
The Inverse Matrix Theorem II
As we saw before, a matrix being invertible/nonsingular tells you a tremendous amount about

the matrix + its corresponding linear system(s) / linear transformation(s). To highlight this, your
textbook regularly adds to + revisits a monolithic colossus it calls The Invertible Matrix The-
orem.

This so-called “theorem” is really just a collection of statements/observations which mean the
same thing as (and hence are logically equivalent to) A has an inverse. However, because many
of the statements lumped into this “theorem” are important—and indeed, many are related to /
duplicates of statements we’ve already visited before—I want to make sure you have them explicitly
given and explained to you. Hence, this (and the previous) handout!

Here, we recall the nine (9) previously-stated conditions which are equivalent to the statement
“the n× n matrix A is invertible:”

(1) A is invertible if and only if det(A) 6= 0.
(2) A is invertible if and only if the columns of A form a linearly independent set.
(3) A is invertible if and only if Ax = 0 has only the trivial solution.
(4) A is invertible if and only if the linear transformation T (x) = Ax is one-to-one.
(5) A is invertible if and only if the linear transformation T (x) = Ax is onto.
(6) A is invertible if and only if the equation Ax = b has ≥ 1 solution for each b ∈ Rn.
(7) A is invertible if and only if the columns of A span Rn.
(8) A is invertible if and only if A is row equivalent to the n× n identity matrix In.
(9) A is invertible if and only if AT invertible.

For more details, you should see the previous handout.
With this handout, we pick up from there. Throughout, assume that A =

(
v1 · · · vn

)
is

an n× n matrix, i.e. that T (x) = Ax is a linear transformation Rn → Rn!

(10) A is invertible if and only if the columns of A form a basis for Rn.

Why should this be true? From the previous handout, the n × n matrix A is
invertible if and only if the columns of A are linearly independent (see (2) on the last
handout) and if and only if the columns of A span Rn (see (7) on the last handout).

To rephrase: A =
(
v1 · · · vn

)
is invertible if and only if {v1, . . . , vn} is a

linearly independent set which spans Rn. By definition, this means that {v1, . . . , vn}
is a basis for Rn.

Condition (10) involves the columns of A; unsurprisingly, we can relate this to the column space
col(A) of A.

(11) A is invertible if and only if col(A)︸ ︷︷ ︸
row(AT)

= Rn.
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Why should this be true? The columns {v1, . . . , vn} of A are a basis for Rn if
and only if col(A) def= span{v1, . . . , vn} is an n-dimensional subspace of Rn.

By properties of (vector) subspaces, the only such subspace in Rn is Rn itself.

(12) A is invertible if and only if dim(col(A)︸ ︷︷ ︸
row(AT)

) = n.

Why should this be true? By (11), A is invertible if and only if col(A) = Rn,
which is true if and only if dim(col(A)) = dim(Rn) = n.

(13) A is invertible if and only if rank(A)︸ ︷︷ ︸
rank(AT)

= n.

Why should this be true? By (12), A is invertible if and only if dim(col(A)) = n.
By definition, rank(A) = dim(col(A)), so the result follows.

Conditions (11)–(13) involve col(A), and by the rank-nullity theorem, this is immediately teth-
ered to the null space nul(A).

(14) A is invertible if and only if nullity(A) = 0

Why should this be true? By (13), A is invertible if and only if rank(A) = n. By
the rank-nullity theorem,

rank(A) + nullity(A) = n,

so then A is invertible if and only if nullity(A) = n− rank(A) = n− n = 0.

(15) A is invertible if and only if dim(nul(A)) = 0

Why should this be true? By (14), A is invertible if and only if dim(nul(A)) = 0.
By definition, nullity(A) = dim(nul(A)), so the result follows.

(16) A is invertible if and only if nul(A) = {0}.

Why should this be true? By (15), A is invertible if and only if dim(nul(A)) = 0.
The only 0-dimensional subspace of Rn (or of any vector space) is the trivial subspace
{0}, and hence the result follows.
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Even when the two above lists are combined, the result is still just a small fraction of the number
of equivalent ways one can say “A is invertible.” In a perfect world, we’ll revisit this handout with
additional updates at least one more time throughout the remainder of the semester, but this is
less than certain.

In the meantime, take some time to read through the above and digest everything thoroughly.
To help, use the above to work through the following true/false practice problems!

Example 1:
Mark each of the following questions “true” or “false.” Throughout, let v1, . . . , vp be vectors
in a nonzero subspace H of Rn and let S = {v1, . . . , vp}. Justify your claim.

(a) The set of all linear combinations of v1, . . . , vp is a subspace of Rn.

(b) If {v1, . . . , vp−1} spans H, then S spans H.

(c) If {v1, . . . , vp−1} is linearly independent, then so is S.

(d) If S is linearly independent, then S is a basis for H.

(e) If span{S} = H, then some subset of S is a basis for H.

(f) If dim H = p and span{S} = H, then S cannot be linearly dependent.

(g) A plane in R3 is a two-dimensional subspace.

(h) Row operations on a matrix A can change the linear dependence relations among the
rows of A.

(i) Row operations on a matrix can change the null space.

(j) The rank of a matrix equals the number of nonzero rows.

(k) If an m× n matrix A is row equivalent to an echelon matrix U and if U has k nonzero
rows, then the dimension of the solution space of Ax = 0 is m− k.

(l) If B is obtained from A by elementary row operations, then rank(B) = rank(A).

(m) The nonzero rows of a matrix A form a basis for row(A).

(n) If matrices A and B have the same RREF, then row(A) = row(B).

(o) If H is a subspace of R3, then there is a 3× 3 matrix A such that H = col(A).

(p) If A is m× n and rank(A) = m, then the linear transformation x 7→ Ax is one-to-one.

(q) If A is m× n and the linear transformation x 7→ Ax is onto, then rank(A) = m.
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Example 2:
What would you have to know about the solution set of a homogoenous system of 31 linear
equations in 33 variables in order to know that the associated nonhomogeneous equation has
a solution?

Example 3:
Let T : Rn → Rm be a linear transformation.

(a) What is the dimension of range(T) if T is one-to-one? Justify your claim.

(b) What is the dimension of ker(T) if T is onto? Justify your claim.

Example 4:
This is a challenge problem! Let A be an m× n matrix.
(a) Show that if B is n× p, then rank(AB) ≤ rank(A) by showing that every vector in the

column space of AB is in the column space of A.

(b) Show that if B is n× p, then rank(AB) ≤ rank(B) by using problem 4(a) and studying
(AB)T).

(c) Show that if P is an invertible m ×m matrix, then rank(PA) = rank(A) by applying
problems 4(a) and 4(b) to each of PA and P−1(PA).

(d) Show that if Q is invertible, then rank(AQ) = rank(A) by applying problem 4(c) to
rank(AQ)T.

(e) Suppose that B is n × p such that AB = 0. Show that rank(A) + rank(B) ≤ n by
showing that one of nul(A), col(A), nul(B), or col(B) is contained in one of the other
three.

(f) Suppose that rank(A) = r. The rank factorization of A is an equation of the form
A = CR where C is an m× r matrix of rank r and R is an r×n matrix of rank r. Such
a factorization always exists.

Given an m× n matrix B, use rank factorizations of A and B to show that
rank(A + B) ≤ rank(A) + rank(B)

by writing the sum A + B as the product of two augmented matrices.
(g) If A has rank r, explain why

(i) A must contain an m× r submatrix A1 of rank r; and
(ii) A1 must have an invertible r × r submatrix A2.
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