SOLUTION TO PRACTICE PROBLEM

$$A = \begin{bmatrix} 36 & 51 & 13\\ 52 & 34 & 74\\ 0 & 7 & 1.1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 33\\ 45\\ 3 \end{bmatrix}$$

CHAPTER 1 SUPPLEMENTARY EXERCISES

- 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
 - a. Every matrix is row equivalent to a unique matrix in echelon form.
 - b. Any system of n linear equations in n variables has at most n solutions.
 - c. If a system of linear equations has two different solutions, it must have infinitely many solutions.
 - d. If a system of linear equations has no free variables, then it has a unique solution.
 - e. If an augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ is transformed into $\begin{bmatrix} C & \mathbf{d} \end{bmatrix}$ by elementary row operations, then the equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ have exactly the same solution sets.
 - f. If a system $A\mathbf{x} = \mathbf{b}$ has more than one solution, then so does the system $A\mathbf{x} = \mathbf{0}$.
 - g. If A is an $m \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some **b**, then the columns of A span \mathbb{R}^m .
 - h. If an augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ can be transformed by elementary row operations into reduced echelon form, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent.
 - i. If matrices *A* and *B* are row equivalent, they have the same reduced echelon form.
 - j. The equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if there are no free variables.
 - k. If A is an $m \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every **b** in \mathbb{R}^m , then A has m pivot columns.
 - If an m×n matrix A has a pivot position in every row, then the equation Ax = b has a unique solution for each b in R^m.
 - m. If an $n \times n$ matrix A has n pivot positions, then the reduced echelon form of A is the $n \times n$ identity matrix.
 - n. If 3×3 matrices A and B each have three pivot positions, then A can be transformed into B by elementary row operations.

- o. If A is an $m \times n$ matrix, if the equation $A\mathbf{x} = \mathbf{b}$ has at least two different solutions, and if the equation $A\mathbf{x} = \mathbf{c}$ is consistent, then the equation $A\mathbf{x} = \mathbf{c}$ has many solutions.
- p. If *A* and *B* are row equivalent $m \times n$ matrices and if the columns of *A* span \mathbb{R}^m , then so do the columns of *B*.
- q. If none of the vectors in the set $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ in \mathbb{R}^3 is a multiple of one of the other vectors, then S is linearly independent.
- r. If $\{u, v, w\}$ is linearly independent, then u, v, and w are not in \mathbb{R}^2 .
- s. In some cases, it is possible for four vectors to span \mathbb{R}^5 .
- t. If **u** and **v** are in \mathbb{R}^m , then $-\mathbf{u}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$.
- u. If \mathbf{u}, \mathbf{v} , and \mathbf{w} are nonzero vectors in \mathbb{R}^2 , then \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} .
- v. If w is a linear combination of u and v in \mathbb{R}^n , then u is a linear combination of v and w.
- w. Suppose that v₁, v₂, and v₃ are in ℝ⁵, v₂ is not a multiple of v₁, and v₃ is not a linear combination of v₁ and v₂. Then {v₁, v₂, v₃} is linearly independent.
- x. A linear transformation is a function.
- y. If A is a 6×5 matrix, the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot map \mathbb{R}^5 onto \mathbb{R}^6 .
- z. If A is an $m \times n$ matrix with m pivot columns, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is a one-to-one mapping.
- **2.** Let *a* and *b* represent real numbers. Describe the possible solution sets of the (linear) equation ax = b. [*Hint:* The number of solutions depends upon *a* and *b*.]
- 3. The solutions (x, y, z) of a single linear equation ax + by + cz = d

form a plane in \mathbb{R}^3 when *a*, *b*, and *c* are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no