independent

vectors u =
(
u1 u2 u3

)T
and v =

(
v1 v2 v3

)T
in R3. Let B = {u,v} denote the basis for P . and

consider the map T having canonical matrix

A =
(
u v

)
=

u1 v1

u2 v2

u3 v3

 .

Clearly, T is linear (it has a canonical matrix) and one-to-one (its columns are linearly independent);
moreover, T sends (R2, std) to (P,B), as

A

(
1

0

)
=

u1 v1

u2 v2

u3 v3

(1

0

)
=

u1

u2

u3

 = u and A

(
0

1

)
=

u1 v1

u2 v2

u3 v3

(0

1

)
=

v1

v2

v3

 = v.

Hence, T is an isomorphism between R2 and P .

See below for more commentary on this.

(g) The columns of the matrix AB→C are B-coordinate vectors of the vectors in C.

False. See (b) above.

(h) If V = Rn and C = std, then AB→C = AB.

True. We showed this in class, but it can also be shown via multiplication: If C = std, then AC = In
(see (e) and/or parts of (f)). This means that AB→C = A−1C AB = InAB = AB.

(i) The columns of the matrix AB→C are linearly independent.

True. We know this because of the invertible matrix theorem!

In particular, we know that A−1B→C exists. This means that AB→C must be square and must satisfy all
of the “...is invertible...” criteria from the invertible matrix theorem. One such example? Having
linearly independent columns!
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(j) If V = R2, B = {b1,b2}, and C = {c1, c2}, then row reduction of the augmented matrix
(
b1 b2 c1 c2

)
to
(
I2 P

)
produces a matrix P which satisfies [x]B = P [x]C for all x ∈ V .

True. The indicated row reduction yields the matrix AC→B (make sure you understand why!), and
from class, we know that [x]B = AC→B [x]C for all x ∈ V .

Here is a little more commentary on isomorphisms per (f):

In general, you should think of the word “isomorphic” as meaning “the same as”: Two spaces V and
W are isomorphic (and/or there is an isomorphism between V and W ) if and only if V is “the same as”
W in some appropriate sense.

For this aside, let V be an n-dimensional vector space and let H be a d-dimensional subspace of V .
Clearly, H has a basis of the form B = {b1, . . . ,bd} consisting of d vectors (from V and thus having
n components) and satisfying H = span{B}. The goal of this aside is to show that there exists an
isomorphism (an injective linear map) T between H and Rd given by the same methods used in (f).

Here’s how you can build it explicitly:

◦ First, construct the n× d matrix M having b1, . . . ,bd as columns;

◦ Next, let T be the transformation with canonical matrix M: T(x) = Mx;

◦ Finally, observe that (i) T is always a linear transformation, (ii) T is always one-to-one
(because the columns of M are basis vectors and hence are linearly independent), and (iii) T
always maps the standard basis vectors e1, . . . , ed of Rd to the basis b1, . . . ,bd of H!

Hence, you automatically have an isomorphism T between H and Rd without doing any work!

Note, however, that nothing fancy is happening here: The matrix M we construct is really just a “change
of coordinates” between H and Rd, and as we saw in class, changing coordinates is the prototypical example
of a linear map that really keeps a space the same!

So remember:

◦ What was our old mantra?

Always replace “d-dimensional subspace” with “Rd”!

◦ Why did that work?

Because the “change of coordinates” transformation is an isomorphism between Rd and
every d-dimensional subspace of every vector space!

◦ What does that mean?

Every d-dimensional vector space / subspace is “exactly the same”!1

1If d is finite; otherwise,....
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