$$
A=\left[\begin{array}{rrc}
36 & 51 & 13 \\
52 & 34 & 74 \\
0 & 7 & 1.1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
33 \\
45 \\
3
\end{array}\right]
$$

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
a. Every matrix is row equivalent to a unique matrix in echelon form.
b. Any system of n linear equations in n variables has at most n solutions.
c. If a system of linear equations has two different solutions, it must have infinitely many solutions.
d. If a system of linear equations has no free variables, then it has a unique solution.
e. If an augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ is transformed into $\left[\begin{array}{ll}C & \mathbf{d}\end{array}\right]$ by elementary row operations, then the equations $A \mathbf{x}=\mathbf{b}$ and $C \mathbf{x}=\mathbf{d}$ have exactly the same solution sets.
f. If a system $A \mathbf{x}=\mathbf{b}$ has more than one solution, then so does the system $A \mathbf{x}=\mathbf{0}$.
g. If A is an $m \times n$ matrix and the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some \mathbf{b}, then the columns of A span \mathbb{R}^{m}.
h. If an augmented matrix [$\left.\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ can be transformed by elementary row operations into reduced echelon form, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent.
i. If matrices A and B are row equivalent, they have the same reduced echelon form.
j. The equation $A \mathbf{x}=\mathbf{0}$ has the trivial solution if and only if there are no free variables.
k. If A is an $m \times n$ matrix and the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{m}, then A has m pivot columns.
2. If an $m \times n$ matrix A has a pivot position in every row, then the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^{m}.
m. If an $n \times n$ matrix A has n pivot positions, then the reduced echelon form of A is the $n \times n$ identity matrix.
n. If 3×3 matrices A and B each have three pivot positions, then A can be transformed into B by elementary row operations.
o. If A is an $m \times n$ matrix, if the equation $A \mathbf{x}=\mathbf{b}$ has at least two different solutions, and if the equation $A \mathbf{x}=\mathbf{c}$ is consistent, then the equation $A \mathbf{x}=\mathbf{c}$ has many solutions.
p. If A and B are row equivalent $m \times n$ matrices and if the columns of A span \mathbb{R}^{m}, then so do the columns of B.
q. If none of the vectors in the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ in \mathbb{R}^{3} is a multiple of one of the other vectors, then S is linearly independent.
r. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then \mathbf{u}, \mathbf{v}, and \mathbf{w} are not in \mathbb{R}^{2}.
s. In some cases, it is possible for four vectors to span \mathbb{R}^{5}.
t. If \mathbf{u} and \mathbf{v} are in \mathbb{R}^{m}, then $-\mathbf{u}$ is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
\mathbf{u}. If \mathbf{u}, \mathbf{v}, and \mathbf{w} are nonzero vectors in \mathbb{R}^{2}, then \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v}.
v. If \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, then \mathbf{u} is a linear combination of \mathbf{v} and \mathbf{w}.
w. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are in $\mathbb{R}^{5}, \mathbf{v}_{2}$ is not a multiple of \mathbf{v}_{1}, and \mathbf{v}_{3} is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
x. A linear transformation is a function.
y. If A is a 6×5 matrix, the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{5} onto \mathbb{R}^{6}.
z. If A is an $m \times n$ matrix with m pivot columns, then the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is a one-to-one mapping.
3. Let a and b represent real numbers. Describe the possible solution sets of the (linear) equation $a x=b$. [Hint: The number of solutions depends upon a and b.]
4. The solutions (x, y, z) of a single linear equation
$a x+b y+c z=d$
form a plane in \mathbb{R}^{3} when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no
