Vector Spaces

Recently, I mentioned that I'd begin using the phrase "vector space" but wouldn't formally define it in class. To alleviate the burden caused, I've decided to give you a handout on the topic instead.

Here's the definition

Definition 1: A vector space is a nonempty set V of objects (called vectors) and a pair of operations called addition (denoted "+") and scalar multiplication (denoted by juxtaposition, i.e. $c \mathbf{u}$ for the scalar multiple of \mathbf{u} by c) —which together will always satisfy the following ten axioms (for all scalars c and d and for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V):
(i) $\mathbf{u}+\mathbf{v} \in V \quad\}$ We can add things!
(ii) $c \mathbf{u} \in V \quad\}$ We can scalar multiply
(iii) there exists a zero vector $\mathbf{0} \in V$ which satisfies $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(iv) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
(vi) for each $\mathbf{u} \in V$, there exists a vector $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(vii) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(viii) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
$($ ix) $c(d \mathbf{u})=(c d) \mathbf{u}$
(x) $1 \mathbf{u}=\mathbf{u}$

Addition and scalar multiplication work the way we want them to!

Over the next week or so, my plan is to revisit this handout ≥ 1 time(s) to give examples, details for verifying examples, etc., of vector spaces. Until then, just remember the mantra:

When you see "...n-dimensional vector space V..." just replace it with "...subspace of \mathbb{R}^{n}..."!

