Exam 3 Preview

Here's a bit of logistical info about the exam.

- There will be 5-7 questions overall, and some will have multiple parts.
- The exam will cover the following textbook topics:
- The Inverse Matrix Theorem ($\S 2.2, \S 2.9, \S 4.6)$
- Subspaces (§2.8, §4.1), Bases ($\S 2.8, \S 4.3$), and Dimension ($\S 2.9, \S 4.5)$
- Column Space ($\S 2.8, \S 4.2$), Row Space (§4.6), Null Space ($\S 2.8, \S 4.2$)
- Rank (§2.9, §4.6), Nullity (§4.6)
- Kernel + range of a linear transform (§4.2)
- Coordinate systems (§4.4), change of coordinates (§4.7)
- (Other) Important Theorems: Rank-Nullity Theorem (§4.6), The Spanning Set Theorem (§4.3)
- You should expect the following question formats:
- computation questions (e.g. using matrices to solve systems from start to finish)
- multiple-choice questions
- True/False questions (which may or may not require justification).

The True/False questions will mostly look like those from the textbook (which I include here for those of you without the textbook).

- For some of the above topics, your review questions will be from other sources:
- HW3 (\#2-\#5)
- Examples 1-5 on the Column Spaces, Nullity, and all that Jazz handout
- Examples 1-3 on the Invertible Matrix Theorem II handout
- The (!!!) problems on the Lecture Notes \& Exercises tab of the webpage

Now, here are some sample questions for the remaining topics that you should be able to answer before the exam.

1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}=\binom{2}{4}, \mathbf{b}_{2}=\binom{4}{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}=\binom{-11}{2}, \mathbf{c}_{2}=\binom{0}{-6}\right\}$ be bases for \mathbb{R}^{2}.
(a) Find the coordinate change matrices $A_{\mathcal{B}}$ and $A_{\mathcal{C}}$.
(b) Let $\mathbf{x}=\binom{2}{0}$. Compute $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$.
(c) Find \mathbf{y} if $[\mathbf{y}]_{\mathcal{B}}=\binom{3}{3}$.
(d) Find \mathbf{z} if $[\mathbf{z}]_{\mathcal{C}}=\binom{1}{1}$.
(e) Find the coordinate-change matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$.
(f) Prove that $A_{\mathcal{B} \rightarrow \mathcal{C}}=A_{\mathcal{C}}^{-1} \mathrm{~A}_{\mathcal{B}}$.
(g) Find the coordinate-change matrix $\mathrm{A}_{\mathcal{C} \rightarrow \mathcal{B}}$.
2. Let \mathcal{B} and \mathcal{C} be as above and let $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$, where $\mathbf{d}_{1}=\mathbf{b}_{1}-\mathbf{c}_{2}$ and $\mathbf{d}_{2}=\mathbf{b}_{2}-\mathbf{c}_{1}$.
(a) Is \mathcal{D} a basis for \mathbb{R}^{2} ? Justify your claim.
(b) Draw a diagram which relates $\left(\mathbb{R}^{2}, \operatorname{std}\right),\left(\mathbb{R}^{2}, \mathcal{B}\right),\left(\mathbb{R}^{2}, \mathcal{C}\right)$, and $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, where $\left(\mathbb{R}^{n}, \mathcal{X}\right)$ denotes \mathbb{R}^{n} with the coordinate system \mathcal{X} and where std denotes the "standard basis" $\left\{\left(\begin{array}{ll}1 & 0\end{array}\right)^{\top},\left(\begin{array}{ll}0 & 1\end{array}\right)^{\top}\right\}$ of \mathbb{R}^{2}
(c) Does the diagram you drew in part (b) commute? Why or why not?

Hint: This isn't "free;" you have to check stuff here!
3. Practice True/False questions by doing Example 1 from the Invertible Matrix Theorem II handout; here it is for your convenience!

Example 1:

Mark each of the following questions "true" or "false." Throughout, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be vectors in a nonzero subspace H of \mathbb{R}^{n} and let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Justify your claim.
(a) The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is a subspace of \mathbb{R}^{n}.
(b) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ spans H, then S spans H.
(c) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}\right\}$ is linearly independent, then so is S.
(d) If S is linearly independent, then S is a basis for H.
(e) If $\operatorname{span}\{S\}=H$, then some subset of S is a basis for H.
(f) If $\operatorname{dim} H=p$ and $\operatorname{span}\{S\}=H$, then S cannot be linearly dependent.
(g) A plane in \mathbb{R}^{3} is a two-dimensional subspace.
(h) Row operations on a matrix A can change the linear dependence relations among the rows of A.
(i) Row operations on a matrix can change the null space.
(j) The rank of a matrix equals the number of nonzero rows.
(k) If an $m \times n$ matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of $\mathbf{A x}=\mathbf{0}$ is $m-k$.
(l) If B is obtained from A by elementary row operations, then $\operatorname{rank}(B)=\operatorname{rank}(A)$.
(m) The nonzero rows of a matrix A form a basis for $\operatorname{row}(A)$.
(n) If matrices A and B have the same RREF, then $\operatorname{row}(A)=\operatorname{row}(B)$.
(o) If H is a subspace of \mathbb{R}^{3}, then there is a 3×3 matrix A such that $H=\operatorname{col}(\mathrm{A})$.
(p) If A is $m \times n$ and $\operatorname{rank}(\mathrm{A})=m$, then the linear transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is one-to-one.
(q) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto \mathrm{Ax}$ is onto, then $\operatorname{rank}(\mathrm{A})=m$.
4. Mark each of the following questions "true" or "false." Throughout, let V be a vector space and utilize the notation from question 2 above.
(a) A change-of-coordinates matrix is always invertible.
(b) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are two bases for a vector space V, then the j th column of the change-of-coordinates matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$ is the coordinate vector $\left[\mathbf{c}_{j}\right]_{\mathcal{B}}$.
(c) If $\mathbf{x} \in V$ and \mathcal{B} is a basis of V with n vectors, then the \mathcal{B}-coordinate vector of \mathbf{x} (aka $[\mathbf{x}]_{\mathcal{B}}$) is in ($\left.\mathbb{R}^{n}, \mathrm{std}\right)$.
(d) The coordinate change matrix $\mathrm{A}_{\mathcal{B}}$ satisfies $[\mathbf{x}]_{\mathcal{B}}=\mathrm{A}_{\mathcal{B}} \mathbf{x}$ for $\mathbf{x} \in V$.
(e) If $\mathcal{B}=\operatorname{std}$ is the standard basis for \mathbb{R}^{n}, then the \mathcal{B}-coordinate vector of $\mathbf{x} \in \mathbb{R}^{n}$ is \mathbf{x} itself.
(f) In some situations, a plane in \mathbb{R}^{3} can be "isomorphic" to \mathbb{R}^{2}.

Hint: Two vector spaces V and W are isomorphic if there is a one-to-one linear transformation $\mathrm{T}: V \rightarrow W$.
(g) The columns of the matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$ are \mathcal{B}-coordinate vectors of the vectors in \mathcal{C}.
(h) If $V=\mathbb{R}^{n}$ and $\mathcal{C}=\operatorname{std}$, then $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}=\mathrm{A}_{\mathcal{B}}$.
(i) The columns of the matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$ are linearly independent.
(j) If $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$, then row reduction of the augmented matrix $\left(\begin{array}{ll|ll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{c}_{1} & \mathbf{c}_{2}\end{array}\right)$ to $\left(I_{2} \mid \mathrm{P}\right)$ produces a matrix P which satisfies $[\mathrm{x}]_{\mathcal{B}}=\mathrm{P}[\mathbf{x}]_{\mathcal{C}}$ for all $\mathbf{x} \in V$.

