Exam 1 Preview

Here's a bit of logistical info about the exam.

- There will be 5–7 questions overall, and some will have multiple parts.
- The exam will cover the following textbook sections:
 - §2.1 (the first stuff we did: matrix multiplication, elements of a matrix, etc.)
 - §1.1–1.2 (systems of equations + (R)REF + using (R)REF to solve systems)
 - §1.3 (vector equations, i.e. linear combos + spans)
 - $\S1.4-1.5 (Ax = b \text{ and/or } Ax = 0)$
 - §1.7 (linearly dependent/independent)
- You should expect the following question formats:
 - computation questions (e.g. using matrices to solve systems from start to finish)
 - multiple-choice questions
 - True/False questions (which may or may not require justification).

The True/False questions will mostly look like those from the textbook (which I include here for those of you without the textbook).

Now, here are some sample questions that you should be able to answer before the exam.

1. Let
$$A = \begin{pmatrix} 2 & 0 & -1 & -1 \\ 3 & 1 & 2 & -5 \\ -4 & 0 & 4 & 11 \end{pmatrix}$$
 be an augmented matrix.

- (a) Put A into Row Echelon Form (REF).
- (b) Put A into Reduced Row Echelon Form (RREF).
- (c) Write a system of linear equations associated to A using x_1 , x_2 , etc. as your variables.
- (d) Is the system from part (c) consistent? Why or why not?
- (e) Write the solution(s) to the system from part (c) in parametric vector form <u>or</u> state that no solutions exist.

(f) **True or False:** A is row equivalent to
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Justify your answer!

- 2. (a) Draw the span of a single nonzero vector in \mathbb{R}^2 .
 - (b) Draw the span of two linearly dependent vectors in \mathbb{R}^2 .
 - (c) Draw the span of two linearly independent vectors in \mathbb{R}^2 .
 - (d) Draw the span of two linearly independent vectors in \mathbb{R}^3
 - (e) Draw a vector in the span of two linearly independent vectors in \mathbb{R}^3 .
 - (f) Draw a vector linearly independent of two linearly independent vectors in \mathbb{R}^3 .

3. Let
$$\mathsf{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ -2 & 0 \end{pmatrix}$$
 and $\mathbf{v} = \langle 2, 1, -3 \rangle$. Provide an example matching each of the following criteria

or state that no such example exists. Justify your answer!

- (a) Give an example of a matrix C such that the product BC exists but the product CB does not exist.
- (b) Give an example of a matrix D such that both products BD and DB exist but $BD \neq DB$.
- (c) Give an example of a matrix E such that neither BE nor EB exist.
- (d) Give an example of a matrix F such that $FB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ("the identity matrix"). Is BF equal to "the identity matrix" of the appropriate dimension?
- (e) Give an example of a vector \mathbf{w} such that the dot product $\mathbf{v} \cdot \mathbf{w}$ exists and equals 7.

- (f) Give an example of a vector \mathbf{a} such that the vectors $\{\mathbf{a}, \mathbf{v}\}$ are linearly independent.
- (g) Give an example of a vector \mathbf{b} such that the vectors $\{\mathbf{v}, \mathbf{b}\}$ are linearly dependent.
- (h) Give an example of a vector \mathbf{k} such that the vectors $\{\mathbf{v}, \mathbf{0}, \mathbf{k}\}$ are linearly dependent.
- 4. Let $A = \begin{pmatrix} -1 & -2 & -3 \\ 7 & 8 & 9 \\ h & -5 & -6 \end{pmatrix}$, let \mathbf{c}_1 , \mathbf{c}_2 , and \mathbf{c}_3 denote the columns of A, and let \mathbf{r}_1 , \mathbf{r}_2 , and \mathbf{r}_3 denote the rows of A
 - (a) For which value(s) h does Ax = 0 have only the trivial solution?
 - (b) For which value(s) h does $A\mathbf{x} = \mathbf{0}$ have nontrivial solutions? In this case, express the solutions in terms of one or more free variables.
 - (c) Let h be as in (a). Give an example of a vector \mathbf{u} for which the set $\{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{u}\}$ is linearly independent or state that no such vector exists.
 - (d) Let h be as in (b). Give an example of a vector \mathbf{u} for which the set $\{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{u}\}$ is linearly independent or state that no such vector exists.
 - (e) Let h be as in (a). Give an example of a vector \mathbf{u} for which the set $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{u}\}$ is linearly independent or state that no such vector exists.
 - (f) Let h be as in (b). Give an example of a vector \mathbf{u} for which the set $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{u}\}$ is linearly independent or state that no such vector exists.
- 5. Practice True/False questions by doing problems 1(a)-1(z) from Exam1TF.pdf except for parts (k)-(n) and parts (x)-(z).