Exam 3 Preview

Here's a bit of logistical info about the exam.

- There will be 5–7 questions overall, and some will have multiple parts.
- The exam will cover the following textbook topics:
 - The Inverse Matrix Theorem ($\S2.2$, $\S2.9$, $\S4.6$)
 - Subspaces ($\S2.8$, $\S4.1$), Bases ($\S2.8$, $\S4.3$), and Dimension ($\S2.9$, $\S4.5$)
 - Column Space ($\S2.8$, $\S4.2$), Row Space ($\S4.6$), Null Space ($\S2.8$, $\S4.2$)
 - Rank (§2.9, §4.6), Nullity (§4.6)
 - Kernel + range of a linear transform $(\S4.2)$
 - Coordinate systems $(\S4.4)$, change of coordinates $(\S4.7)$
 - (Other) Important Theorems: Rank-Nullity Theorem (§4.6), The Spanning Set Theorem (§4.3)
- You should expect the following question formats:
 - computation questions (e.g. using matrices to solve systems from start to finish)
 - multiple-choice questions
 - True/False questions (which may or may not require justification).

The True/False questions will mostly look like those from the textbook (which I include here for those of you without the textbook).

- For some of the above topics, your review questions will be from other sources:
 - HW3 (#2-#5)
 - Examples 1–5 on the Column Spaces, Nullity, and all that Jazz handout
 - Examples 1–3 on the Invertible Matrix Theorem II handout
 - The (!!!) problems on the Lecture Notes & Exercises tab of the webpage

Now, here are some sample questions for the <u>remaining</u> topics that you should be able to answer before the exam.

1. Let
$$\mathcal{B} = \left\{ \mathbf{b}_1 = \begin{pmatrix} 2\\ 4 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 4\\ 2 \end{pmatrix} \right\}$$
 and $\mathcal{C} = \left\{ \mathbf{c}_1 = \begin{pmatrix} -11\\ 2 \end{pmatrix}, \mathbf{c}_2 = \begin{pmatrix} 0\\ -6 \end{pmatrix} \right\}$ be bases for \mathbb{R}^2 .

(a) Find the coordinate change matrices $A_{\mathcal{B}}$ and $A_{\mathcal{C}}$.

(b) Let
$$\mathbf{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
. Compute $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$.

(c) Find **y** if
$$[\mathbf{y}]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
.

- (d) Find \mathbf{z} if $[\mathbf{z}]_{\mathcal{C}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- (e) Find the coordinate-change matrix $A_{\mathcal{B}\to\mathcal{C}}$.
- (f) Prove that $A_{\mathcal{B}\to\mathcal{C}} = A_{\mathcal{C}}^{-1}A_{\mathcal{B}}$.
- (g) Find the coordinate-change matrix $A_{\mathcal{C} \to \mathcal{B}}$.
- 2. Let \mathcal{B} and \mathcal{C} be as above and let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$, where $\mathbf{d}_1 = \mathbf{b}_1 \mathbf{c}_2$ and $\mathbf{d}_2 = \mathbf{b}_2 \mathbf{c}_1$.
 - (a) Is \mathcal{D} a basis for \mathbb{R}^2 ? Justify your claim.
 - (b) Draw a diagram which relates $(\mathbb{R}^2, \operatorname{std})$, $(\mathbb{R}^2, \mathcal{B})$, $(\mathbb{R}^2, \mathcal{C})$, and $(\mathbb{R}^2, \mathcal{D})$, where $(\mathbb{R}^n, \mathcal{X})$ denotes \mathbb{R}^n with the coordinate system \mathcal{X} and where std denotes the "standard basis" $\left\{ \begin{pmatrix} 1 & 0 \end{pmatrix}^\mathsf{T}, \begin{pmatrix} 0 & 1 \end{pmatrix}^\mathsf{T} \right\}$ of \mathbb{R}^2
 - (c) Does the diagram you drew in part (b) commute? Why or why not?

Hint: This isn't "free;" you have to check stuff here!

3. Practice True/False questions by doing Example 1 from the *Invertible Matrix Theorem II* handout; here it is for your convenience!

Example 1:

Mark each of the following questions "true" or "false." Throughout, let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in a nonzero subspace H of \mathbb{R}^n and let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_p}$. Justify your claim.

- (a) The set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is a subspace of \mathbb{R}^n .
- (b) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_{p-1}\}$ spans H, then S spans H.
- (c) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_{p-1}\}$ is linearly independent, then so is S.
- (d) If S is linearly independent, then S is a basis for H.
- (e) If span $\{S\} = H$, then some subset of S is a basis for H.
- (f) If dim H = p and span $\{S\} = H$, then S cannot be linearly dependent.
- (g) A plane in \mathbb{R}^3 is a two-dimensional subspace.
- (h) Row operations on a matrix A can change the linear dependence relations among the rows of A.
- (i) Row operations on a matrix can change the null space.
- (j) The rank of a matrix equals the number of nonzero rows.
- (k) If an $m \times n$ matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is m k.
- (l) If B is obtained from A by elementary row operations, then rank(B) = rank(A).
- (m) The nonzero rows of a matrix A form a basis for row(A).
- (n) If matrices A and B have the same RREF, then row(A) = row(B).
- (o) If H is a subspace of \mathbb{R}^3 , then there is a 3×3 matrix A such that $H = \operatorname{col}(\mathsf{A})$.
- (p) If A is $m \times n$ and rank(A) = m, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (q) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then rank(A) = m.

- 4. Mark each of the following questions "true" or "false." Throughout, let V be a vector space and utilize the notation from question 2 above.
 - (a) A change-of-coordinates matrix is always invertible.
 - (b) If $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_n}$ are two bases for a vector space V, then the *j*th column of the change-of-coordinates matrix $A_{\mathcal{B}\to\mathcal{C}}$ is the coordinate vector $[\mathbf{c}_j]_{\mathcal{B}}$.
 - (c) If $\mathbf{x} \in V$ and \mathcal{B} is a basis of V with n vectors, then the \mathcal{B} -coordinate vector of \mathbf{x} (aka $[\mathbf{x}]_{\mathcal{B}}$) is in $(\mathbb{R}^n, \text{std})$.
 - (d) The coordinate change matrix $A_{\mathcal{B}}$ satisfies $[\mathbf{x}]_{\mathcal{B}} = A_{\mathcal{B}}\mathbf{x}$ for $\mathbf{x} \in V$.
 - (e) If $\mathcal{B} = \text{std}$ is the standard basis for \mathbb{R}^n , then the \mathcal{B} -coordinate vector of $\mathbf{x} \in \mathbb{R}^n$ is \mathbf{x} itself.
 - (f) In some situations, a plane in \mathbb{R}^3 can be "isomorphic" to \mathbb{R}^2 .

Hint: Two vector spaces V and W are *isomorphic* if there is a one-to-one linear transformation $T: V \to W$.

- (g) The columns of the matrix $A_{\mathcal{B}\to\mathcal{C}}$ are \mathcal{B} -coordinate vectors of the vectors in \mathcal{C} .
- (h) If $V = \mathbb{R}^n$ and $\mathcal{C} = \text{std}$, then $\mathsf{A}_{\mathcal{B} \to \mathcal{C}} = \mathsf{A}_{\mathcal{B}}$.
- (i) The columns of the matrix $A_{\mathcal{B}\to\mathcal{C}}$ are linearly independent.
- (j) If $V = \mathbb{R}^2$, $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of the augmented matrix $\begin{pmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{c}_1 & \mathbf{c}_2 \end{pmatrix}$ to $\begin{pmatrix} I_2 & \mathsf{P} \end{pmatrix}$ produces a matrix P which satisfies $[\mathbf{x}]_{\mathcal{B}} = \mathsf{P}[\mathbf{x}]_{\mathcal{C}}$ for all $\mathbf{x} \in V$.